xref: /openbmc/linux/drivers/pwm/pwm-atmel.c (revision 583f12a80dfb7997d59a42e8642019695f5aa15a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel Pulse Width Modulation Controller
4  *
5  * Copyright (C) 2013 Atmel Corporation
6  *		 Bo Shen <voice.shen@atmel.com>
7  *
8  * Links to reference manuals for the supported PWM chips can be found in
9  * Documentation/arm/microchip.rst.
10  *
11  * Limitations:
12  * - Periods start with the inactive level.
13  * - Hardware has to be stopped in general to update settings.
14  *
15  * Software bugs/possible improvements:
16  * - When atmel_pwm_apply() is called with state->enabled=false a change in
17  *   state->polarity isn't honored.
18  * - Instead of sleeping to wait for a completed period, the interrupt
19  *   functionality could be used.
20  */
21 
22 #include <linux/clk.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/io.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/platform_device.h>
30 #include <linux/pwm.h>
31 #include <linux/slab.h>
32 
33 /* The following is global registers for PWM controller */
34 #define PWM_ENA			0x04
35 #define PWM_DIS			0x08
36 #define PWM_SR			0x0C
37 #define PWM_ISR			0x1C
38 /* Bit field in SR */
39 #define PWM_SR_ALL_CH_ON	0x0F
40 
41 /* The following register is PWM channel related registers */
42 #define PWM_CH_REG_OFFSET	0x200
43 #define PWM_CH_REG_SIZE		0x20
44 
45 #define PWM_CMR			0x0
46 /* Bit field in CMR */
47 #define PWM_CMR_CPOL		(1 << 9)
48 #define PWM_CMR_UPD_CDTY	(1 << 10)
49 #define PWM_CMR_CPRE_MSK	0xF
50 
51 /* The following registers for PWM v1 */
52 #define PWMV1_CDTY		0x04
53 #define PWMV1_CPRD		0x08
54 #define PWMV1_CUPD		0x10
55 
56 /* The following registers for PWM v2 */
57 #define PWMV2_CDTY		0x04
58 #define PWMV2_CDTYUPD		0x08
59 #define PWMV2_CPRD		0x0C
60 #define PWMV2_CPRDUPD		0x10
61 
62 #define PWM_MAX_PRES		10
63 
64 struct atmel_pwm_registers {
65 	u8 period;
66 	u8 period_upd;
67 	u8 duty;
68 	u8 duty_upd;
69 };
70 
71 struct atmel_pwm_config {
72 	u32 period_bits;
73 };
74 
75 struct atmel_pwm_data {
76 	struct atmel_pwm_registers regs;
77 	struct atmel_pwm_config cfg;
78 };
79 
80 struct atmel_pwm_chip {
81 	struct pwm_chip chip;
82 	struct clk *clk;
83 	void __iomem *base;
84 	const struct atmel_pwm_data *data;
85 
86 	/*
87 	 * The hardware supports a mechanism to update a channel's duty cycle at
88 	 * the end of the currently running period. When such an update is
89 	 * pending we delay disabling the PWM until the new configuration is
90 	 * active because otherwise pmw_config(duty_cycle=0); pwm_disable();
91 	 * might not result in an inactive output.
92 	 * This bitmask tracks for which channels an update is pending in
93 	 * hardware.
94 	 */
95 	u32 update_pending;
96 
97 	/* Protects .update_pending */
98 	spinlock_t lock;
99 };
100 
101 static inline struct atmel_pwm_chip *to_atmel_pwm_chip(struct pwm_chip *chip)
102 {
103 	return container_of(chip, struct atmel_pwm_chip, chip);
104 }
105 
106 static inline u32 atmel_pwm_readl(struct atmel_pwm_chip *chip,
107 				  unsigned long offset)
108 {
109 	return readl_relaxed(chip->base + offset);
110 }
111 
112 static inline void atmel_pwm_writel(struct atmel_pwm_chip *chip,
113 				    unsigned long offset, unsigned long val)
114 {
115 	writel_relaxed(val, chip->base + offset);
116 }
117 
118 static inline u32 atmel_pwm_ch_readl(struct atmel_pwm_chip *chip,
119 				     unsigned int ch, unsigned long offset)
120 {
121 	unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;
122 
123 	return atmel_pwm_readl(chip, base + offset);
124 }
125 
126 static inline void atmel_pwm_ch_writel(struct atmel_pwm_chip *chip,
127 				       unsigned int ch, unsigned long offset,
128 				       unsigned long val)
129 {
130 	unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;
131 
132 	atmel_pwm_writel(chip, base + offset, val);
133 }
134 
135 static void atmel_pwm_update_pending(struct atmel_pwm_chip *chip)
136 {
137 	/*
138 	 * Each channel that has its bit in ISR set started a new period since
139 	 * ISR was cleared and so there is no more update pending.  Note that
140 	 * reading ISR clears it, so this needs to handle all channels to not
141 	 * loose information.
142 	 */
143 	u32 isr = atmel_pwm_readl(chip, PWM_ISR);
144 
145 	chip->update_pending &= ~isr;
146 }
147 
148 static void atmel_pwm_set_pending(struct atmel_pwm_chip *chip, unsigned int ch)
149 {
150 	spin_lock(&chip->lock);
151 
152 	/*
153 	 * Clear pending flags in hardware because otherwise there might still
154 	 * be a stale flag in ISR.
155 	 */
156 	atmel_pwm_update_pending(chip);
157 
158 	chip->update_pending |= (1 << ch);
159 
160 	spin_unlock(&chip->lock);
161 }
162 
163 static int atmel_pwm_test_pending(struct atmel_pwm_chip *chip, unsigned int ch)
164 {
165 	int ret = 0;
166 
167 	spin_lock(&chip->lock);
168 
169 	if (chip->update_pending & (1 << ch)) {
170 		atmel_pwm_update_pending(chip);
171 
172 		if (chip->update_pending & (1 << ch))
173 			ret = 1;
174 	}
175 
176 	spin_unlock(&chip->lock);
177 
178 	return ret;
179 }
180 
181 static int atmel_pwm_wait_nonpending(struct atmel_pwm_chip *chip, unsigned int ch)
182 {
183 	unsigned long timeout = jiffies + 2 * HZ;
184 	int ret;
185 
186 	while ((ret = atmel_pwm_test_pending(chip, ch)) &&
187 	       time_before(jiffies, timeout))
188 		usleep_range(10, 100);
189 
190 	return ret ? -ETIMEDOUT : 0;
191 }
192 
193 static int atmel_pwm_calculate_cprd_and_pres(struct pwm_chip *chip,
194 					     unsigned long clkrate,
195 					     const struct pwm_state *state,
196 					     unsigned long *cprd, u32 *pres)
197 {
198 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
199 	unsigned long long cycles = state->period;
200 	int shift;
201 
202 	/* Calculate the period cycles and prescale value */
203 	cycles *= clkrate;
204 	do_div(cycles, NSEC_PER_SEC);
205 
206 	/*
207 	 * The register for the period length is cfg.period_bits bits wide.
208 	 * So for each bit the number of clock cycles is wider divide the input
209 	 * clock frequency by two using pres and shift cprd accordingly.
210 	 */
211 	shift = fls(cycles) - atmel_pwm->data->cfg.period_bits;
212 
213 	if (shift > PWM_MAX_PRES) {
214 		dev_err(chip->dev, "pres exceeds the maximum value\n");
215 		return -EINVAL;
216 	} else if (shift > 0) {
217 		*pres = shift;
218 		cycles >>= *pres;
219 	} else {
220 		*pres = 0;
221 	}
222 
223 	*cprd = cycles;
224 
225 	return 0;
226 }
227 
228 static void atmel_pwm_calculate_cdty(const struct pwm_state *state,
229 				     unsigned long clkrate, unsigned long cprd,
230 				     u32 pres, unsigned long *cdty)
231 {
232 	unsigned long long cycles = state->duty_cycle;
233 
234 	cycles *= clkrate;
235 	do_div(cycles, NSEC_PER_SEC);
236 	cycles >>= pres;
237 	*cdty = cprd - cycles;
238 }
239 
240 static void atmel_pwm_update_cdty(struct pwm_chip *chip, struct pwm_device *pwm,
241 				  unsigned long cdty)
242 {
243 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
244 	u32 val;
245 
246 	if (atmel_pwm->data->regs.duty_upd ==
247 	    atmel_pwm->data->regs.period_upd) {
248 		val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
249 		val &= ~PWM_CMR_UPD_CDTY;
250 		atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
251 	}
252 
253 	atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
254 			    atmel_pwm->data->regs.duty_upd, cdty);
255 	atmel_pwm_set_pending(atmel_pwm, pwm->hwpwm);
256 }
257 
258 static void atmel_pwm_set_cprd_cdty(struct pwm_chip *chip,
259 				    struct pwm_device *pwm,
260 				    unsigned long cprd, unsigned long cdty)
261 {
262 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
263 
264 	atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
265 			    atmel_pwm->data->regs.duty, cdty);
266 	atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
267 			    atmel_pwm->data->regs.period, cprd);
268 }
269 
270 static void atmel_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm,
271 			      bool disable_clk)
272 {
273 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
274 	unsigned long timeout;
275 
276 	atmel_pwm_wait_nonpending(atmel_pwm, pwm->hwpwm);
277 
278 	atmel_pwm_writel(atmel_pwm, PWM_DIS, 1 << pwm->hwpwm);
279 
280 	/*
281 	 * Wait for the PWM channel disable operation to be effective before
282 	 * stopping the clock.
283 	 */
284 	timeout = jiffies + 2 * HZ;
285 
286 	while ((atmel_pwm_readl(atmel_pwm, PWM_SR) & (1 << pwm->hwpwm)) &&
287 	       time_before(jiffies, timeout))
288 		usleep_range(10, 100);
289 
290 	if (disable_clk)
291 		clk_disable(atmel_pwm->clk);
292 }
293 
294 static int atmel_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
295 			   const struct pwm_state *state)
296 {
297 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
298 	struct pwm_state cstate;
299 	unsigned long cprd, cdty;
300 	u32 pres, val;
301 	int ret;
302 
303 	pwm_get_state(pwm, &cstate);
304 
305 	if (state->enabled) {
306 		unsigned long clkrate = clk_get_rate(atmel_pwm->clk);
307 
308 		if (cstate.enabled &&
309 		    cstate.polarity == state->polarity &&
310 		    cstate.period == state->period) {
311 			u32 cmr = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
312 
313 			cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
314 						  atmel_pwm->data->regs.period);
315 			pres = cmr & PWM_CMR_CPRE_MSK;
316 
317 			atmel_pwm_calculate_cdty(state, clkrate, cprd, pres, &cdty);
318 			atmel_pwm_update_cdty(chip, pwm, cdty);
319 			return 0;
320 		}
321 
322 		ret = atmel_pwm_calculate_cprd_and_pres(chip, clkrate, state, &cprd,
323 							&pres);
324 		if (ret) {
325 			dev_err(chip->dev,
326 				"failed to calculate cprd and prescaler\n");
327 			return ret;
328 		}
329 
330 		atmel_pwm_calculate_cdty(state, clkrate, cprd, pres, &cdty);
331 
332 		if (cstate.enabled) {
333 			atmel_pwm_disable(chip, pwm, false);
334 		} else {
335 			ret = clk_enable(atmel_pwm->clk);
336 			if (ret) {
337 				dev_err(chip->dev, "failed to enable clock\n");
338 				return ret;
339 			}
340 		}
341 
342 		/* It is necessary to preserve CPOL, inside CMR */
343 		val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
344 		val = (val & ~PWM_CMR_CPRE_MSK) | (pres & PWM_CMR_CPRE_MSK);
345 		if (state->polarity == PWM_POLARITY_NORMAL)
346 			val &= ~PWM_CMR_CPOL;
347 		else
348 			val |= PWM_CMR_CPOL;
349 		atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
350 		atmel_pwm_set_cprd_cdty(chip, pwm, cprd, cdty);
351 		atmel_pwm_writel(atmel_pwm, PWM_ENA, 1 << pwm->hwpwm);
352 	} else if (cstate.enabled) {
353 		atmel_pwm_disable(chip, pwm, true);
354 	}
355 
356 	return 0;
357 }
358 
359 static int atmel_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
360 			       struct pwm_state *state)
361 {
362 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
363 	u32 sr, cmr;
364 
365 	sr = atmel_pwm_readl(atmel_pwm, PWM_SR);
366 	cmr = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
367 
368 	if (sr & (1 << pwm->hwpwm)) {
369 		unsigned long rate = clk_get_rate(atmel_pwm->clk);
370 		u32 cdty, cprd, pres;
371 		u64 tmp;
372 
373 		pres = cmr & PWM_CMR_CPRE_MSK;
374 
375 		cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
376 					  atmel_pwm->data->regs.period);
377 		tmp = (u64)cprd * NSEC_PER_SEC;
378 		tmp <<= pres;
379 		state->period = DIV64_U64_ROUND_UP(tmp, rate);
380 
381 		/* Wait for an updated duty_cycle queued in hardware */
382 		atmel_pwm_wait_nonpending(atmel_pwm, pwm->hwpwm);
383 
384 		cdty = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
385 					  atmel_pwm->data->regs.duty);
386 		tmp = (u64)(cprd - cdty) * NSEC_PER_SEC;
387 		tmp <<= pres;
388 		state->duty_cycle = DIV64_U64_ROUND_UP(tmp, rate);
389 
390 		state->enabled = true;
391 	} else {
392 		state->enabled = false;
393 	}
394 
395 	if (cmr & PWM_CMR_CPOL)
396 		state->polarity = PWM_POLARITY_INVERSED;
397 	else
398 		state->polarity = PWM_POLARITY_NORMAL;
399 
400 	return 0;
401 }
402 
403 static const struct pwm_ops atmel_pwm_ops = {
404 	.apply = atmel_pwm_apply,
405 	.get_state = atmel_pwm_get_state,
406 	.owner = THIS_MODULE,
407 };
408 
409 static const struct atmel_pwm_data atmel_sam9rl_pwm_data = {
410 	.regs = {
411 		.period		= PWMV1_CPRD,
412 		.period_upd	= PWMV1_CUPD,
413 		.duty		= PWMV1_CDTY,
414 		.duty_upd	= PWMV1_CUPD,
415 	},
416 	.cfg = {
417 		/* 16 bits to keep period and duty. */
418 		.period_bits	= 16,
419 	},
420 };
421 
422 static const struct atmel_pwm_data atmel_sama5_pwm_data = {
423 	.regs = {
424 		.period		= PWMV2_CPRD,
425 		.period_upd	= PWMV2_CPRDUPD,
426 		.duty		= PWMV2_CDTY,
427 		.duty_upd	= PWMV2_CDTYUPD,
428 	},
429 	.cfg = {
430 		/* 16 bits to keep period and duty. */
431 		.period_bits	= 16,
432 	},
433 };
434 
435 static const struct atmel_pwm_data mchp_sam9x60_pwm_data = {
436 	.regs = {
437 		.period		= PWMV1_CPRD,
438 		.period_upd	= PWMV1_CUPD,
439 		.duty		= PWMV1_CDTY,
440 		.duty_upd	= PWMV1_CUPD,
441 	},
442 	.cfg = {
443 		/* 32 bits to keep period and duty. */
444 		.period_bits	= 32,
445 	},
446 };
447 
448 static const struct of_device_id atmel_pwm_dt_ids[] = {
449 	{
450 		.compatible = "atmel,at91sam9rl-pwm",
451 		.data = &atmel_sam9rl_pwm_data,
452 	}, {
453 		.compatible = "atmel,sama5d3-pwm",
454 		.data = &atmel_sama5_pwm_data,
455 	}, {
456 		.compatible = "atmel,sama5d2-pwm",
457 		.data = &atmel_sama5_pwm_data,
458 	}, {
459 		.compatible = "microchip,sam9x60-pwm",
460 		.data = &mchp_sam9x60_pwm_data,
461 	}, {
462 		/* sentinel */
463 	},
464 };
465 MODULE_DEVICE_TABLE(of, atmel_pwm_dt_ids);
466 
467 static int atmel_pwm_probe(struct platform_device *pdev)
468 {
469 	struct atmel_pwm_chip *atmel_pwm;
470 	int ret;
471 
472 	atmel_pwm = devm_kzalloc(&pdev->dev, sizeof(*atmel_pwm), GFP_KERNEL);
473 	if (!atmel_pwm)
474 		return -ENOMEM;
475 
476 	atmel_pwm->data = of_device_get_match_data(&pdev->dev);
477 
478 	atmel_pwm->update_pending = 0;
479 	spin_lock_init(&atmel_pwm->lock);
480 
481 	atmel_pwm->base = devm_platform_ioremap_resource(pdev, 0);
482 	if (IS_ERR(atmel_pwm->base))
483 		return PTR_ERR(atmel_pwm->base);
484 
485 	atmel_pwm->clk = devm_clk_get(&pdev->dev, NULL);
486 	if (IS_ERR(atmel_pwm->clk))
487 		return PTR_ERR(atmel_pwm->clk);
488 
489 	ret = clk_prepare(atmel_pwm->clk);
490 	if (ret) {
491 		dev_err(&pdev->dev, "failed to prepare PWM clock\n");
492 		return ret;
493 	}
494 
495 	atmel_pwm->chip.dev = &pdev->dev;
496 	atmel_pwm->chip.ops = &atmel_pwm_ops;
497 	atmel_pwm->chip.npwm = 4;
498 
499 	ret = pwmchip_add(&atmel_pwm->chip);
500 	if (ret < 0) {
501 		dev_err(&pdev->dev, "failed to add PWM chip %d\n", ret);
502 		goto unprepare_clk;
503 	}
504 
505 	platform_set_drvdata(pdev, atmel_pwm);
506 
507 	return ret;
508 
509 unprepare_clk:
510 	clk_unprepare(atmel_pwm->clk);
511 	return ret;
512 }
513 
514 static void atmel_pwm_remove(struct platform_device *pdev)
515 {
516 	struct atmel_pwm_chip *atmel_pwm = platform_get_drvdata(pdev);
517 
518 	pwmchip_remove(&atmel_pwm->chip);
519 
520 	clk_unprepare(atmel_pwm->clk);
521 }
522 
523 static struct platform_driver atmel_pwm_driver = {
524 	.driver = {
525 		.name = "atmel-pwm",
526 		.of_match_table = of_match_ptr(atmel_pwm_dt_ids),
527 	},
528 	.probe = atmel_pwm_probe,
529 	.remove_new = atmel_pwm_remove,
530 };
531 module_platform_driver(atmel_pwm_driver);
532 
533 MODULE_ALIAS("platform:atmel-pwm");
534 MODULE_AUTHOR("Bo Shen <voice.shen@atmel.com>");
535 MODULE_DESCRIPTION("Atmel PWM driver");
536 MODULE_LICENSE("GPL v2");
537