xref: /openbmc/linux/drivers/pwm/pwm-atmel.c (revision 36fe4655)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel Pulse Width Modulation Controller
4  *
5  * Copyright (C) 2013 Atmel Corporation
6  *		 Bo Shen <voice.shen@atmel.com>
7  *
8  * Links to reference manuals for the supported PWM chips can be found in
9  * Documentation/arm/microchip.rst.
10  *
11  * Limitations:
12  * - Periods start with the inactive level.
13  * - Hardware has to be stopped in general to update settings.
14  *
15  * Software bugs/possible improvements:
16  * - When atmel_pwm_apply() is called with state->enabled=false a change in
17  *   state->polarity isn't honored.
18  * - Instead of sleeping to wait for a completed period, the interrupt
19  *   functionality could be used.
20  */
21 
22 #include <linux/clk.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/io.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30 #include <linux/platform_device.h>
31 #include <linux/pwm.h>
32 #include <linux/slab.h>
33 
34 /* The following is global registers for PWM controller */
35 #define PWM_ENA			0x04
36 #define PWM_DIS			0x08
37 #define PWM_SR			0x0C
38 #define PWM_ISR			0x1C
39 /* Bit field in SR */
40 #define PWM_SR_ALL_CH_ON	0x0F
41 
42 /* The following register is PWM channel related registers */
43 #define PWM_CH_REG_OFFSET	0x200
44 #define PWM_CH_REG_SIZE		0x20
45 
46 #define PWM_CMR			0x0
47 /* Bit field in CMR */
48 #define PWM_CMR_CPOL		(1 << 9)
49 #define PWM_CMR_UPD_CDTY	(1 << 10)
50 #define PWM_CMR_CPRE_MSK	0xF
51 
52 /* The following registers for PWM v1 */
53 #define PWMV1_CDTY		0x04
54 #define PWMV1_CPRD		0x08
55 #define PWMV1_CUPD		0x10
56 
57 /* The following registers for PWM v2 */
58 #define PWMV2_CDTY		0x04
59 #define PWMV2_CDTYUPD		0x08
60 #define PWMV2_CPRD		0x0C
61 #define PWMV2_CPRDUPD		0x10
62 
63 #define PWM_MAX_PRES		10
64 
65 struct atmel_pwm_registers {
66 	u8 period;
67 	u8 period_upd;
68 	u8 duty;
69 	u8 duty_upd;
70 };
71 
72 struct atmel_pwm_config {
73 	u32 period_bits;
74 };
75 
76 struct atmel_pwm_data {
77 	struct atmel_pwm_registers regs;
78 	struct atmel_pwm_config cfg;
79 };
80 
81 struct atmel_pwm_chip {
82 	struct pwm_chip chip;
83 	struct clk *clk;
84 	void __iomem *base;
85 	const struct atmel_pwm_data *data;
86 
87 	unsigned int updated_pwms;
88 	/* ISR is cleared when read, ensure only one thread does that */
89 	struct mutex isr_lock;
90 };
91 
92 static inline struct atmel_pwm_chip *to_atmel_pwm_chip(struct pwm_chip *chip)
93 {
94 	return container_of(chip, struct atmel_pwm_chip, chip);
95 }
96 
97 static inline u32 atmel_pwm_readl(struct atmel_pwm_chip *chip,
98 				  unsigned long offset)
99 {
100 	return readl_relaxed(chip->base + offset);
101 }
102 
103 static inline void atmel_pwm_writel(struct atmel_pwm_chip *chip,
104 				    unsigned long offset, unsigned long val)
105 {
106 	writel_relaxed(val, chip->base + offset);
107 }
108 
109 static inline u32 atmel_pwm_ch_readl(struct atmel_pwm_chip *chip,
110 				     unsigned int ch, unsigned long offset)
111 {
112 	unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;
113 
114 	return atmel_pwm_readl(chip, base + offset);
115 }
116 
117 static inline void atmel_pwm_ch_writel(struct atmel_pwm_chip *chip,
118 				       unsigned int ch, unsigned long offset,
119 				       unsigned long val)
120 {
121 	unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;
122 
123 	atmel_pwm_writel(chip, base + offset, val);
124 }
125 
126 static int atmel_pwm_calculate_cprd_and_pres(struct pwm_chip *chip,
127 					     const struct pwm_state *state,
128 					     unsigned long *cprd, u32 *pres)
129 {
130 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
131 	unsigned long long cycles = state->period;
132 	int shift;
133 
134 	/* Calculate the period cycles and prescale value */
135 	cycles *= clk_get_rate(atmel_pwm->clk);
136 	do_div(cycles, NSEC_PER_SEC);
137 
138 	/*
139 	 * The register for the period length is cfg.period_bits bits wide.
140 	 * So for each bit the number of clock cycles is wider divide the input
141 	 * clock frequency by two using pres and shift cprd accordingly.
142 	 */
143 	shift = fls(cycles) - atmel_pwm->data->cfg.period_bits;
144 
145 	if (shift > PWM_MAX_PRES) {
146 		dev_err(chip->dev, "pres exceeds the maximum value\n");
147 		return -EINVAL;
148 	} else if (shift > 0) {
149 		*pres = shift;
150 		cycles >>= *pres;
151 	} else {
152 		*pres = 0;
153 	}
154 
155 	*cprd = cycles;
156 
157 	return 0;
158 }
159 
160 static void atmel_pwm_calculate_cdty(const struct pwm_state *state,
161 				     unsigned long cprd, unsigned long *cdty)
162 {
163 	unsigned long long cycles = state->duty_cycle;
164 
165 	cycles *= cprd;
166 	do_div(cycles, state->period);
167 	*cdty = cprd - cycles;
168 }
169 
170 static void atmel_pwm_update_cdty(struct pwm_chip *chip, struct pwm_device *pwm,
171 				  unsigned long cdty)
172 {
173 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
174 	u32 val;
175 
176 	if (atmel_pwm->data->regs.duty_upd ==
177 	    atmel_pwm->data->regs.period_upd) {
178 		val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
179 		val &= ~PWM_CMR_UPD_CDTY;
180 		atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
181 	}
182 
183 	atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
184 			    atmel_pwm->data->regs.duty_upd, cdty);
185 }
186 
187 static void atmel_pwm_set_cprd_cdty(struct pwm_chip *chip,
188 				    struct pwm_device *pwm,
189 				    unsigned long cprd, unsigned long cdty)
190 {
191 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
192 
193 	atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
194 			    atmel_pwm->data->regs.duty, cdty);
195 	atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
196 			    atmel_pwm->data->regs.period, cprd);
197 }
198 
199 static void atmel_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm,
200 			      bool disable_clk)
201 {
202 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
203 	unsigned long timeout = jiffies + 2 * HZ;
204 
205 	/*
206 	 * Wait for at least a complete period to have passed before disabling a
207 	 * channel to be sure that CDTY has been updated
208 	 */
209 	mutex_lock(&atmel_pwm->isr_lock);
210 	atmel_pwm->updated_pwms |= atmel_pwm_readl(atmel_pwm, PWM_ISR);
211 
212 	while (!(atmel_pwm->updated_pwms & (1 << pwm->hwpwm)) &&
213 	       time_before(jiffies, timeout)) {
214 		usleep_range(10, 100);
215 		atmel_pwm->updated_pwms |= atmel_pwm_readl(atmel_pwm, PWM_ISR);
216 	}
217 
218 	mutex_unlock(&atmel_pwm->isr_lock);
219 	atmel_pwm_writel(atmel_pwm, PWM_DIS, 1 << pwm->hwpwm);
220 
221 	/*
222 	 * Wait for the PWM channel disable operation to be effective before
223 	 * stopping the clock.
224 	 */
225 	timeout = jiffies + 2 * HZ;
226 
227 	while ((atmel_pwm_readl(atmel_pwm, PWM_SR) & (1 << pwm->hwpwm)) &&
228 	       time_before(jiffies, timeout))
229 		usleep_range(10, 100);
230 
231 	if (disable_clk)
232 		clk_disable(atmel_pwm->clk);
233 }
234 
235 static int atmel_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
236 			   const struct pwm_state *state)
237 {
238 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
239 	struct pwm_state cstate;
240 	unsigned long cprd, cdty;
241 	u32 pres, val;
242 	int ret;
243 
244 	pwm_get_state(pwm, &cstate);
245 
246 	if (state->enabled) {
247 		if (cstate.enabled &&
248 		    cstate.polarity == state->polarity &&
249 		    cstate.period == state->period) {
250 			cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
251 						  atmel_pwm->data->regs.period);
252 			atmel_pwm_calculate_cdty(state, cprd, &cdty);
253 			atmel_pwm_update_cdty(chip, pwm, cdty);
254 			return 0;
255 		}
256 
257 		ret = atmel_pwm_calculate_cprd_and_pres(chip, state, &cprd,
258 							&pres);
259 		if (ret) {
260 			dev_err(chip->dev,
261 				"failed to calculate cprd and prescaler\n");
262 			return ret;
263 		}
264 
265 		atmel_pwm_calculate_cdty(state, cprd, &cdty);
266 
267 		if (cstate.enabled) {
268 			atmel_pwm_disable(chip, pwm, false);
269 		} else {
270 			ret = clk_enable(atmel_pwm->clk);
271 			if (ret) {
272 				dev_err(chip->dev, "failed to enable clock\n");
273 				return ret;
274 			}
275 		}
276 
277 		/* It is necessary to preserve CPOL, inside CMR */
278 		val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
279 		val = (val & ~PWM_CMR_CPRE_MSK) | (pres & PWM_CMR_CPRE_MSK);
280 		if (state->polarity == PWM_POLARITY_NORMAL)
281 			val &= ~PWM_CMR_CPOL;
282 		else
283 			val |= PWM_CMR_CPOL;
284 		atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
285 		atmel_pwm_set_cprd_cdty(chip, pwm, cprd, cdty);
286 		mutex_lock(&atmel_pwm->isr_lock);
287 		atmel_pwm->updated_pwms |= atmel_pwm_readl(atmel_pwm, PWM_ISR);
288 		atmel_pwm->updated_pwms &= ~(1 << pwm->hwpwm);
289 		mutex_unlock(&atmel_pwm->isr_lock);
290 		atmel_pwm_writel(atmel_pwm, PWM_ENA, 1 << pwm->hwpwm);
291 	} else if (cstate.enabled) {
292 		atmel_pwm_disable(chip, pwm, true);
293 	}
294 
295 	return 0;
296 }
297 
298 static void atmel_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
299 				struct pwm_state *state)
300 {
301 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
302 	u32 sr, cmr;
303 
304 	sr = atmel_pwm_readl(atmel_pwm, PWM_SR);
305 	cmr = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
306 
307 	if (sr & (1 << pwm->hwpwm)) {
308 		unsigned long rate = clk_get_rate(atmel_pwm->clk);
309 		u32 cdty, cprd, pres;
310 		u64 tmp;
311 
312 		pres = cmr & PWM_CMR_CPRE_MSK;
313 
314 		cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
315 					  atmel_pwm->data->regs.period);
316 		tmp = (u64)cprd * NSEC_PER_SEC;
317 		tmp <<= pres;
318 		state->period = DIV64_U64_ROUND_UP(tmp, rate);
319 
320 		cdty = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
321 					  atmel_pwm->data->regs.duty);
322 		tmp = (u64)cdty * NSEC_PER_SEC;
323 		tmp <<= pres;
324 		state->duty_cycle = DIV64_U64_ROUND_UP(tmp, rate);
325 
326 		state->enabled = true;
327 	} else {
328 		state->enabled = false;
329 	}
330 
331 	if (cmr & PWM_CMR_CPOL)
332 		state->polarity = PWM_POLARITY_INVERSED;
333 	else
334 		state->polarity = PWM_POLARITY_NORMAL;
335 }
336 
337 static const struct pwm_ops atmel_pwm_ops = {
338 	.apply = atmel_pwm_apply,
339 	.get_state = atmel_pwm_get_state,
340 	.owner = THIS_MODULE,
341 };
342 
343 static const struct atmel_pwm_data atmel_sam9rl_pwm_data = {
344 	.regs = {
345 		.period		= PWMV1_CPRD,
346 		.period_upd	= PWMV1_CUPD,
347 		.duty		= PWMV1_CDTY,
348 		.duty_upd	= PWMV1_CUPD,
349 	},
350 	.cfg = {
351 		/* 16 bits to keep period and duty. */
352 		.period_bits	= 16,
353 	},
354 };
355 
356 static const struct atmel_pwm_data atmel_sama5_pwm_data = {
357 	.regs = {
358 		.period		= PWMV2_CPRD,
359 		.period_upd	= PWMV2_CPRDUPD,
360 		.duty		= PWMV2_CDTY,
361 		.duty_upd	= PWMV2_CDTYUPD,
362 	},
363 	.cfg = {
364 		/* 16 bits to keep period and duty. */
365 		.period_bits	= 16,
366 	},
367 };
368 
369 static const struct atmel_pwm_data mchp_sam9x60_pwm_data = {
370 	.regs = {
371 		.period		= PWMV1_CPRD,
372 		.period_upd	= PWMV1_CUPD,
373 		.duty		= PWMV1_CDTY,
374 		.duty_upd	= PWMV1_CUPD,
375 	},
376 	.cfg = {
377 		/* 32 bits to keep period and duty. */
378 		.period_bits	= 32,
379 	},
380 };
381 
382 static const struct of_device_id atmel_pwm_dt_ids[] = {
383 	{
384 		.compatible = "atmel,at91sam9rl-pwm",
385 		.data = &atmel_sam9rl_pwm_data,
386 	}, {
387 		.compatible = "atmel,sama5d3-pwm",
388 		.data = &atmel_sama5_pwm_data,
389 	}, {
390 		.compatible = "atmel,sama5d2-pwm",
391 		.data = &atmel_sama5_pwm_data,
392 	}, {
393 		.compatible = "microchip,sam9x60-pwm",
394 		.data = &mchp_sam9x60_pwm_data,
395 	}, {
396 		/* sentinel */
397 	},
398 };
399 MODULE_DEVICE_TABLE(of, atmel_pwm_dt_ids);
400 
401 static int atmel_pwm_probe(struct platform_device *pdev)
402 {
403 	struct atmel_pwm_chip *atmel_pwm;
404 	int ret;
405 
406 	atmel_pwm = devm_kzalloc(&pdev->dev, sizeof(*atmel_pwm), GFP_KERNEL);
407 	if (!atmel_pwm)
408 		return -ENOMEM;
409 
410 	mutex_init(&atmel_pwm->isr_lock);
411 	atmel_pwm->data = of_device_get_match_data(&pdev->dev);
412 	atmel_pwm->updated_pwms = 0;
413 
414 	atmel_pwm->base = devm_platform_ioremap_resource(pdev, 0);
415 	if (IS_ERR(atmel_pwm->base))
416 		return PTR_ERR(atmel_pwm->base);
417 
418 	atmel_pwm->clk = devm_clk_get(&pdev->dev, NULL);
419 	if (IS_ERR(atmel_pwm->clk))
420 		return PTR_ERR(atmel_pwm->clk);
421 
422 	ret = clk_prepare(atmel_pwm->clk);
423 	if (ret) {
424 		dev_err(&pdev->dev, "failed to prepare PWM clock\n");
425 		return ret;
426 	}
427 
428 	atmel_pwm->chip.dev = &pdev->dev;
429 	atmel_pwm->chip.ops = &atmel_pwm_ops;
430 	atmel_pwm->chip.of_xlate = of_pwm_xlate_with_flags;
431 	atmel_pwm->chip.of_pwm_n_cells = 3;
432 	atmel_pwm->chip.base = -1;
433 	atmel_pwm->chip.npwm = 4;
434 
435 	ret = pwmchip_add(&atmel_pwm->chip);
436 	if (ret < 0) {
437 		dev_err(&pdev->dev, "failed to add PWM chip %d\n", ret);
438 		goto unprepare_clk;
439 	}
440 
441 	platform_set_drvdata(pdev, atmel_pwm);
442 
443 	return ret;
444 
445 unprepare_clk:
446 	clk_unprepare(atmel_pwm->clk);
447 	return ret;
448 }
449 
450 static int atmel_pwm_remove(struct platform_device *pdev)
451 {
452 	struct atmel_pwm_chip *atmel_pwm = platform_get_drvdata(pdev);
453 
454 	clk_unprepare(atmel_pwm->clk);
455 	mutex_destroy(&atmel_pwm->isr_lock);
456 
457 	return pwmchip_remove(&atmel_pwm->chip);
458 }
459 
460 static struct platform_driver atmel_pwm_driver = {
461 	.driver = {
462 		.name = "atmel-pwm",
463 		.of_match_table = of_match_ptr(atmel_pwm_dt_ids),
464 	},
465 	.probe = atmel_pwm_probe,
466 	.remove = atmel_pwm_remove,
467 };
468 module_platform_driver(atmel_pwm_driver);
469 
470 MODULE_ALIAS("platform:atmel-pwm");
471 MODULE_AUTHOR("Bo Shen <voice.shen@atmel.com>");
472 MODULE_DESCRIPTION("Atmel PWM driver");
473 MODULE_LICENSE("GPL v2");
474