xref: /openbmc/linux/drivers/pwm/pwm-lpss.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel Low Power Subsystem PWM controller driver
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7  * Author: Chew Kean Ho <kean.ho.chew@intel.com>
8  * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
9  * Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
10  * Author: Alan Cox <alan@linux.intel.com>
11  */
12 
13 #include <linux/delay.h>
14 #include <linux/io.h>
15 #include <linux/iopoll.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/time.h>
20 
21 #include "pwm-lpss.h"
22 
23 #define PWM				0x00000000
24 #define PWM_ENABLE			BIT(31)
25 #define PWM_SW_UPDATE			BIT(30)
26 #define PWM_BASE_UNIT_SHIFT		8
27 #define PWM_ON_TIME_DIV_MASK		0x000000ff
28 
29 /* Size of each PWM register space if multiple */
30 #define PWM_SIZE			0x400
31 
32 static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
33 {
34 	return container_of(chip, struct pwm_lpss_chip, chip);
35 }
36 
37 static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
38 {
39 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
40 
41 	return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
42 }
43 
44 static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
45 {
46 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
47 
48 	writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
49 }
50 
51 static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
52 {
53 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
54 	const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
55 	const unsigned int ms = 500 * USEC_PER_MSEC;
56 	u32 val;
57 	int err;
58 
59 	/*
60 	 * PWM Configuration register has SW_UPDATE bit that is set when a new
61 	 * configuration is written to the register. The bit is automatically
62 	 * cleared at the start of the next output cycle by the IP block.
63 	 *
64 	 * If one writes a new configuration to the register while it still has
65 	 * the bit enabled, PWM may freeze. That is, while one can still write
66 	 * to the register, it won't have an effect. Thus, we try to sleep long
67 	 * enough that the bit gets cleared and make sure the bit is not
68 	 * enabled while we update the configuration.
69 	 */
70 	err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
71 	if (err)
72 		dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n");
73 
74 	return err;
75 }
76 
77 static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
78 {
79 	return (pwm_lpss_read(pwm) & PWM_SW_UPDATE) ? -EBUSY : 0;
80 }
81 
82 static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
83 			     int duty_ns, int period_ns)
84 {
85 	unsigned long long on_time_div;
86 	unsigned long c = lpwm->info->clk_rate, base_unit_range;
87 	unsigned long long base_unit, freq = NSEC_PER_SEC;
88 	u32 orig_ctrl, ctrl;
89 
90 	do_div(freq, period_ns);
91 
92 	/*
93 	 * The equation is:
94 	 * base_unit = round(base_unit_range * freq / c)
95 	 */
96 	base_unit_range = BIT(lpwm->info->base_unit_bits) - 1;
97 	freq *= base_unit_range;
98 
99 	base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
100 
101 	on_time_div = 255ULL * duty_ns;
102 	do_div(on_time_div, period_ns);
103 	on_time_div = 255ULL - on_time_div;
104 
105 	orig_ctrl = ctrl = pwm_lpss_read(pwm);
106 	ctrl &= ~PWM_ON_TIME_DIV_MASK;
107 	ctrl &= ~(base_unit_range << PWM_BASE_UNIT_SHIFT);
108 	base_unit &= base_unit_range;
109 	ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
110 	ctrl |= on_time_div;
111 
112 	if (orig_ctrl != ctrl) {
113 		pwm_lpss_write(pwm, ctrl);
114 		pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE);
115 	}
116 }
117 
118 static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
119 {
120 	if (cond)
121 		pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
122 }
123 
124 static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
125 			  const struct pwm_state *state)
126 {
127 	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
128 	int ret;
129 
130 	if (state->enabled) {
131 		if (!pwm_is_enabled(pwm)) {
132 			pm_runtime_get_sync(chip->dev);
133 			ret = pwm_lpss_is_updating(pwm);
134 			if (ret) {
135 				pm_runtime_put(chip->dev);
136 				return ret;
137 			}
138 			pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
139 			pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
140 			ret = pwm_lpss_wait_for_update(pwm);
141 			if (ret) {
142 				pm_runtime_put(chip->dev);
143 				return ret;
144 			}
145 			pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
146 		} else {
147 			ret = pwm_lpss_is_updating(pwm);
148 			if (ret)
149 				return ret;
150 			pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
151 			return pwm_lpss_wait_for_update(pwm);
152 		}
153 	} else if (pwm_is_enabled(pwm)) {
154 		pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
155 		pm_runtime_put(chip->dev);
156 	}
157 
158 	return 0;
159 }
160 
161 static void pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
162 			       struct pwm_state *state)
163 {
164 	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
165 	unsigned long base_unit_range;
166 	unsigned long long base_unit, freq, on_time_div;
167 	u32 ctrl;
168 
169 	pm_runtime_get_sync(chip->dev);
170 
171 	base_unit_range = BIT(lpwm->info->base_unit_bits);
172 
173 	ctrl = pwm_lpss_read(pwm);
174 	on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK);
175 	base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1);
176 
177 	freq = base_unit * lpwm->info->clk_rate;
178 	do_div(freq, base_unit_range);
179 	if (freq == 0)
180 		state->period = NSEC_PER_SEC;
181 	else
182 		state->period = NSEC_PER_SEC / (unsigned long)freq;
183 
184 	on_time_div *= state->period;
185 	do_div(on_time_div, 255);
186 	state->duty_cycle = on_time_div;
187 
188 	state->polarity = PWM_POLARITY_NORMAL;
189 	state->enabled = !!(ctrl & PWM_ENABLE);
190 
191 	pm_runtime_put(chip->dev);
192 }
193 
194 static const struct pwm_ops pwm_lpss_ops = {
195 	.apply = pwm_lpss_apply,
196 	.get_state = pwm_lpss_get_state,
197 	.owner = THIS_MODULE,
198 };
199 
200 struct pwm_lpss_chip *pwm_lpss_probe(struct device *dev, struct resource *r,
201 				     const struct pwm_lpss_boardinfo *info)
202 {
203 	struct pwm_lpss_chip *lpwm;
204 	unsigned long c;
205 	int i, ret;
206 	u32 ctrl;
207 
208 	if (WARN_ON(info->npwm > MAX_PWMS))
209 		return ERR_PTR(-ENODEV);
210 
211 	lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL);
212 	if (!lpwm)
213 		return ERR_PTR(-ENOMEM);
214 
215 	lpwm->regs = devm_ioremap_resource(dev, r);
216 	if (IS_ERR(lpwm->regs))
217 		return ERR_CAST(lpwm->regs);
218 
219 	lpwm->info = info;
220 
221 	c = lpwm->info->clk_rate;
222 	if (!c)
223 		return ERR_PTR(-EINVAL);
224 
225 	lpwm->chip.dev = dev;
226 	lpwm->chip.ops = &pwm_lpss_ops;
227 	lpwm->chip.base = -1;
228 	lpwm->chip.npwm = info->npwm;
229 
230 	ret = pwmchip_add(&lpwm->chip);
231 	if (ret) {
232 		dev_err(dev, "failed to add PWM chip: %d\n", ret);
233 		return ERR_PTR(ret);
234 	}
235 
236 	for (i = 0; i < lpwm->info->npwm; i++) {
237 		ctrl = pwm_lpss_read(&lpwm->chip.pwms[i]);
238 		if (ctrl & PWM_ENABLE)
239 			pm_runtime_get(dev);
240 	}
241 
242 	return lpwm;
243 }
244 EXPORT_SYMBOL_GPL(pwm_lpss_probe);
245 
246 int pwm_lpss_remove(struct pwm_lpss_chip *lpwm)
247 {
248 	int i;
249 
250 	for (i = 0; i < lpwm->info->npwm; i++) {
251 		if (pwm_is_enabled(&lpwm->chip.pwms[i]))
252 			pm_runtime_put(lpwm->chip.dev);
253 	}
254 	return pwmchip_remove(&lpwm->chip);
255 }
256 EXPORT_SYMBOL_GPL(pwm_lpss_remove);
257 
258 int pwm_lpss_suspend(struct device *dev)
259 {
260 	struct pwm_lpss_chip *lpwm = dev_get_drvdata(dev);
261 	int i;
262 
263 	for (i = 0; i < lpwm->info->npwm; i++)
264 		lpwm->saved_ctrl[i] = readl(lpwm->regs + i * PWM_SIZE + PWM);
265 
266 	return 0;
267 }
268 EXPORT_SYMBOL_GPL(pwm_lpss_suspend);
269 
270 int pwm_lpss_resume(struct device *dev)
271 {
272 	struct pwm_lpss_chip *lpwm = dev_get_drvdata(dev);
273 	int i;
274 
275 	for (i = 0; i < lpwm->info->npwm; i++)
276 		writel(lpwm->saved_ctrl[i], lpwm->regs + i * PWM_SIZE + PWM);
277 
278 	return 0;
279 }
280 EXPORT_SYMBOL_GPL(pwm_lpss_resume);
281 
282 MODULE_DESCRIPTION("PWM driver for Intel LPSS");
283 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
284 MODULE_LICENSE("GPL v2");
285