xref: /openbmc/linux/drivers/pwm/pwm-dwc.c (revision 6f4eaea2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * DesignWare PWM Controller driver
4  *
5  * Copyright (C) 2018-2020 Intel Corporation
6  *
7  * Author: Felipe Balbi (Intel)
8  * Author: Jarkko Nikula <jarkko.nikula@linux.intel.com>
9  * Author: Raymond Tan <raymond.tan@intel.com>
10  *
11  * Limitations:
12  * - The hardware cannot generate a 0 % or 100 % duty cycle. Both high and low
13  *   periods are one or more input clock periods long.
14  */
15 
16 #include <linux/bitops.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pwm.h>
23 
24 #define DWC_TIM_LD_CNT(n)	((n) * 0x14)
25 #define DWC_TIM_LD_CNT2(n)	(((n) * 4) + 0xb0)
26 #define DWC_TIM_CUR_VAL(n)	(((n) * 0x14) + 0x04)
27 #define DWC_TIM_CTRL(n)		(((n) * 0x14) + 0x08)
28 #define DWC_TIM_EOI(n)		(((n) * 0x14) + 0x0c)
29 #define DWC_TIM_INT_STS(n)	(((n) * 0x14) + 0x10)
30 
31 #define DWC_TIMERS_INT_STS	0xa0
32 #define DWC_TIMERS_EOI		0xa4
33 #define DWC_TIMERS_RAW_INT_STS	0xa8
34 #define DWC_TIMERS_COMP_VERSION	0xac
35 
36 #define DWC_TIMERS_TOTAL	8
37 #define DWC_CLK_PERIOD_NS	10
38 
39 /* Timer Control Register */
40 #define DWC_TIM_CTRL_EN		BIT(0)
41 #define DWC_TIM_CTRL_MODE	BIT(1)
42 #define DWC_TIM_CTRL_MODE_FREE	(0 << 1)
43 #define DWC_TIM_CTRL_MODE_USER	(1 << 1)
44 #define DWC_TIM_CTRL_INT_MASK	BIT(2)
45 #define DWC_TIM_CTRL_PWM	BIT(3)
46 
47 struct dwc_pwm_ctx {
48 	u32 cnt;
49 	u32 cnt2;
50 	u32 ctrl;
51 };
52 
53 struct dwc_pwm {
54 	struct pwm_chip chip;
55 	void __iomem *base;
56 	struct dwc_pwm_ctx ctx[DWC_TIMERS_TOTAL];
57 };
58 #define to_dwc_pwm(p)	(container_of((p), struct dwc_pwm, chip))
59 
60 static inline u32 dwc_pwm_readl(struct dwc_pwm *dwc, u32 offset)
61 {
62 	return readl(dwc->base + offset);
63 }
64 
65 static inline void dwc_pwm_writel(struct dwc_pwm *dwc, u32 value, u32 offset)
66 {
67 	writel(value, dwc->base + offset);
68 }
69 
70 static void __dwc_pwm_set_enable(struct dwc_pwm *dwc, int pwm, int enabled)
71 {
72 	u32 reg;
73 
74 	reg = dwc_pwm_readl(dwc, DWC_TIM_CTRL(pwm));
75 
76 	if (enabled)
77 		reg |= DWC_TIM_CTRL_EN;
78 	else
79 		reg &= ~DWC_TIM_CTRL_EN;
80 
81 	dwc_pwm_writel(dwc, reg, DWC_TIM_CTRL(pwm));
82 }
83 
84 static int __dwc_pwm_configure_timer(struct dwc_pwm *dwc,
85 				     struct pwm_device *pwm,
86 				     const struct pwm_state *state)
87 {
88 	u64 tmp;
89 	u32 ctrl;
90 	u32 high;
91 	u32 low;
92 
93 	/*
94 	 * Calculate width of low and high period in terms of input clock
95 	 * periods and check are the result within HW limits between 1 and
96 	 * 2^32 periods.
97 	 */
98 	tmp = DIV_ROUND_CLOSEST_ULL(state->duty_cycle, DWC_CLK_PERIOD_NS);
99 	if (tmp < 1 || tmp > (1ULL << 32))
100 		return -ERANGE;
101 	low = tmp - 1;
102 
103 	tmp = DIV_ROUND_CLOSEST_ULL(state->period - state->duty_cycle,
104 				    DWC_CLK_PERIOD_NS);
105 	if (tmp < 1 || tmp > (1ULL << 32))
106 		return -ERANGE;
107 	high = tmp - 1;
108 
109 	/*
110 	 * Specification says timer usage flow is to disable timer, then
111 	 * program it followed by enable. It also says Load Count is loaded
112 	 * into timer after it is enabled - either after a disable or
113 	 * a reset. Based on measurements it happens also without disable
114 	 * whenever Load Count is updated. But follow the specification.
115 	 */
116 	__dwc_pwm_set_enable(dwc, pwm->hwpwm, false);
117 
118 	/*
119 	 * Write Load Count and Load Count 2 registers. Former defines the
120 	 * width of low period and latter the width of high period in terms
121 	 * multiple of input clock periods:
122 	 * Width = ((Count + 1) * input clock period).
123 	 */
124 	dwc_pwm_writel(dwc, low, DWC_TIM_LD_CNT(pwm->hwpwm));
125 	dwc_pwm_writel(dwc, high, DWC_TIM_LD_CNT2(pwm->hwpwm));
126 
127 	/*
128 	 * Set user-defined mode, timer reloads from Load Count registers
129 	 * when it counts down to 0.
130 	 * Set PWM mode, it makes output to toggle and width of low and high
131 	 * periods are set by Load Count registers.
132 	 */
133 	ctrl = DWC_TIM_CTRL_MODE_USER | DWC_TIM_CTRL_PWM;
134 	dwc_pwm_writel(dwc, ctrl, DWC_TIM_CTRL(pwm->hwpwm));
135 
136 	/*
137 	 * Enable timer. Output starts from low period.
138 	 */
139 	__dwc_pwm_set_enable(dwc, pwm->hwpwm, state->enabled);
140 
141 	return 0;
142 }
143 
144 static int dwc_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
145 			 const struct pwm_state *state)
146 {
147 	struct dwc_pwm *dwc = to_dwc_pwm(chip);
148 
149 	if (state->polarity != PWM_POLARITY_INVERSED)
150 		return -EINVAL;
151 
152 	if (state->enabled) {
153 		if (!pwm->state.enabled)
154 			pm_runtime_get_sync(chip->dev);
155 		return __dwc_pwm_configure_timer(dwc, pwm, state);
156 	} else {
157 		if (pwm->state.enabled) {
158 			__dwc_pwm_set_enable(dwc, pwm->hwpwm, false);
159 			pm_runtime_put_sync(chip->dev);
160 		}
161 	}
162 
163 	return 0;
164 }
165 
166 static void dwc_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
167 			      struct pwm_state *state)
168 {
169 	struct dwc_pwm *dwc = to_dwc_pwm(chip);
170 	u64 duty, period;
171 
172 	pm_runtime_get_sync(chip->dev);
173 
174 	state->enabled = !!(dwc_pwm_readl(dwc,
175 				DWC_TIM_CTRL(pwm->hwpwm)) & DWC_TIM_CTRL_EN);
176 
177 	duty = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT(pwm->hwpwm));
178 	duty += 1;
179 	duty *= DWC_CLK_PERIOD_NS;
180 	state->duty_cycle = duty;
181 
182 	period = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT2(pwm->hwpwm));
183 	period += 1;
184 	period *= DWC_CLK_PERIOD_NS;
185 	period += duty;
186 	state->period = period;
187 
188 	state->polarity = PWM_POLARITY_INVERSED;
189 
190 	pm_runtime_put_sync(chip->dev);
191 }
192 
193 static const struct pwm_ops dwc_pwm_ops = {
194 	.apply = dwc_pwm_apply,
195 	.get_state = dwc_pwm_get_state,
196 	.owner = THIS_MODULE,
197 };
198 
199 static int dwc_pwm_probe(struct pci_dev *pci, const struct pci_device_id *id)
200 {
201 	struct device *dev = &pci->dev;
202 	struct dwc_pwm *dwc;
203 	int ret;
204 
205 	dwc = devm_kzalloc(&pci->dev, sizeof(*dwc), GFP_KERNEL);
206 	if (!dwc)
207 		return -ENOMEM;
208 
209 	ret = pcim_enable_device(pci);
210 	if (ret) {
211 		dev_err(&pci->dev,
212 			"Failed to enable device (%pe)\n", ERR_PTR(ret));
213 		return ret;
214 	}
215 
216 	pci_set_master(pci);
217 
218 	ret = pcim_iomap_regions(pci, BIT(0), pci_name(pci));
219 	if (ret) {
220 		dev_err(&pci->dev,
221 			"Failed to iomap PCI BAR (%pe)\n", ERR_PTR(ret));
222 		return ret;
223 	}
224 
225 	dwc->base = pcim_iomap_table(pci)[0];
226 	if (!dwc->base) {
227 		dev_err(&pci->dev, "Base address missing\n");
228 		return -ENOMEM;
229 	}
230 
231 	pci_set_drvdata(pci, dwc);
232 
233 	dwc->chip.dev = dev;
234 	dwc->chip.ops = &dwc_pwm_ops;
235 	dwc->chip.npwm = DWC_TIMERS_TOTAL;
236 	dwc->chip.base = -1;
237 
238 	ret = pwmchip_add(&dwc->chip);
239 	if (ret)
240 		return ret;
241 
242 	pm_runtime_put(dev);
243 	pm_runtime_allow(dev);
244 
245 	return 0;
246 }
247 
248 static void dwc_pwm_remove(struct pci_dev *pci)
249 {
250 	struct dwc_pwm *dwc = pci_get_drvdata(pci);
251 
252 	pm_runtime_forbid(&pci->dev);
253 	pm_runtime_get_noresume(&pci->dev);
254 
255 	pwmchip_remove(&dwc->chip);
256 }
257 
258 #ifdef CONFIG_PM_SLEEP
259 static int dwc_pwm_suspend(struct device *dev)
260 {
261 	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
262 	struct dwc_pwm *dwc = pci_get_drvdata(pdev);
263 	int i;
264 
265 	for (i = 0; i < DWC_TIMERS_TOTAL; i++) {
266 		if (dwc->chip.pwms[i].state.enabled) {
267 			dev_err(dev, "PWM %u in use by consumer (%s)\n",
268 				i, dwc->chip.pwms[i].label);
269 			return -EBUSY;
270 		}
271 		dwc->ctx[i].cnt = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT(i));
272 		dwc->ctx[i].cnt2 = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT2(i));
273 		dwc->ctx[i].ctrl = dwc_pwm_readl(dwc, DWC_TIM_CTRL(i));
274 	}
275 
276 	return 0;
277 }
278 
279 static int dwc_pwm_resume(struct device *dev)
280 {
281 	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
282 	struct dwc_pwm *dwc = pci_get_drvdata(pdev);
283 	int i;
284 
285 	for (i = 0; i < DWC_TIMERS_TOTAL; i++) {
286 		dwc_pwm_writel(dwc, dwc->ctx[i].cnt, DWC_TIM_LD_CNT(i));
287 		dwc_pwm_writel(dwc, dwc->ctx[i].cnt2, DWC_TIM_LD_CNT2(i));
288 		dwc_pwm_writel(dwc, dwc->ctx[i].ctrl, DWC_TIM_CTRL(i));
289 	}
290 
291 	return 0;
292 }
293 #endif
294 
295 static SIMPLE_DEV_PM_OPS(dwc_pwm_pm_ops, dwc_pwm_suspend, dwc_pwm_resume);
296 
297 static const struct pci_device_id dwc_pwm_id_table[] = {
298 	{ PCI_VDEVICE(INTEL, 0x4bb7) }, /* Elkhart Lake */
299 	{  }	/* Terminating Entry */
300 };
301 MODULE_DEVICE_TABLE(pci, dwc_pwm_id_table);
302 
303 static struct pci_driver dwc_pwm_driver = {
304 	.name = "pwm-dwc",
305 	.probe = dwc_pwm_probe,
306 	.remove = dwc_pwm_remove,
307 	.id_table = dwc_pwm_id_table,
308 	.driver = {
309 		.pm = &dwc_pwm_pm_ops,
310 	},
311 };
312 
313 module_pci_driver(dwc_pwm_driver);
314 
315 MODULE_AUTHOR("Felipe Balbi (Intel)");
316 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@linux.intel.com>");
317 MODULE_AUTHOR("Raymond Tan <raymond.tan@intel.com>");
318 MODULE_DESCRIPTION("DesignWare PWM Controller");
319 MODULE_LICENSE("GPL");
320