xref: /openbmc/linux/drivers/pwm/pwm-atmel-tcb.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Copyright (C) Overkiz SAS 2012
3  *
4  * Author: Boris BREZILLON <b.brezillon@overkiz.com>
5  * License terms: GNU General Public License (GPL) version 2
6  */
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/clocksource.h>
11 #include <linux/clockchips.h>
12 #include <linux/interrupt.h>
13 #include <linux/irq.h>
14 
15 #include <linux/clk.h>
16 #include <linux/err.h>
17 #include <linux/ioport.h>
18 #include <linux/io.h>
19 #include <linux/platform_device.h>
20 #include <linux/atmel_tc.h>
21 #include <linux/pwm.h>
22 #include <linux/of_device.h>
23 #include <linux/slab.h>
24 
25 #define NPWM	6
26 
27 #define ATMEL_TC_ACMR_MASK	(ATMEL_TC_ACPA | ATMEL_TC_ACPC |	\
28 				 ATMEL_TC_AEEVT | ATMEL_TC_ASWTRG)
29 
30 #define ATMEL_TC_BCMR_MASK	(ATMEL_TC_BCPB | ATMEL_TC_BCPC |	\
31 				 ATMEL_TC_BEEVT | ATMEL_TC_BSWTRG)
32 
33 struct atmel_tcb_pwm_device {
34 	enum pwm_polarity polarity;	/* PWM polarity */
35 	unsigned div;			/* PWM clock divider */
36 	unsigned duty;			/* PWM duty expressed in clk cycles */
37 	unsigned period;		/* PWM period expressed in clk cycles */
38 };
39 
40 struct atmel_tcb_pwm_chip {
41 	struct pwm_chip chip;
42 	spinlock_t lock;
43 	struct atmel_tc *tc;
44 	struct atmel_tcb_pwm_device *pwms[NPWM];
45 };
46 
47 static inline struct atmel_tcb_pwm_chip *to_tcb_chip(struct pwm_chip *chip)
48 {
49 	return container_of(chip, struct atmel_tcb_pwm_chip, chip);
50 }
51 
52 static int atmel_tcb_pwm_set_polarity(struct pwm_chip *chip,
53 				      struct pwm_device *pwm,
54 				      enum pwm_polarity polarity)
55 {
56 	struct atmel_tcb_pwm_device *tcbpwm = pwm_get_chip_data(pwm);
57 
58 	tcbpwm->polarity = polarity;
59 
60 	return 0;
61 }
62 
63 static int atmel_tcb_pwm_request(struct pwm_chip *chip,
64 				 struct pwm_device *pwm)
65 {
66 	struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip);
67 	struct atmel_tcb_pwm_device *tcbpwm;
68 	struct atmel_tc *tc = tcbpwmc->tc;
69 	void __iomem *regs = tc->regs;
70 	unsigned group = pwm->hwpwm / 2;
71 	unsigned index = pwm->hwpwm % 2;
72 	unsigned cmr;
73 	int ret;
74 
75 	tcbpwm = devm_kzalloc(chip->dev, sizeof(*tcbpwm), GFP_KERNEL);
76 	if (!tcbpwm)
77 		return -ENOMEM;
78 
79 	ret = clk_prepare_enable(tc->clk[group]);
80 	if (ret) {
81 		devm_kfree(chip->dev, tcbpwm);
82 		return ret;
83 	}
84 
85 	pwm_set_chip_data(pwm, tcbpwm);
86 	tcbpwm->polarity = PWM_POLARITY_NORMAL;
87 	tcbpwm->duty = 0;
88 	tcbpwm->period = 0;
89 	tcbpwm->div = 0;
90 
91 	spin_lock(&tcbpwmc->lock);
92 	cmr = __raw_readl(regs + ATMEL_TC_REG(group, CMR));
93 	/*
94 	 * Get init config from Timer Counter registers if
95 	 * Timer Counter is already configured as a PWM generator.
96 	 */
97 	if (cmr & ATMEL_TC_WAVE) {
98 		if (index == 0)
99 			tcbpwm->duty =
100 				__raw_readl(regs + ATMEL_TC_REG(group, RA));
101 		else
102 			tcbpwm->duty =
103 				__raw_readl(regs + ATMEL_TC_REG(group, RB));
104 
105 		tcbpwm->div = cmr & ATMEL_TC_TCCLKS;
106 		tcbpwm->period = __raw_readl(regs + ATMEL_TC_REG(group, RC));
107 		cmr &= (ATMEL_TC_TCCLKS | ATMEL_TC_ACMR_MASK |
108 			ATMEL_TC_BCMR_MASK);
109 	} else
110 		cmr = 0;
111 
112 	cmr |= ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO | ATMEL_TC_EEVT_XC0;
113 	__raw_writel(cmr, regs + ATMEL_TC_REG(group, CMR));
114 	spin_unlock(&tcbpwmc->lock);
115 
116 	tcbpwmc->pwms[pwm->hwpwm] = tcbpwm;
117 
118 	return 0;
119 }
120 
121 static void atmel_tcb_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
122 {
123 	struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip);
124 	struct atmel_tcb_pwm_device *tcbpwm = pwm_get_chip_data(pwm);
125 	struct atmel_tc *tc = tcbpwmc->tc;
126 
127 	clk_disable_unprepare(tc->clk[pwm->hwpwm / 2]);
128 	tcbpwmc->pwms[pwm->hwpwm] = NULL;
129 	devm_kfree(chip->dev, tcbpwm);
130 }
131 
132 static void atmel_tcb_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
133 {
134 	struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip);
135 	struct atmel_tcb_pwm_device *tcbpwm = pwm_get_chip_data(pwm);
136 	struct atmel_tc *tc = tcbpwmc->tc;
137 	void __iomem *regs = tc->regs;
138 	unsigned group = pwm->hwpwm / 2;
139 	unsigned index = pwm->hwpwm % 2;
140 	unsigned cmr;
141 	enum pwm_polarity polarity = tcbpwm->polarity;
142 
143 	/*
144 	 * If duty is 0 the timer will be stopped and we have to
145 	 * configure the output correctly on software trigger:
146 	 *  - set output to high if PWM_POLARITY_INVERSED
147 	 *  - set output to low if PWM_POLARITY_NORMAL
148 	 *
149 	 * This is why we're reverting polarity in this case.
150 	 */
151 	if (tcbpwm->duty == 0)
152 		polarity = !polarity;
153 
154 	spin_lock(&tcbpwmc->lock);
155 	cmr = __raw_readl(regs + ATMEL_TC_REG(group, CMR));
156 
157 	/* flush old setting and set the new one */
158 	if (index == 0) {
159 		cmr &= ~ATMEL_TC_ACMR_MASK;
160 		if (polarity == PWM_POLARITY_INVERSED)
161 			cmr |= ATMEL_TC_ASWTRG_CLEAR;
162 		else
163 			cmr |= ATMEL_TC_ASWTRG_SET;
164 	} else {
165 		cmr &= ~ATMEL_TC_BCMR_MASK;
166 		if (polarity == PWM_POLARITY_INVERSED)
167 			cmr |= ATMEL_TC_BSWTRG_CLEAR;
168 		else
169 			cmr |= ATMEL_TC_BSWTRG_SET;
170 	}
171 
172 	__raw_writel(cmr, regs + ATMEL_TC_REG(group, CMR));
173 
174 	/*
175 	 * Use software trigger to apply the new setting.
176 	 * If both PWM devices in this group are disabled we stop the clock.
177 	 */
178 	if (!(cmr & (ATMEL_TC_ACPC | ATMEL_TC_BCPC)))
179 		__raw_writel(ATMEL_TC_SWTRG | ATMEL_TC_CLKDIS,
180 			     regs + ATMEL_TC_REG(group, CCR));
181 	else
182 		__raw_writel(ATMEL_TC_SWTRG, regs +
183 			     ATMEL_TC_REG(group, CCR));
184 
185 	spin_unlock(&tcbpwmc->lock);
186 }
187 
188 static int atmel_tcb_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
189 {
190 	struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip);
191 	struct atmel_tcb_pwm_device *tcbpwm = pwm_get_chip_data(pwm);
192 	struct atmel_tc *tc = tcbpwmc->tc;
193 	void __iomem *regs = tc->regs;
194 	unsigned group = pwm->hwpwm / 2;
195 	unsigned index = pwm->hwpwm % 2;
196 	u32 cmr;
197 	enum pwm_polarity polarity = tcbpwm->polarity;
198 
199 	/*
200 	 * If duty is 0 the timer will be stopped and we have to
201 	 * configure the output correctly on software trigger:
202 	 *  - set output to high if PWM_POLARITY_INVERSED
203 	 *  - set output to low if PWM_POLARITY_NORMAL
204 	 *
205 	 * This is why we're reverting polarity in this case.
206 	 */
207 	if (tcbpwm->duty == 0)
208 		polarity = !polarity;
209 
210 	spin_lock(&tcbpwmc->lock);
211 	cmr = __raw_readl(regs + ATMEL_TC_REG(group, CMR));
212 
213 	/* flush old setting and set the new one */
214 	cmr &= ~ATMEL_TC_TCCLKS;
215 
216 	if (index == 0) {
217 		cmr &= ~ATMEL_TC_ACMR_MASK;
218 
219 		/* Set CMR flags according to given polarity */
220 		if (polarity == PWM_POLARITY_INVERSED)
221 			cmr |= ATMEL_TC_ASWTRG_CLEAR;
222 		else
223 			cmr |= ATMEL_TC_ASWTRG_SET;
224 	} else {
225 		cmr &= ~ATMEL_TC_BCMR_MASK;
226 		if (polarity == PWM_POLARITY_INVERSED)
227 			cmr |= ATMEL_TC_BSWTRG_CLEAR;
228 		else
229 			cmr |= ATMEL_TC_BSWTRG_SET;
230 	}
231 
232 	/*
233 	 * If duty is 0 or equal to period there's no need to register
234 	 * a specific action on RA/RB and RC compare.
235 	 * The output will be configured on software trigger and keep
236 	 * this config till next config call.
237 	 */
238 	if (tcbpwm->duty != tcbpwm->period && tcbpwm->duty > 0) {
239 		if (index == 0) {
240 			if (polarity == PWM_POLARITY_INVERSED)
241 				cmr |= ATMEL_TC_ACPA_SET | ATMEL_TC_ACPC_CLEAR;
242 			else
243 				cmr |= ATMEL_TC_ACPA_CLEAR | ATMEL_TC_ACPC_SET;
244 		} else {
245 			if (polarity == PWM_POLARITY_INVERSED)
246 				cmr |= ATMEL_TC_BCPB_SET | ATMEL_TC_BCPC_CLEAR;
247 			else
248 				cmr |= ATMEL_TC_BCPB_CLEAR | ATMEL_TC_BCPC_SET;
249 		}
250 	}
251 
252 	cmr |= (tcbpwm->div & ATMEL_TC_TCCLKS);
253 
254 	__raw_writel(cmr, regs + ATMEL_TC_REG(group, CMR));
255 
256 	if (index == 0)
257 		__raw_writel(tcbpwm->duty, regs + ATMEL_TC_REG(group, RA));
258 	else
259 		__raw_writel(tcbpwm->duty, regs + ATMEL_TC_REG(group, RB));
260 
261 	__raw_writel(tcbpwm->period, regs + ATMEL_TC_REG(group, RC));
262 
263 	/* Use software trigger to apply the new setting */
264 	__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
265 		     regs + ATMEL_TC_REG(group, CCR));
266 	spin_unlock(&tcbpwmc->lock);
267 	return 0;
268 }
269 
270 static int atmel_tcb_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
271 				int duty_ns, int period_ns)
272 {
273 	struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip);
274 	struct atmel_tcb_pwm_device *tcbpwm = pwm_get_chip_data(pwm);
275 	unsigned group = pwm->hwpwm / 2;
276 	unsigned index = pwm->hwpwm % 2;
277 	struct atmel_tcb_pwm_device *atcbpwm = NULL;
278 	struct atmel_tc *tc = tcbpwmc->tc;
279 	int i;
280 	int slowclk = 0;
281 	unsigned period;
282 	unsigned duty;
283 	unsigned rate = clk_get_rate(tc->clk[group]);
284 	unsigned long long min;
285 	unsigned long long max;
286 
287 	/*
288 	 * Find best clk divisor:
289 	 * the smallest divisor which can fulfill the period_ns requirements.
290 	 */
291 	for (i = 0; i < 5; ++i) {
292 		if (atmel_tc_divisors[i] == 0) {
293 			slowclk = i;
294 			continue;
295 		}
296 		min = div_u64((u64)NSEC_PER_SEC * atmel_tc_divisors[i], rate);
297 		max = min << tc->tcb_config->counter_width;
298 		if (max >= period_ns)
299 			break;
300 	}
301 
302 	/*
303 	 * If none of the divisor are small enough to represent period_ns
304 	 * take slow clock (32KHz).
305 	 */
306 	if (i == 5) {
307 		i = slowclk;
308 		rate = 32768;
309 		min = div_u64(NSEC_PER_SEC, rate);
310 		max = min << tc->tcb_config->counter_width;
311 
312 		/* If period is too big return ERANGE error */
313 		if (max < period_ns)
314 			return -ERANGE;
315 	}
316 
317 	duty = div_u64(duty_ns, min);
318 	period = div_u64(period_ns, min);
319 
320 	if (index == 0)
321 		atcbpwm = tcbpwmc->pwms[pwm->hwpwm + 1];
322 	else
323 		atcbpwm = tcbpwmc->pwms[pwm->hwpwm - 1];
324 
325 	/*
326 	 * PWM devices provided by TCB driver are grouped by 2:
327 	 * - group 0: PWM 0 & 1
328 	 * - group 1: PWM 2 & 3
329 	 * - group 2: PWM 4 & 5
330 	 *
331 	 * PWM devices in a given group must be configured with the
332 	 * same period_ns.
333 	 *
334 	 * We're checking the period value of the second PWM device
335 	 * in this group before applying the new config.
336 	 */
337 	if ((atcbpwm && atcbpwm->duty > 0 &&
338 			atcbpwm->duty != atcbpwm->period) &&
339 		(atcbpwm->div != i || atcbpwm->period != period)) {
340 		dev_err(chip->dev,
341 			"failed to configure period_ns: PWM group already configured with a different value\n");
342 		return -EINVAL;
343 	}
344 
345 	tcbpwm->period = period;
346 	tcbpwm->div = i;
347 	tcbpwm->duty = duty;
348 
349 	/* If the PWM is enabled, call enable to apply the new conf */
350 	if (pwm_is_enabled(pwm))
351 		atmel_tcb_pwm_enable(chip, pwm);
352 
353 	return 0;
354 }
355 
356 static const struct pwm_ops atmel_tcb_pwm_ops = {
357 	.request = atmel_tcb_pwm_request,
358 	.free = atmel_tcb_pwm_free,
359 	.config = atmel_tcb_pwm_config,
360 	.set_polarity = atmel_tcb_pwm_set_polarity,
361 	.enable = atmel_tcb_pwm_enable,
362 	.disable = atmel_tcb_pwm_disable,
363 	.owner = THIS_MODULE,
364 };
365 
366 static int atmel_tcb_pwm_probe(struct platform_device *pdev)
367 {
368 	struct atmel_tcb_pwm_chip *tcbpwm;
369 	struct device_node *np = pdev->dev.of_node;
370 	struct atmel_tc *tc;
371 	int err;
372 	int tcblock;
373 
374 	err = of_property_read_u32(np, "tc-block", &tcblock);
375 	if (err < 0) {
376 		dev_err(&pdev->dev,
377 			"failed to get Timer Counter Block number from device tree (error: %d)\n",
378 			err);
379 		return err;
380 	}
381 
382 	tc = atmel_tc_alloc(tcblock);
383 	if (tc == NULL) {
384 		dev_err(&pdev->dev, "failed to allocate Timer Counter Block\n");
385 		return -ENOMEM;
386 	}
387 
388 	tcbpwm = devm_kzalloc(&pdev->dev, sizeof(*tcbpwm), GFP_KERNEL);
389 	if (tcbpwm == NULL) {
390 		atmel_tc_free(tc);
391 		dev_err(&pdev->dev, "failed to allocate memory\n");
392 		return -ENOMEM;
393 	}
394 
395 	tcbpwm->chip.dev = &pdev->dev;
396 	tcbpwm->chip.ops = &atmel_tcb_pwm_ops;
397 	tcbpwm->chip.of_xlate = of_pwm_xlate_with_flags;
398 	tcbpwm->chip.of_pwm_n_cells = 3;
399 	tcbpwm->chip.base = -1;
400 	tcbpwm->chip.npwm = NPWM;
401 	tcbpwm->tc = tc;
402 
403 	spin_lock_init(&tcbpwm->lock);
404 
405 	err = pwmchip_add(&tcbpwm->chip);
406 	if (err < 0) {
407 		atmel_tc_free(tc);
408 		return err;
409 	}
410 
411 	platform_set_drvdata(pdev, tcbpwm);
412 
413 	return 0;
414 }
415 
416 static int atmel_tcb_pwm_remove(struct platform_device *pdev)
417 {
418 	struct atmel_tcb_pwm_chip *tcbpwm = platform_get_drvdata(pdev);
419 	int err;
420 
421 	err = pwmchip_remove(&tcbpwm->chip);
422 	if (err < 0)
423 		return err;
424 
425 	atmel_tc_free(tcbpwm->tc);
426 
427 	return 0;
428 }
429 
430 static const struct of_device_id atmel_tcb_pwm_dt_ids[] = {
431 	{ .compatible = "atmel,tcb-pwm", },
432 	{ /* sentinel */ }
433 };
434 MODULE_DEVICE_TABLE(of, atmel_tcb_pwm_dt_ids);
435 
436 static struct platform_driver atmel_tcb_pwm_driver = {
437 	.driver = {
438 		.name = "atmel-tcb-pwm",
439 		.of_match_table = atmel_tcb_pwm_dt_ids,
440 	},
441 	.probe = atmel_tcb_pwm_probe,
442 	.remove = atmel_tcb_pwm_remove,
443 };
444 module_platform_driver(atmel_tcb_pwm_driver);
445 
446 MODULE_AUTHOR("Boris BREZILLON <b.brezillon@overkiz.com>");
447 MODULE_DESCRIPTION("Atmel Timer Counter Pulse Width Modulation Driver");
448 MODULE_LICENSE("GPL v2");
449