xref: /openbmc/linux/drivers/pwm/pwm-atmel.c (revision 6db6b729)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel Pulse Width Modulation Controller
4  *
5  * Copyright (C) 2013 Atmel Corporation
6  *		 Bo Shen <voice.shen@atmel.com>
7  *
8  * Links to reference manuals for the supported PWM chips can be found in
9  * Documentation/arch/arm/microchip.rst.
10  *
11  * Limitations:
12  * - Periods start with the inactive level.
13  * - Hardware has to be stopped in general to update settings.
14  *
15  * Software bugs/possible improvements:
16  * - When atmel_pwm_apply() is called with state->enabled=false a change in
17  *   state->polarity isn't honored.
18  * - Instead of sleeping to wait for a completed period, the interrupt
19  *   functionality could be used.
20  */
21 
22 #include <linux/clk.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/io.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/pwm.h>
30 #include <linux/slab.h>
31 
32 /* The following is global registers for PWM controller */
33 #define PWM_ENA			0x04
34 #define PWM_DIS			0x08
35 #define PWM_SR			0x0C
36 #define PWM_ISR			0x1C
37 /* Bit field in SR */
38 #define PWM_SR_ALL_CH_MASK	0x0F
39 
40 /* The following register is PWM channel related registers */
41 #define PWM_CH_REG_OFFSET	0x200
42 #define PWM_CH_REG_SIZE		0x20
43 
44 #define PWM_CMR			0x0
45 /* Bit field in CMR */
46 #define PWM_CMR_CPOL		(1 << 9)
47 #define PWM_CMR_UPD_CDTY	(1 << 10)
48 #define PWM_CMR_CPRE_MSK	0xF
49 
50 /* The following registers for PWM v1 */
51 #define PWMV1_CDTY		0x04
52 #define PWMV1_CPRD		0x08
53 #define PWMV1_CUPD		0x10
54 
55 /* The following registers for PWM v2 */
56 #define PWMV2_CDTY		0x04
57 #define PWMV2_CDTYUPD		0x08
58 #define PWMV2_CPRD		0x0C
59 #define PWMV2_CPRDUPD		0x10
60 
61 #define PWM_MAX_PRES		10
62 
63 struct atmel_pwm_registers {
64 	u8 period;
65 	u8 period_upd;
66 	u8 duty;
67 	u8 duty_upd;
68 };
69 
70 struct atmel_pwm_config {
71 	u32 period_bits;
72 };
73 
74 struct atmel_pwm_data {
75 	struct atmel_pwm_registers regs;
76 	struct atmel_pwm_config cfg;
77 };
78 
79 struct atmel_pwm_chip {
80 	struct pwm_chip chip;
81 	struct clk *clk;
82 	void __iomem *base;
83 	const struct atmel_pwm_data *data;
84 
85 	/*
86 	 * The hardware supports a mechanism to update a channel's duty cycle at
87 	 * the end of the currently running period. When such an update is
88 	 * pending we delay disabling the PWM until the new configuration is
89 	 * active because otherwise pmw_config(duty_cycle=0); pwm_disable();
90 	 * might not result in an inactive output.
91 	 * This bitmask tracks for which channels an update is pending in
92 	 * hardware.
93 	 */
94 	u32 update_pending;
95 
96 	/* Protects .update_pending */
97 	spinlock_t lock;
98 };
99 
100 static inline struct atmel_pwm_chip *to_atmel_pwm_chip(struct pwm_chip *chip)
101 {
102 	return container_of(chip, struct atmel_pwm_chip, chip);
103 }
104 
105 static inline u32 atmel_pwm_readl(struct atmel_pwm_chip *chip,
106 				  unsigned long offset)
107 {
108 	return readl_relaxed(chip->base + offset);
109 }
110 
111 static inline void atmel_pwm_writel(struct atmel_pwm_chip *chip,
112 				    unsigned long offset, unsigned long val)
113 {
114 	writel_relaxed(val, chip->base + offset);
115 }
116 
117 static inline u32 atmel_pwm_ch_readl(struct atmel_pwm_chip *chip,
118 				     unsigned int ch, unsigned long offset)
119 {
120 	unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;
121 
122 	return atmel_pwm_readl(chip, base + offset);
123 }
124 
125 static inline void atmel_pwm_ch_writel(struct atmel_pwm_chip *chip,
126 				       unsigned int ch, unsigned long offset,
127 				       unsigned long val)
128 {
129 	unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;
130 
131 	atmel_pwm_writel(chip, base + offset, val);
132 }
133 
134 static void atmel_pwm_update_pending(struct atmel_pwm_chip *chip)
135 {
136 	/*
137 	 * Each channel that has its bit in ISR set started a new period since
138 	 * ISR was cleared and so there is no more update pending.  Note that
139 	 * reading ISR clears it, so this needs to handle all channels to not
140 	 * loose information.
141 	 */
142 	u32 isr = atmel_pwm_readl(chip, PWM_ISR);
143 
144 	chip->update_pending &= ~isr;
145 }
146 
147 static void atmel_pwm_set_pending(struct atmel_pwm_chip *chip, unsigned int ch)
148 {
149 	spin_lock(&chip->lock);
150 
151 	/*
152 	 * Clear pending flags in hardware because otherwise there might still
153 	 * be a stale flag in ISR.
154 	 */
155 	atmel_pwm_update_pending(chip);
156 
157 	chip->update_pending |= (1 << ch);
158 
159 	spin_unlock(&chip->lock);
160 }
161 
162 static int atmel_pwm_test_pending(struct atmel_pwm_chip *chip, unsigned int ch)
163 {
164 	int ret = 0;
165 
166 	spin_lock(&chip->lock);
167 
168 	if (chip->update_pending & (1 << ch)) {
169 		atmel_pwm_update_pending(chip);
170 
171 		if (chip->update_pending & (1 << ch))
172 			ret = 1;
173 	}
174 
175 	spin_unlock(&chip->lock);
176 
177 	return ret;
178 }
179 
180 static int atmel_pwm_wait_nonpending(struct atmel_pwm_chip *chip, unsigned int ch)
181 {
182 	unsigned long timeout = jiffies + 2 * HZ;
183 	int ret;
184 
185 	while ((ret = atmel_pwm_test_pending(chip, ch)) &&
186 	       time_before(jiffies, timeout))
187 		usleep_range(10, 100);
188 
189 	return ret ? -ETIMEDOUT : 0;
190 }
191 
192 static int atmel_pwm_calculate_cprd_and_pres(struct pwm_chip *chip,
193 					     unsigned long clkrate,
194 					     const struct pwm_state *state,
195 					     unsigned long *cprd, u32 *pres)
196 {
197 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
198 	unsigned long long cycles = state->period;
199 	int shift;
200 
201 	/* Calculate the period cycles and prescale value */
202 	cycles *= clkrate;
203 	do_div(cycles, NSEC_PER_SEC);
204 
205 	/*
206 	 * The register for the period length is cfg.period_bits bits wide.
207 	 * So for each bit the number of clock cycles is wider divide the input
208 	 * clock frequency by two using pres and shift cprd accordingly.
209 	 */
210 	shift = fls(cycles) - atmel_pwm->data->cfg.period_bits;
211 
212 	if (shift > PWM_MAX_PRES) {
213 		dev_err(chip->dev, "pres exceeds the maximum value\n");
214 		return -EINVAL;
215 	} else if (shift > 0) {
216 		*pres = shift;
217 		cycles >>= *pres;
218 	} else {
219 		*pres = 0;
220 	}
221 
222 	*cprd = cycles;
223 
224 	return 0;
225 }
226 
227 static void atmel_pwm_calculate_cdty(const struct pwm_state *state,
228 				     unsigned long clkrate, unsigned long cprd,
229 				     u32 pres, unsigned long *cdty)
230 {
231 	unsigned long long cycles = state->duty_cycle;
232 
233 	cycles *= clkrate;
234 	do_div(cycles, NSEC_PER_SEC);
235 	cycles >>= pres;
236 	*cdty = cprd - cycles;
237 }
238 
239 static void atmel_pwm_update_cdty(struct pwm_chip *chip, struct pwm_device *pwm,
240 				  unsigned long cdty)
241 {
242 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
243 	u32 val;
244 
245 	if (atmel_pwm->data->regs.duty_upd ==
246 	    atmel_pwm->data->regs.period_upd) {
247 		val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
248 		val &= ~PWM_CMR_UPD_CDTY;
249 		atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
250 	}
251 
252 	atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
253 			    atmel_pwm->data->regs.duty_upd, cdty);
254 	atmel_pwm_set_pending(atmel_pwm, pwm->hwpwm);
255 }
256 
257 static void atmel_pwm_set_cprd_cdty(struct pwm_chip *chip,
258 				    struct pwm_device *pwm,
259 				    unsigned long cprd, unsigned long cdty)
260 {
261 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
262 
263 	atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
264 			    atmel_pwm->data->regs.duty, cdty);
265 	atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
266 			    atmel_pwm->data->regs.period, cprd);
267 }
268 
269 static void atmel_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm,
270 			      bool disable_clk)
271 {
272 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
273 	unsigned long timeout;
274 
275 	atmel_pwm_wait_nonpending(atmel_pwm, pwm->hwpwm);
276 
277 	atmel_pwm_writel(atmel_pwm, PWM_DIS, 1 << pwm->hwpwm);
278 
279 	/*
280 	 * Wait for the PWM channel disable operation to be effective before
281 	 * stopping the clock.
282 	 */
283 	timeout = jiffies + 2 * HZ;
284 
285 	while ((atmel_pwm_readl(atmel_pwm, PWM_SR) & (1 << pwm->hwpwm)) &&
286 	       time_before(jiffies, timeout))
287 		usleep_range(10, 100);
288 
289 	if (disable_clk)
290 		clk_disable(atmel_pwm->clk);
291 }
292 
293 static int atmel_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
294 			   const struct pwm_state *state)
295 {
296 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
297 	struct pwm_state cstate;
298 	unsigned long cprd, cdty;
299 	u32 pres, val;
300 	int ret;
301 
302 	pwm_get_state(pwm, &cstate);
303 
304 	if (state->enabled) {
305 		unsigned long clkrate = clk_get_rate(atmel_pwm->clk);
306 
307 		if (cstate.enabled &&
308 		    cstate.polarity == state->polarity &&
309 		    cstate.period == state->period) {
310 			u32 cmr = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
311 
312 			cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
313 						  atmel_pwm->data->regs.period);
314 			pres = cmr & PWM_CMR_CPRE_MSK;
315 
316 			atmel_pwm_calculate_cdty(state, clkrate, cprd, pres, &cdty);
317 			atmel_pwm_update_cdty(chip, pwm, cdty);
318 			return 0;
319 		}
320 
321 		ret = atmel_pwm_calculate_cprd_and_pres(chip, clkrate, state, &cprd,
322 							&pres);
323 		if (ret) {
324 			dev_err(chip->dev,
325 				"failed to calculate cprd and prescaler\n");
326 			return ret;
327 		}
328 
329 		atmel_pwm_calculate_cdty(state, clkrate, cprd, pres, &cdty);
330 
331 		if (cstate.enabled) {
332 			atmel_pwm_disable(chip, pwm, false);
333 		} else {
334 			ret = clk_enable(atmel_pwm->clk);
335 			if (ret) {
336 				dev_err(chip->dev, "failed to enable clock\n");
337 				return ret;
338 			}
339 		}
340 
341 		/* It is necessary to preserve CPOL, inside CMR */
342 		val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
343 		val = (val & ~PWM_CMR_CPRE_MSK) | (pres & PWM_CMR_CPRE_MSK);
344 		if (state->polarity == PWM_POLARITY_NORMAL)
345 			val &= ~PWM_CMR_CPOL;
346 		else
347 			val |= PWM_CMR_CPOL;
348 		atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
349 		atmel_pwm_set_cprd_cdty(chip, pwm, cprd, cdty);
350 		atmel_pwm_writel(atmel_pwm, PWM_ENA, 1 << pwm->hwpwm);
351 	} else if (cstate.enabled) {
352 		atmel_pwm_disable(chip, pwm, true);
353 	}
354 
355 	return 0;
356 }
357 
358 static int atmel_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
359 			       struct pwm_state *state)
360 {
361 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
362 	u32 sr, cmr;
363 
364 	sr = atmel_pwm_readl(atmel_pwm, PWM_SR);
365 	cmr = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
366 
367 	if (sr & (1 << pwm->hwpwm)) {
368 		unsigned long rate = clk_get_rate(atmel_pwm->clk);
369 		u32 cdty, cprd, pres;
370 		u64 tmp;
371 
372 		pres = cmr & PWM_CMR_CPRE_MSK;
373 
374 		cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
375 					  atmel_pwm->data->regs.period);
376 		tmp = (u64)cprd * NSEC_PER_SEC;
377 		tmp <<= pres;
378 		state->period = DIV64_U64_ROUND_UP(tmp, rate);
379 
380 		/* Wait for an updated duty_cycle queued in hardware */
381 		atmel_pwm_wait_nonpending(atmel_pwm, pwm->hwpwm);
382 
383 		cdty = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
384 					  atmel_pwm->data->regs.duty);
385 		tmp = (u64)(cprd - cdty) * NSEC_PER_SEC;
386 		tmp <<= pres;
387 		state->duty_cycle = DIV64_U64_ROUND_UP(tmp, rate);
388 
389 		state->enabled = true;
390 	} else {
391 		state->enabled = false;
392 	}
393 
394 	if (cmr & PWM_CMR_CPOL)
395 		state->polarity = PWM_POLARITY_INVERSED;
396 	else
397 		state->polarity = PWM_POLARITY_NORMAL;
398 
399 	return 0;
400 }
401 
402 static const struct pwm_ops atmel_pwm_ops = {
403 	.apply = atmel_pwm_apply,
404 	.get_state = atmel_pwm_get_state,
405 	.owner = THIS_MODULE,
406 };
407 
408 static const struct atmel_pwm_data atmel_sam9rl_pwm_data = {
409 	.regs = {
410 		.period		= PWMV1_CPRD,
411 		.period_upd	= PWMV1_CUPD,
412 		.duty		= PWMV1_CDTY,
413 		.duty_upd	= PWMV1_CUPD,
414 	},
415 	.cfg = {
416 		/* 16 bits to keep period and duty. */
417 		.period_bits	= 16,
418 	},
419 };
420 
421 static const struct atmel_pwm_data atmel_sama5_pwm_data = {
422 	.regs = {
423 		.period		= PWMV2_CPRD,
424 		.period_upd	= PWMV2_CPRDUPD,
425 		.duty		= PWMV2_CDTY,
426 		.duty_upd	= PWMV2_CDTYUPD,
427 	},
428 	.cfg = {
429 		/* 16 bits to keep period and duty. */
430 		.period_bits	= 16,
431 	},
432 };
433 
434 static const struct atmel_pwm_data mchp_sam9x60_pwm_data = {
435 	.regs = {
436 		.period		= PWMV1_CPRD,
437 		.period_upd	= PWMV1_CUPD,
438 		.duty		= PWMV1_CDTY,
439 		.duty_upd	= PWMV1_CUPD,
440 	},
441 	.cfg = {
442 		/* 32 bits to keep period and duty. */
443 		.period_bits	= 32,
444 	},
445 };
446 
447 static const struct of_device_id atmel_pwm_dt_ids[] = {
448 	{
449 		.compatible = "atmel,at91sam9rl-pwm",
450 		.data = &atmel_sam9rl_pwm_data,
451 	}, {
452 		.compatible = "atmel,sama5d3-pwm",
453 		.data = &atmel_sama5_pwm_data,
454 	}, {
455 		.compatible = "atmel,sama5d2-pwm",
456 		.data = &atmel_sama5_pwm_data,
457 	}, {
458 		.compatible = "microchip,sam9x60-pwm",
459 		.data = &mchp_sam9x60_pwm_data,
460 	}, {
461 		/* sentinel */
462 	},
463 };
464 MODULE_DEVICE_TABLE(of, atmel_pwm_dt_ids);
465 
466 static int atmel_pwm_enable_clk_if_on(struct atmel_pwm_chip *atmel_pwm, bool on)
467 {
468 	unsigned int i, cnt = 0;
469 	unsigned long sr;
470 	int ret = 0;
471 
472 	sr = atmel_pwm_readl(atmel_pwm, PWM_SR) & PWM_SR_ALL_CH_MASK;
473 	if (!sr)
474 		return 0;
475 
476 	cnt = bitmap_weight(&sr, atmel_pwm->chip.npwm);
477 
478 	if (!on)
479 		goto disable_clk;
480 
481 	for (i = 0; i < cnt; i++) {
482 		ret = clk_enable(atmel_pwm->clk);
483 		if (ret) {
484 			dev_err(atmel_pwm->chip.dev,
485 				"failed to enable clock for pwm %pe\n",
486 				ERR_PTR(ret));
487 
488 			cnt = i;
489 			goto disable_clk;
490 		}
491 	}
492 
493 	return 0;
494 
495 disable_clk:
496 	while (cnt--)
497 		clk_disable(atmel_pwm->clk);
498 
499 	return ret;
500 }
501 
502 static int atmel_pwm_probe(struct platform_device *pdev)
503 {
504 	struct atmel_pwm_chip *atmel_pwm;
505 	int ret;
506 
507 	atmel_pwm = devm_kzalloc(&pdev->dev, sizeof(*atmel_pwm), GFP_KERNEL);
508 	if (!atmel_pwm)
509 		return -ENOMEM;
510 
511 	atmel_pwm->data = of_device_get_match_data(&pdev->dev);
512 
513 	atmel_pwm->update_pending = 0;
514 	spin_lock_init(&atmel_pwm->lock);
515 
516 	atmel_pwm->base = devm_platform_ioremap_resource(pdev, 0);
517 	if (IS_ERR(atmel_pwm->base))
518 		return PTR_ERR(atmel_pwm->base);
519 
520 	atmel_pwm->clk = devm_clk_get_prepared(&pdev->dev, NULL);
521 	if (IS_ERR(atmel_pwm->clk))
522 		return dev_err_probe(&pdev->dev, PTR_ERR(atmel_pwm->clk),
523 				     "failed to get prepared PWM clock\n");
524 
525 	atmel_pwm->chip.dev = &pdev->dev;
526 	atmel_pwm->chip.ops = &atmel_pwm_ops;
527 	atmel_pwm->chip.npwm = 4;
528 
529 	ret = atmel_pwm_enable_clk_if_on(atmel_pwm, true);
530 	if (ret < 0)
531 		return ret;
532 
533 	ret = devm_pwmchip_add(&pdev->dev, &atmel_pwm->chip);
534 	if (ret < 0) {
535 		dev_err_probe(&pdev->dev, ret, "failed to add PWM chip\n");
536 		goto disable_clk;
537 	}
538 
539 	return 0;
540 
541 disable_clk:
542 	atmel_pwm_enable_clk_if_on(atmel_pwm, false);
543 
544 	return ret;
545 }
546 
547 static struct platform_driver atmel_pwm_driver = {
548 	.driver = {
549 		.name = "atmel-pwm",
550 		.of_match_table = of_match_ptr(atmel_pwm_dt_ids),
551 	},
552 	.probe = atmel_pwm_probe,
553 };
554 module_platform_driver(atmel_pwm_driver);
555 
556 MODULE_ALIAS("platform:atmel-pwm");
557 MODULE_AUTHOR("Bo Shen <voice.shen@atmel.com>");
558 MODULE_DESCRIPTION("Atmel PWM driver");
559 MODULE_LICENSE("GPL v2");
560