xref: /openbmc/linux/drivers/pwm/pwm-imx-tpm.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2018-2019 NXP.
4  *
5  * Limitations:
6  * - The TPM counter and period counter are shared between
7  *   multiple channels, so all channels should use same period
8  *   settings.
9  * - Changes to polarity cannot be latched at the time of the
10  *   next period start.
11  * - Changing period and duty cycle together isn't atomic,
12  *   with the wrong timing it might happen that a period is
13  *   produced with old duty cycle but new period settings.
14  */
15 
16 #include <linux/bitfield.h>
17 #include <linux/bitops.h>
18 #include <linux/clk.h>
19 #include <linux/err.h>
20 #include <linux/io.h>
21 #include <linux/log2.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_address.h>
25 #include <linux/platform_device.h>
26 #include <linux/pwm.h>
27 #include <linux/slab.h>
28 
29 #define PWM_IMX_TPM_PARAM	0x4
30 #define PWM_IMX_TPM_GLOBAL	0x8
31 #define PWM_IMX_TPM_SC		0x10
32 #define PWM_IMX_TPM_CNT		0x14
33 #define PWM_IMX_TPM_MOD		0x18
34 #define PWM_IMX_TPM_CnSC(n)	(0x20 + (n) * 0x8)
35 #define PWM_IMX_TPM_CnV(n)	(0x24 + (n) * 0x8)
36 
37 #define PWM_IMX_TPM_PARAM_CHAN			GENMASK(7, 0)
38 
39 #define PWM_IMX_TPM_SC_PS			GENMASK(2, 0)
40 #define PWM_IMX_TPM_SC_CMOD			GENMASK(4, 3)
41 #define PWM_IMX_TPM_SC_CMOD_INC_EVERY_CLK	FIELD_PREP(PWM_IMX_TPM_SC_CMOD, 1)
42 #define PWM_IMX_TPM_SC_CPWMS			BIT(5)
43 
44 #define PWM_IMX_TPM_CnSC_CHF	BIT(7)
45 #define PWM_IMX_TPM_CnSC_MSB	BIT(5)
46 #define PWM_IMX_TPM_CnSC_MSA	BIT(4)
47 
48 /*
49  * The reference manual describes this field as two separate bits. The
50  * semantic of the two bits isn't orthogonal though, so they are treated
51  * together as a 2-bit field here.
52  */
53 #define PWM_IMX_TPM_CnSC_ELS	GENMASK(3, 2)
54 #define PWM_IMX_TPM_CnSC_ELS_INVERSED	FIELD_PREP(PWM_IMX_TPM_CnSC_ELS, 1)
55 #define PWM_IMX_TPM_CnSC_ELS_NORMAL	FIELD_PREP(PWM_IMX_TPM_CnSC_ELS, 2)
56 
57 
58 #define PWM_IMX_TPM_MOD_WIDTH	16
59 #define PWM_IMX_TPM_MOD_MOD	GENMASK(PWM_IMX_TPM_MOD_WIDTH - 1, 0)
60 
61 struct imx_tpm_pwm_chip {
62 	struct pwm_chip chip;
63 	struct clk *clk;
64 	void __iomem *base;
65 	struct mutex lock;
66 	u32 user_count;
67 	u32 enable_count;
68 	u32 real_period;
69 };
70 
71 struct imx_tpm_pwm_param {
72 	u8 prescale;
73 	u32 mod;
74 	u32 val;
75 };
76 
77 static inline struct imx_tpm_pwm_chip *
78 to_imx_tpm_pwm_chip(struct pwm_chip *chip)
79 {
80 	return container_of(chip, struct imx_tpm_pwm_chip, chip);
81 }
82 
83 /*
84  * This function determines for a given pwm_state *state that a consumer
85  * might request the pwm_state *real_state that eventually is implemented
86  * by the hardware and the necessary register values (in *p) to achieve
87  * this.
88  */
89 static int pwm_imx_tpm_round_state(struct pwm_chip *chip,
90 				   struct imx_tpm_pwm_param *p,
91 				   struct pwm_state *real_state,
92 				   struct pwm_state *state)
93 {
94 	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
95 	u32 rate, prescale, period_count, clock_unit;
96 	u64 tmp;
97 
98 	rate = clk_get_rate(tpm->clk);
99 	tmp = (u64)state->period * rate;
100 	clock_unit = DIV_ROUND_CLOSEST_ULL(tmp, NSEC_PER_SEC);
101 	if (clock_unit <= PWM_IMX_TPM_MOD_MOD)
102 		prescale = 0;
103 	else
104 		prescale = ilog2(clock_unit) + 1 - PWM_IMX_TPM_MOD_WIDTH;
105 
106 	if ((!FIELD_FIT(PWM_IMX_TPM_SC_PS, prescale)))
107 		return -ERANGE;
108 	p->prescale = prescale;
109 
110 	period_count = (clock_unit + ((1 << prescale) >> 1)) >> prescale;
111 	p->mod = period_count;
112 
113 	/* calculate real period HW can support */
114 	tmp = (u64)period_count << prescale;
115 	tmp *= NSEC_PER_SEC;
116 	real_state->period = DIV_ROUND_CLOSEST_ULL(tmp, rate);
117 
118 	/*
119 	 * if eventually the PWM output is inactive, either
120 	 * duty cycle is 0 or status is disabled, need to
121 	 * make sure the output pin is inactive.
122 	 */
123 	if (!state->enabled)
124 		real_state->duty_cycle = 0;
125 	else
126 		real_state->duty_cycle = state->duty_cycle;
127 
128 	tmp = (u64)p->mod * real_state->duty_cycle;
129 	p->val = DIV_ROUND_CLOSEST_ULL(tmp, real_state->period);
130 
131 	real_state->polarity = state->polarity;
132 	real_state->enabled = state->enabled;
133 
134 	return 0;
135 }
136 
137 static void pwm_imx_tpm_get_state(struct pwm_chip *chip,
138 				  struct pwm_device *pwm,
139 				  struct pwm_state *state)
140 {
141 	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
142 	u32 rate, val, prescale;
143 	u64 tmp;
144 
145 	/* get period */
146 	state->period = tpm->real_period;
147 
148 	/* get duty cycle */
149 	rate = clk_get_rate(tpm->clk);
150 	val = readl(tpm->base + PWM_IMX_TPM_SC);
151 	prescale = FIELD_GET(PWM_IMX_TPM_SC_PS, val);
152 	tmp = readl(tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm));
153 	tmp = (tmp << prescale) * NSEC_PER_SEC;
154 	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, rate);
155 
156 	/* get polarity */
157 	val = readl(tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
158 	if ((val & PWM_IMX_TPM_CnSC_ELS) == PWM_IMX_TPM_CnSC_ELS_INVERSED)
159 		state->polarity = PWM_POLARITY_INVERSED;
160 	else
161 		/*
162 		 * Assume reserved values (2b00 and 2b11) to yield
163 		 * normal polarity.
164 		 */
165 		state->polarity = PWM_POLARITY_NORMAL;
166 
167 	/* get channel status */
168 	state->enabled = FIELD_GET(PWM_IMX_TPM_CnSC_ELS, val) ? true : false;
169 }
170 
171 /* this function is supposed to be called with mutex hold */
172 static int pwm_imx_tpm_apply_hw(struct pwm_chip *chip,
173 				struct imx_tpm_pwm_param *p,
174 				struct pwm_state *state,
175 				struct pwm_device *pwm)
176 {
177 	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
178 	bool period_update = false;
179 	bool duty_update = false;
180 	u32 val, cmod, cur_prescale;
181 	unsigned long timeout;
182 	struct pwm_state c;
183 
184 	if (state->period != tpm->real_period) {
185 		/*
186 		 * TPM counter is shared by multiple channels, so
187 		 * prescale and period can NOT be modified when
188 		 * there are multiple channels in use with different
189 		 * period settings.
190 		 */
191 		if (tpm->user_count > 1)
192 			return -EBUSY;
193 
194 		val = readl(tpm->base + PWM_IMX_TPM_SC);
195 		cmod = FIELD_GET(PWM_IMX_TPM_SC_CMOD, val);
196 		cur_prescale = FIELD_GET(PWM_IMX_TPM_SC_PS, val);
197 		if (cmod && cur_prescale != p->prescale)
198 			return -EBUSY;
199 
200 		/* set TPM counter prescale */
201 		val &= ~PWM_IMX_TPM_SC_PS;
202 		val |= FIELD_PREP(PWM_IMX_TPM_SC_PS, p->prescale);
203 		writel(val, tpm->base + PWM_IMX_TPM_SC);
204 
205 		/*
206 		 * set period count:
207 		 * if the PWM is disabled (CMOD[1:0] = 2b00), then MOD register
208 		 * is updated when MOD register is written.
209 		 *
210 		 * if the PWM is enabled (CMOD[1:0] ≠ 2b00), the period length
211 		 * is latched into hardware when the next period starts.
212 		 */
213 		writel(p->mod, tpm->base + PWM_IMX_TPM_MOD);
214 		tpm->real_period = state->period;
215 		period_update = true;
216 	}
217 
218 	pwm_imx_tpm_get_state(chip, pwm, &c);
219 
220 	/* polarity is NOT allowed to be changed if PWM is active */
221 	if (c.enabled && c.polarity != state->polarity)
222 		return -EBUSY;
223 
224 	if (state->duty_cycle != c.duty_cycle) {
225 		/*
226 		 * set channel value:
227 		 * if the PWM is disabled (CMOD[1:0] = 2b00), then CnV register
228 		 * is updated when CnV register is written.
229 		 *
230 		 * if the PWM is enabled (CMOD[1:0] ≠ 2b00), the duty length
231 		 * is latched into hardware when the next period starts.
232 		 */
233 		writel(p->val, tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm));
234 		duty_update = true;
235 	}
236 
237 	/* make sure MOD & CnV registers are updated */
238 	if (period_update || duty_update) {
239 		timeout = jiffies + msecs_to_jiffies(tpm->real_period /
240 						     NSEC_PER_MSEC + 1);
241 		while (readl(tpm->base + PWM_IMX_TPM_MOD) != p->mod
242 		       || readl(tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm))
243 		       != p->val) {
244 			if (time_after(jiffies, timeout))
245 				return -ETIME;
246 			cpu_relax();
247 		}
248 	}
249 
250 	/*
251 	 * polarity settings will enabled/disable output status
252 	 * immediately, so if the channel is disabled, need to
253 	 * make sure MSA/MSB/ELS are set to 0 which means channel
254 	 * disabled.
255 	 */
256 	val = readl(tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
257 	val &= ~(PWM_IMX_TPM_CnSC_ELS | PWM_IMX_TPM_CnSC_MSA |
258 		 PWM_IMX_TPM_CnSC_MSB);
259 	if (state->enabled) {
260 		/*
261 		 * set polarity (for edge-aligned PWM modes)
262 		 *
263 		 * ELS[1:0] = 2b10 yields normal polarity behaviour,
264 		 * ELS[1:0] = 2b01 yields inversed polarity.
265 		 * The other values are reserved.
266 		 */
267 		val |= PWM_IMX_TPM_CnSC_MSB;
268 		val |= (state->polarity == PWM_POLARITY_NORMAL) ?
269 			PWM_IMX_TPM_CnSC_ELS_NORMAL :
270 			PWM_IMX_TPM_CnSC_ELS_INVERSED;
271 	}
272 	writel(val, tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
273 
274 	/* control the counter status */
275 	if (state->enabled != c.enabled) {
276 		val = readl(tpm->base + PWM_IMX_TPM_SC);
277 		if (state->enabled) {
278 			if (++tpm->enable_count == 1)
279 				val |= PWM_IMX_TPM_SC_CMOD_INC_EVERY_CLK;
280 		} else {
281 			if (--tpm->enable_count == 0)
282 				val &= ~PWM_IMX_TPM_SC_CMOD;
283 		}
284 		writel(val, tpm->base + PWM_IMX_TPM_SC);
285 	}
286 
287 	return 0;
288 }
289 
290 static int pwm_imx_tpm_apply(struct pwm_chip *chip,
291 			     struct pwm_device *pwm,
292 			     struct pwm_state *state)
293 {
294 	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
295 	struct imx_tpm_pwm_param param;
296 	struct pwm_state real_state;
297 	int ret;
298 
299 	ret = pwm_imx_tpm_round_state(chip, &param, &real_state, state);
300 	if (ret)
301 		return ret;
302 
303 	mutex_lock(&tpm->lock);
304 	ret = pwm_imx_tpm_apply_hw(chip, &param, &real_state, pwm);
305 	mutex_unlock(&tpm->lock);
306 
307 	return ret;
308 }
309 
310 static int pwm_imx_tpm_request(struct pwm_chip *chip, struct pwm_device *pwm)
311 {
312 	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
313 
314 	mutex_lock(&tpm->lock);
315 	tpm->user_count++;
316 	mutex_unlock(&tpm->lock);
317 
318 	return 0;
319 }
320 
321 static void pwm_imx_tpm_free(struct pwm_chip *chip, struct pwm_device *pwm)
322 {
323 	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
324 
325 	mutex_lock(&tpm->lock);
326 	tpm->user_count--;
327 	mutex_unlock(&tpm->lock);
328 }
329 
330 static const struct pwm_ops imx_tpm_pwm_ops = {
331 	.request = pwm_imx_tpm_request,
332 	.free = pwm_imx_tpm_free,
333 	.get_state = pwm_imx_tpm_get_state,
334 	.apply = pwm_imx_tpm_apply,
335 	.owner = THIS_MODULE,
336 };
337 
338 static int pwm_imx_tpm_probe(struct platform_device *pdev)
339 {
340 	struct imx_tpm_pwm_chip *tpm;
341 	int ret;
342 	u32 val;
343 
344 	tpm = devm_kzalloc(&pdev->dev, sizeof(*tpm), GFP_KERNEL);
345 	if (!tpm)
346 		return -ENOMEM;
347 
348 	platform_set_drvdata(pdev, tpm);
349 
350 	tpm->base = devm_platform_ioremap_resource(pdev, 0);
351 	if (IS_ERR(tpm->base))
352 		return PTR_ERR(tpm->base);
353 
354 	tpm->clk = devm_clk_get(&pdev->dev, NULL);
355 	if (IS_ERR(tpm->clk)) {
356 		ret = PTR_ERR(tpm->clk);
357 		if (ret != -EPROBE_DEFER)
358 			dev_err(&pdev->dev,
359 				"failed to get PWM clock: %d\n", ret);
360 		return ret;
361 	}
362 
363 	ret = clk_prepare_enable(tpm->clk);
364 	if (ret) {
365 		dev_err(&pdev->dev,
366 			"failed to prepare or enable clock: %d\n", ret);
367 		return ret;
368 	}
369 
370 	tpm->chip.dev = &pdev->dev;
371 	tpm->chip.ops = &imx_tpm_pwm_ops;
372 	tpm->chip.base = -1;
373 	tpm->chip.of_xlate = of_pwm_xlate_with_flags;
374 	tpm->chip.of_pwm_n_cells = 3;
375 
376 	/* get number of channels */
377 	val = readl(tpm->base + PWM_IMX_TPM_PARAM);
378 	tpm->chip.npwm = FIELD_GET(PWM_IMX_TPM_PARAM_CHAN, val);
379 
380 	mutex_init(&tpm->lock);
381 
382 	ret = pwmchip_add(&tpm->chip);
383 	if (ret) {
384 		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
385 		clk_disable_unprepare(tpm->clk);
386 	}
387 
388 	return ret;
389 }
390 
391 static int pwm_imx_tpm_remove(struct platform_device *pdev)
392 {
393 	struct imx_tpm_pwm_chip *tpm = platform_get_drvdata(pdev);
394 	int ret = pwmchip_remove(&tpm->chip);
395 
396 	clk_disable_unprepare(tpm->clk);
397 
398 	return ret;
399 }
400 
401 static int __maybe_unused pwm_imx_tpm_suspend(struct device *dev)
402 {
403 	struct imx_tpm_pwm_chip *tpm = dev_get_drvdata(dev);
404 
405 	if (tpm->enable_count > 0)
406 		return -EBUSY;
407 
408 	clk_disable_unprepare(tpm->clk);
409 
410 	return 0;
411 }
412 
413 static int __maybe_unused pwm_imx_tpm_resume(struct device *dev)
414 {
415 	struct imx_tpm_pwm_chip *tpm = dev_get_drvdata(dev);
416 	int ret = 0;
417 
418 	ret = clk_prepare_enable(tpm->clk);
419 	if (ret)
420 		dev_err(dev,
421 			"failed to prepare or enable clock: %d\n",
422 			ret);
423 
424 	return ret;
425 }
426 
427 static SIMPLE_DEV_PM_OPS(imx_tpm_pwm_pm,
428 			 pwm_imx_tpm_suspend, pwm_imx_tpm_resume);
429 
430 static const struct of_device_id imx_tpm_pwm_dt_ids[] = {
431 	{ .compatible = "fsl,imx7ulp-pwm", },
432 	{ /* sentinel */ }
433 };
434 MODULE_DEVICE_TABLE(of, imx_tpm_pwm_dt_ids);
435 
436 static struct platform_driver imx_tpm_pwm_driver = {
437 	.driver = {
438 		.name = "imx7ulp-tpm-pwm",
439 		.of_match_table = imx_tpm_pwm_dt_ids,
440 		.pm = &imx_tpm_pwm_pm,
441 	},
442 	.probe	= pwm_imx_tpm_probe,
443 	.remove = pwm_imx_tpm_remove,
444 };
445 module_platform_driver(imx_tpm_pwm_driver);
446 
447 MODULE_AUTHOR("Anson Huang <Anson.Huang@nxp.com>");
448 MODULE_DESCRIPTION("i.MX TPM PWM Driver");
449 MODULE_LICENSE("GPL v2");
450