xref: /openbmc/linux/drivers/pwm/pwm-imx-tpm.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2018-2019 NXP.
4  *
5  * Limitations:
6  * - The TPM counter and period counter are shared between
7  *   multiple channels, so all channels should use same period
8  *   settings.
9  * - Changes to polarity cannot be latched at the time of the
10  *   next period start.
11  * - Changing period and duty cycle together isn't atomic,
12  *   with the wrong timing it might happen that a period is
13  *   produced with old duty cycle but new period settings.
14  */
15 
16 #include <linux/bitfield.h>
17 #include <linux/bitops.h>
18 #include <linux/clk.h>
19 #include <linux/err.h>
20 #include <linux/io.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/pwm.h>
25 #include <linux/slab.h>
26 
27 #define PWM_IMX_TPM_PARAM	0x4
28 #define PWM_IMX_TPM_GLOBAL	0x8
29 #define PWM_IMX_TPM_SC		0x10
30 #define PWM_IMX_TPM_CNT		0x14
31 #define PWM_IMX_TPM_MOD		0x18
32 #define PWM_IMX_TPM_CnSC(n)	(0x20 + (n) * 0x8)
33 #define PWM_IMX_TPM_CnV(n)	(0x24 + (n) * 0x8)
34 
35 #define PWM_IMX_TPM_PARAM_CHAN			GENMASK(7, 0)
36 
37 #define PWM_IMX_TPM_SC_PS			GENMASK(2, 0)
38 #define PWM_IMX_TPM_SC_CMOD			GENMASK(4, 3)
39 #define PWM_IMX_TPM_SC_CMOD_INC_EVERY_CLK	FIELD_PREP(PWM_IMX_TPM_SC_CMOD, 1)
40 #define PWM_IMX_TPM_SC_CPWMS			BIT(5)
41 
42 #define PWM_IMX_TPM_CnSC_CHF	BIT(7)
43 #define PWM_IMX_TPM_CnSC_MSB	BIT(5)
44 #define PWM_IMX_TPM_CnSC_MSA	BIT(4)
45 
46 /*
47  * The reference manual describes this field as two separate bits. The
48  * semantic of the two bits isn't orthogonal though, so they are treated
49  * together as a 2-bit field here.
50  */
51 #define PWM_IMX_TPM_CnSC_ELS	GENMASK(3, 2)
52 #define PWM_IMX_TPM_CnSC_ELS_INVERSED	FIELD_PREP(PWM_IMX_TPM_CnSC_ELS, 1)
53 #define PWM_IMX_TPM_CnSC_ELS_NORMAL	FIELD_PREP(PWM_IMX_TPM_CnSC_ELS, 2)
54 
55 
56 #define PWM_IMX_TPM_MOD_WIDTH	16
57 #define PWM_IMX_TPM_MOD_MOD	GENMASK(PWM_IMX_TPM_MOD_WIDTH - 1, 0)
58 
59 struct imx_tpm_pwm_chip {
60 	struct pwm_chip chip;
61 	struct clk *clk;
62 	void __iomem *base;
63 	struct mutex lock;
64 	u32 user_count;
65 	u32 enable_count;
66 	u32 real_period;
67 };
68 
69 struct imx_tpm_pwm_param {
70 	u8 prescale;
71 	u32 mod;
72 	u32 val;
73 };
74 
75 static inline struct imx_tpm_pwm_chip *
76 to_imx_tpm_pwm_chip(struct pwm_chip *chip)
77 {
78 	return container_of(chip, struct imx_tpm_pwm_chip, chip);
79 }
80 
81 /*
82  * This function determines for a given pwm_state *state that a consumer
83  * might request the pwm_state *real_state that eventually is implemented
84  * by the hardware and the necessary register values (in *p) to achieve
85  * this.
86  */
87 static int pwm_imx_tpm_round_state(struct pwm_chip *chip,
88 				   struct imx_tpm_pwm_param *p,
89 				   struct pwm_state *real_state,
90 				   const struct pwm_state *state)
91 {
92 	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
93 	u32 rate, prescale, period_count, clock_unit;
94 	u64 tmp;
95 
96 	rate = clk_get_rate(tpm->clk);
97 	tmp = (u64)state->period * rate;
98 	clock_unit = DIV_ROUND_CLOSEST_ULL(tmp, NSEC_PER_SEC);
99 	if (clock_unit <= PWM_IMX_TPM_MOD_MOD)
100 		prescale = 0;
101 	else
102 		prescale = ilog2(clock_unit) + 1 - PWM_IMX_TPM_MOD_WIDTH;
103 
104 	if ((!FIELD_FIT(PWM_IMX_TPM_SC_PS, prescale)))
105 		return -ERANGE;
106 	p->prescale = prescale;
107 
108 	period_count = (clock_unit + ((1 << prescale) >> 1)) >> prescale;
109 	p->mod = period_count;
110 
111 	/* calculate real period HW can support */
112 	tmp = (u64)period_count << prescale;
113 	tmp *= NSEC_PER_SEC;
114 	real_state->period = DIV_ROUND_CLOSEST_ULL(tmp, rate);
115 
116 	/*
117 	 * if eventually the PWM output is inactive, either
118 	 * duty cycle is 0 or status is disabled, need to
119 	 * make sure the output pin is inactive.
120 	 */
121 	if (!state->enabled)
122 		real_state->duty_cycle = 0;
123 	else
124 		real_state->duty_cycle = state->duty_cycle;
125 
126 	tmp = (u64)p->mod * real_state->duty_cycle;
127 	p->val = DIV64_U64_ROUND_CLOSEST(tmp, real_state->period);
128 
129 	real_state->polarity = state->polarity;
130 	real_state->enabled = state->enabled;
131 
132 	return 0;
133 }
134 
135 static void pwm_imx_tpm_get_state(struct pwm_chip *chip,
136 				  struct pwm_device *pwm,
137 				  struct pwm_state *state)
138 {
139 	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
140 	u32 rate, val, prescale;
141 	u64 tmp;
142 
143 	/* get period */
144 	state->period = tpm->real_period;
145 
146 	/* get duty cycle */
147 	rate = clk_get_rate(tpm->clk);
148 	val = readl(tpm->base + PWM_IMX_TPM_SC);
149 	prescale = FIELD_GET(PWM_IMX_TPM_SC_PS, val);
150 	tmp = readl(tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm));
151 	tmp = (tmp << prescale) * NSEC_PER_SEC;
152 	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, rate);
153 
154 	/* get polarity */
155 	val = readl(tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
156 	if ((val & PWM_IMX_TPM_CnSC_ELS) == PWM_IMX_TPM_CnSC_ELS_INVERSED)
157 		state->polarity = PWM_POLARITY_INVERSED;
158 	else
159 		/*
160 		 * Assume reserved values (2b00 and 2b11) to yield
161 		 * normal polarity.
162 		 */
163 		state->polarity = PWM_POLARITY_NORMAL;
164 
165 	/* get channel status */
166 	state->enabled = FIELD_GET(PWM_IMX_TPM_CnSC_ELS, val) ? true : false;
167 }
168 
169 /* this function is supposed to be called with mutex hold */
170 static int pwm_imx_tpm_apply_hw(struct pwm_chip *chip,
171 				struct imx_tpm_pwm_param *p,
172 				struct pwm_state *state,
173 				struct pwm_device *pwm)
174 {
175 	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
176 	bool period_update = false;
177 	bool duty_update = false;
178 	u32 val, cmod, cur_prescale;
179 	unsigned long timeout;
180 	struct pwm_state c;
181 
182 	if (state->period != tpm->real_period) {
183 		/*
184 		 * TPM counter is shared by multiple channels, so
185 		 * prescale and period can NOT be modified when
186 		 * there are multiple channels in use with different
187 		 * period settings.
188 		 */
189 		if (tpm->user_count > 1)
190 			return -EBUSY;
191 
192 		val = readl(tpm->base + PWM_IMX_TPM_SC);
193 		cmod = FIELD_GET(PWM_IMX_TPM_SC_CMOD, val);
194 		cur_prescale = FIELD_GET(PWM_IMX_TPM_SC_PS, val);
195 		if (cmod && cur_prescale != p->prescale)
196 			return -EBUSY;
197 
198 		/* set TPM counter prescale */
199 		val &= ~PWM_IMX_TPM_SC_PS;
200 		val |= FIELD_PREP(PWM_IMX_TPM_SC_PS, p->prescale);
201 		writel(val, tpm->base + PWM_IMX_TPM_SC);
202 
203 		/*
204 		 * set period count:
205 		 * if the PWM is disabled (CMOD[1:0] = 2b00), then MOD register
206 		 * is updated when MOD register is written.
207 		 *
208 		 * if the PWM is enabled (CMOD[1:0] ≠ 2b00), the period length
209 		 * is latched into hardware when the next period starts.
210 		 */
211 		writel(p->mod, tpm->base + PWM_IMX_TPM_MOD);
212 		tpm->real_period = state->period;
213 		period_update = true;
214 	}
215 
216 	pwm_imx_tpm_get_state(chip, pwm, &c);
217 
218 	/* polarity is NOT allowed to be changed if PWM is active */
219 	if (c.enabled && c.polarity != state->polarity)
220 		return -EBUSY;
221 
222 	if (state->duty_cycle != c.duty_cycle) {
223 		/*
224 		 * set channel value:
225 		 * if the PWM is disabled (CMOD[1:0] = 2b00), then CnV register
226 		 * is updated when CnV register is written.
227 		 *
228 		 * if the PWM is enabled (CMOD[1:0] ≠ 2b00), the duty length
229 		 * is latched into hardware when the next period starts.
230 		 */
231 		writel(p->val, tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm));
232 		duty_update = true;
233 	}
234 
235 	/* make sure MOD & CnV registers are updated */
236 	if (period_update || duty_update) {
237 		timeout = jiffies + msecs_to_jiffies(tpm->real_period /
238 						     NSEC_PER_MSEC + 1);
239 		while (readl(tpm->base + PWM_IMX_TPM_MOD) != p->mod
240 		       || readl(tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm))
241 		       != p->val) {
242 			if (time_after(jiffies, timeout))
243 				return -ETIME;
244 			cpu_relax();
245 		}
246 	}
247 
248 	/*
249 	 * polarity settings will enabled/disable output status
250 	 * immediately, so if the channel is disabled, need to
251 	 * make sure MSA/MSB/ELS are set to 0 which means channel
252 	 * disabled.
253 	 */
254 	val = readl(tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
255 	val &= ~(PWM_IMX_TPM_CnSC_ELS | PWM_IMX_TPM_CnSC_MSA |
256 		 PWM_IMX_TPM_CnSC_MSB);
257 	if (state->enabled) {
258 		/*
259 		 * set polarity (for edge-aligned PWM modes)
260 		 *
261 		 * ELS[1:0] = 2b10 yields normal polarity behaviour,
262 		 * ELS[1:0] = 2b01 yields inversed polarity.
263 		 * The other values are reserved.
264 		 */
265 		val |= PWM_IMX_TPM_CnSC_MSB;
266 		val |= (state->polarity == PWM_POLARITY_NORMAL) ?
267 			PWM_IMX_TPM_CnSC_ELS_NORMAL :
268 			PWM_IMX_TPM_CnSC_ELS_INVERSED;
269 	}
270 	writel(val, tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
271 
272 	/* control the counter status */
273 	if (state->enabled != c.enabled) {
274 		val = readl(tpm->base + PWM_IMX_TPM_SC);
275 		if (state->enabled) {
276 			if (++tpm->enable_count == 1)
277 				val |= PWM_IMX_TPM_SC_CMOD_INC_EVERY_CLK;
278 		} else {
279 			if (--tpm->enable_count == 0)
280 				val &= ~PWM_IMX_TPM_SC_CMOD;
281 		}
282 		writel(val, tpm->base + PWM_IMX_TPM_SC);
283 	}
284 
285 	return 0;
286 }
287 
288 static int pwm_imx_tpm_apply(struct pwm_chip *chip,
289 			     struct pwm_device *pwm,
290 			     const struct pwm_state *state)
291 {
292 	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
293 	struct imx_tpm_pwm_param param;
294 	struct pwm_state real_state;
295 	int ret;
296 
297 	ret = pwm_imx_tpm_round_state(chip, &param, &real_state, state);
298 	if (ret)
299 		return ret;
300 
301 	mutex_lock(&tpm->lock);
302 	ret = pwm_imx_tpm_apply_hw(chip, &param, &real_state, pwm);
303 	mutex_unlock(&tpm->lock);
304 
305 	return ret;
306 }
307 
308 static int pwm_imx_tpm_request(struct pwm_chip *chip, struct pwm_device *pwm)
309 {
310 	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
311 
312 	mutex_lock(&tpm->lock);
313 	tpm->user_count++;
314 	mutex_unlock(&tpm->lock);
315 
316 	return 0;
317 }
318 
319 static void pwm_imx_tpm_free(struct pwm_chip *chip, struct pwm_device *pwm)
320 {
321 	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
322 
323 	mutex_lock(&tpm->lock);
324 	tpm->user_count--;
325 	mutex_unlock(&tpm->lock);
326 }
327 
328 static const struct pwm_ops imx_tpm_pwm_ops = {
329 	.request = pwm_imx_tpm_request,
330 	.free = pwm_imx_tpm_free,
331 	.get_state = pwm_imx_tpm_get_state,
332 	.apply = pwm_imx_tpm_apply,
333 	.owner = THIS_MODULE,
334 };
335 
336 static int pwm_imx_tpm_probe(struct platform_device *pdev)
337 {
338 	struct imx_tpm_pwm_chip *tpm;
339 	int ret;
340 	u32 val;
341 
342 	tpm = devm_kzalloc(&pdev->dev, sizeof(*tpm), GFP_KERNEL);
343 	if (!tpm)
344 		return -ENOMEM;
345 
346 	platform_set_drvdata(pdev, tpm);
347 
348 	tpm->base = devm_platform_ioremap_resource(pdev, 0);
349 	if (IS_ERR(tpm->base))
350 		return PTR_ERR(tpm->base);
351 
352 	tpm->clk = devm_clk_get(&pdev->dev, NULL);
353 	if (IS_ERR(tpm->clk)) {
354 		ret = PTR_ERR(tpm->clk);
355 		if (ret != -EPROBE_DEFER)
356 			dev_err(&pdev->dev,
357 				"failed to get PWM clock: %d\n", ret);
358 		return ret;
359 	}
360 
361 	ret = clk_prepare_enable(tpm->clk);
362 	if (ret) {
363 		dev_err(&pdev->dev,
364 			"failed to prepare or enable clock: %d\n", ret);
365 		return ret;
366 	}
367 
368 	tpm->chip.dev = &pdev->dev;
369 	tpm->chip.ops = &imx_tpm_pwm_ops;
370 	tpm->chip.base = -1;
371 	tpm->chip.of_xlate = of_pwm_xlate_with_flags;
372 	tpm->chip.of_pwm_n_cells = 3;
373 
374 	/* get number of channels */
375 	val = readl(tpm->base + PWM_IMX_TPM_PARAM);
376 	tpm->chip.npwm = FIELD_GET(PWM_IMX_TPM_PARAM_CHAN, val);
377 
378 	mutex_init(&tpm->lock);
379 
380 	ret = pwmchip_add(&tpm->chip);
381 	if (ret) {
382 		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
383 		clk_disable_unprepare(tpm->clk);
384 	}
385 
386 	return ret;
387 }
388 
389 static int pwm_imx_tpm_remove(struct platform_device *pdev)
390 {
391 	struct imx_tpm_pwm_chip *tpm = platform_get_drvdata(pdev);
392 	int ret = pwmchip_remove(&tpm->chip);
393 
394 	clk_disable_unprepare(tpm->clk);
395 
396 	return ret;
397 }
398 
399 static int __maybe_unused pwm_imx_tpm_suspend(struct device *dev)
400 {
401 	struct imx_tpm_pwm_chip *tpm = dev_get_drvdata(dev);
402 
403 	if (tpm->enable_count > 0)
404 		return -EBUSY;
405 
406 	clk_disable_unprepare(tpm->clk);
407 
408 	return 0;
409 }
410 
411 static int __maybe_unused pwm_imx_tpm_resume(struct device *dev)
412 {
413 	struct imx_tpm_pwm_chip *tpm = dev_get_drvdata(dev);
414 	int ret = 0;
415 
416 	ret = clk_prepare_enable(tpm->clk);
417 	if (ret)
418 		dev_err(dev,
419 			"failed to prepare or enable clock: %d\n",
420 			ret);
421 
422 	return ret;
423 }
424 
425 static SIMPLE_DEV_PM_OPS(imx_tpm_pwm_pm,
426 			 pwm_imx_tpm_suspend, pwm_imx_tpm_resume);
427 
428 static const struct of_device_id imx_tpm_pwm_dt_ids[] = {
429 	{ .compatible = "fsl,imx7ulp-pwm", },
430 	{ /* sentinel */ }
431 };
432 MODULE_DEVICE_TABLE(of, imx_tpm_pwm_dt_ids);
433 
434 static struct platform_driver imx_tpm_pwm_driver = {
435 	.driver = {
436 		.name = "imx7ulp-tpm-pwm",
437 		.of_match_table = imx_tpm_pwm_dt_ids,
438 		.pm = &imx_tpm_pwm_pm,
439 	},
440 	.probe	= pwm_imx_tpm_probe,
441 	.remove = pwm_imx_tpm_remove,
442 };
443 module_platform_driver(imx_tpm_pwm_driver);
444 
445 MODULE_AUTHOR("Anson Huang <Anson.Huang@nxp.com>");
446 MODULE_DESCRIPTION("i.MX TPM PWM Driver");
447 MODULE_LICENSE("GPL v2");
448