xref: /openbmc/linux/drivers/pwm/core.c (revision ffcdf473)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20 
21 #include <dt-bindings/pwm/pwm.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
25 
26 #define MAX_PWMS 1024
27 
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30 
31 /* protects access to pwm_chips and allocated_pwms */
32 static DEFINE_MUTEX(pwm_lock);
33 
34 static LIST_HEAD(pwm_chips);
35 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
36 
37 /* Called with pwm_lock held */
38 static int alloc_pwms(unsigned int count)
39 {
40 	unsigned int start;
41 
42 	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
43 					   count, 0);
44 
45 	if (start + count > MAX_PWMS)
46 		return -ENOSPC;
47 
48 	bitmap_set(allocated_pwms, start, count);
49 
50 	return start;
51 }
52 
53 /* Called with pwm_lock held */
54 static void free_pwms(struct pwm_chip *chip)
55 {
56 	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
57 
58 	kfree(chip->pwms);
59 	chip->pwms = NULL;
60 }
61 
62 static struct pwm_chip *pwmchip_find_by_name(const char *name)
63 {
64 	struct pwm_chip *chip;
65 
66 	if (!name)
67 		return NULL;
68 
69 	mutex_lock(&pwm_lock);
70 
71 	list_for_each_entry(chip, &pwm_chips, list) {
72 		const char *chip_name = dev_name(chip->dev);
73 
74 		if (chip_name && strcmp(chip_name, name) == 0) {
75 			mutex_unlock(&pwm_lock);
76 			return chip;
77 		}
78 	}
79 
80 	mutex_unlock(&pwm_lock);
81 
82 	return NULL;
83 }
84 
85 static int pwm_device_request(struct pwm_device *pwm, const char *label)
86 {
87 	int err;
88 
89 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
90 		return -EBUSY;
91 
92 	if (!try_module_get(pwm->chip->ops->owner))
93 		return -ENODEV;
94 
95 	if (pwm->chip->ops->request) {
96 		err = pwm->chip->ops->request(pwm->chip, pwm);
97 		if (err) {
98 			module_put(pwm->chip->ops->owner);
99 			return err;
100 		}
101 	}
102 
103 	if (pwm->chip->ops->get_state) {
104 		/*
105 		 * Zero-initialize state because most drivers are unaware of
106 		 * .usage_power. The other members of state are supposed to be
107 		 * set by lowlevel drivers. We still initialize the whole
108 		 * structure for simplicity even though this might paper over
109 		 * faulty implementations of .get_state().
110 		 */
111 		struct pwm_state state = { 0, };
112 
113 		err = pwm->chip->ops->get_state(pwm->chip, pwm, &state);
114 		trace_pwm_get(pwm, &state, err);
115 
116 		if (!err)
117 			pwm->state = state;
118 
119 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
120 			pwm->last = pwm->state;
121 	}
122 
123 	set_bit(PWMF_REQUESTED, &pwm->flags);
124 	pwm->label = label;
125 
126 	return 0;
127 }
128 
129 struct pwm_device *
130 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
131 {
132 	struct pwm_device *pwm;
133 
134 	if (pc->of_pwm_n_cells < 2)
135 		return ERR_PTR(-EINVAL);
136 
137 	/* flags in the third cell are optional */
138 	if (args->args_count < 2)
139 		return ERR_PTR(-EINVAL);
140 
141 	if (args->args[0] >= pc->npwm)
142 		return ERR_PTR(-EINVAL);
143 
144 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
145 	if (IS_ERR(pwm))
146 		return pwm;
147 
148 	pwm->args.period = args->args[1];
149 	pwm->args.polarity = PWM_POLARITY_NORMAL;
150 
151 	if (pc->of_pwm_n_cells >= 3) {
152 		if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
153 			pwm->args.polarity = PWM_POLARITY_INVERSED;
154 	}
155 
156 	return pwm;
157 }
158 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
159 
160 struct pwm_device *
161 of_pwm_single_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
162 {
163 	struct pwm_device *pwm;
164 
165 	if (pc->of_pwm_n_cells < 1)
166 		return ERR_PTR(-EINVAL);
167 
168 	/* validate that one cell is specified, optionally with flags */
169 	if (args->args_count != 1 && args->args_count != 2)
170 		return ERR_PTR(-EINVAL);
171 
172 	pwm = pwm_request_from_chip(pc, 0, NULL);
173 	if (IS_ERR(pwm))
174 		return pwm;
175 
176 	pwm->args.period = args->args[0];
177 	pwm->args.polarity = PWM_POLARITY_NORMAL;
178 
179 	if (args->args_count == 2 && args->args[2] & PWM_POLARITY_INVERTED)
180 		pwm->args.polarity = PWM_POLARITY_INVERSED;
181 
182 	return pwm;
183 }
184 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
185 
186 static void of_pwmchip_add(struct pwm_chip *chip)
187 {
188 	if (!chip->dev || !chip->dev->of_node)
189 		return;
190 
191 	if (!chip->of_xlate) {
192 		u32 pwm_cells;
193 
194 		if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
195 					 &pwm_cells))
196 			pwm_cells = 2;
197 
198 		chip->of_xlate = of_pwm_xlate_with_flags;
199 		chip->of_pwm_n_cells = pwm_cells;
200 	}
201 
202 	of_node_get(chip->dev->of_node);
203 }
204 
205 static void of_pwmchip_remove(struct pwm_chip *chip)
206 {
207 	if (chip->dev)
208 		of_node_put(chip->dev->of_node);
209 }
210 
211 /**
212  * pwm_set_chip_data() - set private chip data for a PWM
213  * @pwm: PWM device
214  * @data: pointer to chip-specific data
215  *
216  * Returns: 0 on success or a negative error code on failure.
217  */
218 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
219 {
220 	if (!pwm)
221 		return -EINVAL;
222 
223 	pwm->chip_data = data;
224 
225 	return 0;
226 }
227 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
228 
229 /**
230  * pwm_get_chip_data() - get private chip data for a PWM
231  * @pwm: PWM device
232  *
233  * Returns: A pointer to the chip-private data for the PWM device.
234  */
235 void *pwm_get_chip_data(struct pwm_device *pwm)
236 {
237 	return pwm ? pwm->chip_data : NULL;
238 }
239 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
240 
241 static bool pwm_ops_check(const struct pwm_chip *chip)
242 {
243 	const struct pwm_ops *ops = chip->ops;
244 
245 	if (!ops->apply)
246 		return false;
247 
248 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
249 		dev_warn(chip->dev,
250 			 "Please implement the .get_state() callback\n");
251 
252 	return true;
253 }
254 
255 /**
256  * pwmchip_add() - register a new PWM chip
257  * @chip: the PWM chip to add
258  *
259  * Register a new PWM chip.
260  *
261  * Returns: 0 on success or a negative error code on failure.
262  */
263 int pwmchip_add(struct pwm_chip *chip)
264 {
265 	struct pwm_device *pwm;
266 	unsigned int i;
267 	int ret;
268 
269 	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
270 		return -EINVAL;
271 
272 	if (!pwm_ops_check(chip))
273 		return -EINVAL;
274 
275 	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
276 	if (!chip->pwms)
277 		return -ENOMEM;
278 
279 	mutex_lock(&pwm_lock);
280 
281 	ret = alloc_pwms(chip->npwm);
282 	if (ret < 0) {
283 		mutex_unlock(&pwm_lock);
284 		kfree(chip->pwms);
285 		return ret;
286 	}
287 
288 	chip->base = ret;
289 
290 	for (i = 0; i < chip->npwm; i++) {
291 		pwm = &chip->pwms[i];
292 
293 		pwm->chip = chip;
294 		pwm->pwm = chip->base + i;
295 		pwm->hwpwm = i;
296 	}
297 
298 	list_add(&chip->list, &pwm_chips);
299 
300 	mutex_unlock(&pwm_lock);
301 
302 	if (IS_ENABLED(CONFIG_OF))
303 		of_pwmchip_add(chip);
304 
305 	pwmchip_sysfs_export(chip);
306 
307 	return 0;
308 }
309 EXPORT_SYMBOL_GPL(pwmchip_add);
310 
311 /**
312  * pwmchip_remove() - remove a PWM chip
313  * @chip: the PWM chip to remove
314  *
315  * Removes a PWM chip. This function may return busy if the PWM chip provides
316  * a PWM device that is still requested.
317  *
318  * Returns: 0 on success or a negative error code on failure.
319  */
320 void pwmchip_remove(struct pwm_chip *chip)
321 {
322 	pwmchip_sysfs_unexport(chip);
323 
324 	mutex_lock(&pwm_lock);
325 
326 	list_del_init(&chip->list);
327 
328 	if (IS_ENABLED(CONFIG_OF))
329 		of_pwmchip_remove(chip);
330 
331 	free_pwms(chip);
332 
333 	mutex_unlock(&pwm_lock);
334 }
335 EXPORT_SYMBOL_GPL(pwmchip_remove);
336 
337 static void devm_pwmchip_remove(void *data)
338 {
339 	struct pwm_chip *chip = data;
340 
341 	pwmchip_remove(chip);
342 }
343 
344 int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
345 {
346 	int ret;
347 
348 	ret = pwmchip_add(chip);
349 	if (ret)
350 		return ret;
351 
352 	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
353 }
354 EXPORT_SYMBOL_GPL(devm_pwmchip_add);
355 
356 /**
357  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
358  * @chip: PWM chip
359  * @index: per-chip index of the PWM to request
360  * @label: a literal description string of this PWM
361  *
362  * Returns: A pointer to the PWM device at the given index of the given PWM
363  * chip. A negative error code is returned if the index is not valid for the
364  * specified PWM chip or if the PWM device cannot be requested.
365  */
366 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
367 					 unsigned int index,
368 					 const char *label)
369 {
370 	struct pwm_device *pwm;
371 	int err;
372 
373 	if (!chip || index >= chip->npwm)
374 		return ERR_PTR(-EINVAL);
375 
376 	mutex_lock(&pwm_lock);
377 	pwm = &chip->pwms[index];
378 
379 	err = pwm_device_request(pwm, label);
380 	if (err < 0)
381 		pwm = ERR_PTR(err);
382 
383 	mutex_unlock(&pwm_lock);
384 	return pwm;
385 }
386 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
387 
388 static void pwm_apply_state_debug(struct pwm_device *pwm,
389 				  const struct pwm_state *state)
390 {
391 	struct pwm_state *last = &pwm->last;
392 	struct pwm_chip *chip = pwm->chip;
393 	struct pwm_state s1 = { 0 }, s2 = { 0 };
394 	int err;
395 
396 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
397 		return;
398 
399 	/* No reasonable diagnosis possible without .get_state() */
400 	if (!chip->ops->get_state)
401 		return;
402 
403 	/*
404 	 * *state was just applied. Read out the hardware state and do some
405 	 * checks.
406 	 */
407 
408 	err = chip->ops->get_state(chip, pwm, &s1);
409 	trace_pwm_get(pwm, &s1, err);
410 	if (err)
411 		/* If that failed there isn't much to debug */
412 		return;
413 
414 	/*
415 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
416 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
417 	 * Undo this inversion and fixup for further tests.
418 	 */
419 	if (s1.enabled && s1.polarity != state->polarity) {
420 		s2.polarity = state->polarity;
421 		s2.duty_cycle = s1.period - s1.duty_cycle;
422 		s2.period = s1.period;
423 		s2.enabled = s1.enabled;
424 	} else {
425 		s2 = s1;
426 	}
427 
428 	if (s2.polarity != state->polarity &&
429 	    state->duty_cycle < state->period)
430 		dev_warn(chip->dev, ".apply ignored .polarity\n");
431 
432 	if (state->enabled &&
433 	    last->polarity == state->polarity &&
434 	    last->period > s2.period &&
435 	    last->period <= state->period)
436 		dev_warn(chip->dev,
437 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
438 			 state->period, s2.period, last->period);
439 
440 	if (state->enabled && state->period < s2.period)
441 		dev_warn(chip->dev,
442 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
443 			 state->period, s2.period);
444 
445 	if (state->enabled &&
446 	    last->polarity == state->polarity &&
447 	    last->period == s2.period &&
448 	    last->duty_cycle > s2.duty_cycle &&
449 	    last->duty_cycle <= state->duty_cycle)
450 		dev_warn(chip->dev,
451 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
452 			 state->duty_cycle, state->period,
453 			 s2.duty_cycle, s2.period,
454 			 last->duty_cycle, last->period);
455 
456 	if (state->enabled && state->duty_cycle < s2.duty_cycle)
457 		dev_warn(chip->dev,
458 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
459 			 state->duty_cycle, state->period,
460 			 s2.duty_cycle, s2.period);
461 
462 	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
463 		dev_warn(chip->dev,
464 			 "requested disabled, but yielded enabled with duty > 0\n");
465 
466 	/* reapply the state that the driver reported being configured. */
467 	err = chip->ops->apply(chip, pwm, &s1);
468 	trace_pwm_apply(pwm, &s1, err);
469 	if (err) {
470 		*last = s1;
471 		dev_err(chip->dev, "failed to reapply current setting\n");
472 		return;
473 	}
474 
475 	*last = (struct pwm_state){ 0 };
476 	err = chip->ops->get_state(chip, pwm, last);
477 	trace_pwm_get(pwm, last, err);
478 	if (err)
479 		return;
480 
481 	/* reapplication of the current state should give an exact match */
482 	if (s1.enabled != last->enabled ||
483 	    s1.polarity != last->polarity ||
484 	    (s1.enabled && s1.period != last->period) ||
485 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
486 		dev_err(chip->dev,
487 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
488 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
489 			last->enabled, last->polarity, last->duty_cycle,
490 			last->period);
491 	}
492 }
493 
494 /**
495  * pwm_apply_state() - atomically apply a new state to a PWM device
496  * @pwm: PWM device
497  * @state: new state to apply
498  */
499 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
500 {
501 	struct pwm_chip *chip;
502 	int err;
503 
504 	/*
505 	 * Some lowlevel driver's implementations of .apply() make use of
506 	 * mutexes, also with some drivers only returning when the new
507 	 * configuration is active calling pwm_apply_state() from atomic context
508 	 * is a bad idea. So make it explicit that calling this function might
509 	 * sleep.
510 	 */
511 	might_sleep();
512 
513 	if (!pwm || !state || !state->period ||
514 	    state->duty_cycle > state->period)
515 		return -EINVAL;
516 
517 	chip = pwm->chip;
518 
519 	if (state->period == pwm->state.period &&
520 	    state->duty_cycle == pwm->state.duty_cycle &&
521 	    state->polarity == pwm->state.polarity &&
522 	    state->enabled == pwm->state.enabled &&
523 	    state->usage_power == pwm->state.usage_power)
524 		return 0;
525 
526 	err = chip->ops->apply(chip, pwm, state);
527 	trace_pwm_apply(pwm, state, err);
528 	if (err)
529 		return err;
530 
531 	pwm->state = *state;
532 
533 	/*
534 	 * only do this after pwm->state was applied as some
535 	 * implementations of .get_state depend on this
536 	 */
537 	pwm_apply_state_debug(pwm, state);
538 
539 	return 0;
540 }
541 EXPORT_SYMBOL_GPL(pwm_apply_state);
542 
543 /**
544  * pwm_capture() - capture and report a PWM signal
545  * @pwm: PWM device
546  * @result: structure to fill with capture result
547  * @timeout: time to wait, in milliseconds, before giving up on capture
548  *
549  * Returns: 0 on success or a negative error code on failure.
550  */
551 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
552 		unsigned long timeout)
553 {
554 	int err;
555 
556 	if (!pwm || !pwm->chip->ops)
557 		return -EINVAL;
558 
559 	if (!pwm->chip->ops->capture)
560 		return -ENOSYS;
561 
562 	mutex_lock(&pwm_lock);
563 	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
564 	mutex_unlock(&pwm_lock);
565 
566 	return err;
567 }
568 EXPORT_SYMBOL_GPL(pwm_capture);
569 
570 /**
571  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
572  * @pwm: PWM device
573  *
574  * This function will adjust the PWM config to the PWM arguments provided
575  * by the DT or PWM lookup table. This is particularly useful to adapt
576  * the bootloader config to the Linux one.
577  */
578 int pwm_adjust_config(struct pwm_device *pwm)
579 {
580 	struct pwm_state state;
581 	struct pwm_args pargs;
582 
583 	pwm_get_args(pwm, &pargs);
584 	pwm_get_state(pwm, &state);
585 
586 	/*
587 	 * If the current period is zero it means that either the PWM driver
588 	 * does not support initial state retrieval or the PWM has not yet
589 	 * been configured.
590 	 *
591 	 * In either case, we setup the new period and polarity, and assign a
592 	 * duty cycle of 0.
593 	 */
594 	if (!state.period) {
595 		state.duty_cycle = 0;
596 		state.period = pargs.period;
597 		state.polarity = pargs.polarity;
598 
599 		return pwm_apply_state(pwm, &state);
600 	}
601 
602 	/*
603 	 * Adjust the PWM duty cycle/period based on the period value provided
604 	 * in PWM args.
605 	 */
606 	if (pargs.period != state.period) {
607 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
608 
609 		do_div(dutycycle, state.period);
610 		state.duty_cycle = dutycycle;
611 		state.period = pargs.period;
612 	}
613 
614 	/*
615 	 * If the polarity changed, we should also change the duty cycle.
616 	 */
617 	if (pargs.polarity != state.polarity) {
618 		state.polarity = pargs.polarity;
619 		state.duty_cycle = state.period - state.duty_cycle;
620 	}
621 
622 	return pwm_apply_state(pwm, &state);
623 }
624 EXPORT_SYMBOL_GPL(pwm_adjust_config);
625 
626 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
627 {
628 	struct pwm_chip *chip;
629 
630 	mutex_lock(&pwm_lock);
631 
632 	list_for_each_entry(chip, &pwm_chips, list)
633 		if (chip->dev && device_match_fwnode(chip->dev, fwnode)) {
634 			mutex_unlock(&pwm_lock);
635 			return chip;
636 		}
637 
638 	mutex_unlock(&pwm_lock);
639 
640 	return ERR_PTR(-EPROBE_DEFER);
641 }
642 
643 static struct device_link *pwm_device_link_add(struct device *dev,
644 					       struct pwm_device *pwm)
645 {
646 	struct device_link *dl;
647 
648 	if (!dev) {
649 		/*
650 		 * No device for the PWM consumer has been provided. It may
651 		 * impact the PM sequence ordering: the PWM supplier may get
652 		 * suspended before the consumer.
653 		 */
654 		dev_warn(pwm->chip->dev,
655 			 "No consumer device specified to create a link to\n");
656 		return NULL;
657 	}
658 
659 	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
660 	if (!dl) {
661 		dev_err(dev, "failed to create device link to %s\n",
662 			dev_name(pwm->chip->dev));
663 		return ERR_PTR(-EINVAL);
664 	}
665 
666 	return dl;
667 }
668 
669 /**
670  * of_pwm_get() - request a PWM via the PWM framework
671  * @dev: device for PWM consumer
672  * @np: device node to get the PWM from
673  * @con_id: consumer name
674  *
675  * Returns the PWM device parsed from the phandle and index specified in the
676  * "pwms" property of a device tree node or a negative error-code on failure.
677  * Values parsed from the device tree are stored in the returned PWM device
678  * object.
679  *
680  * If con_id is NULL, the first PWM device listed in the "pwms" property will
681  * be requested. Otherwise the "pwm-names" property is used to do a reverse
682  * lookup of the PWM index. This also means that the "pwm-names" property
683  * becomes mandatory for devices that look up the PWM device via the con_id
684  * parameter.
685  *
686  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
687  * error code on failure.
688  */
689 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
690 				     const char *con_id)
691 {
692 	struct pwm_device *pwm = NULL;
693 	struct of_phandle_args args;
694 	struct device_link *dl;
695 	struct pwm_chip *pc;
696 	int index = 0;
697 	int err;
698 
699 	if (con_id) {
700 		index = of_property_match_string(np, "pwm-names", con_id);
701 		if (index < 0)
702 			return ERR_PTR(index);
703 	}
704 
705 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
706 					 &args);
707 	if (err) {
708 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
709 		return ERR_PTR(err);
710 	}
711 
712 	pc = fwnode_to_pwmchip(of_fwnode_handle(args.np));
713 	if (IS_ERR(pc)) {
714 		if (PTR_ERR(pc) != -EPROBE_DEFER)
715 			pr_err("%s(): PWM chip not found\n", __func__);
716 
717 		pwm = ERR_CAST(pc);
718 		goto put;
719 	}
720 
721 	pwm = pc->of_xlate(pc, &args);
722 	if (IS_ERR(pwm))
723 		goto put;
724 
725 	dl = pwm_device_link_add(dev, pwm);
726 	if (IS_ERR(dl)) {
727 		/* of_xlate ended up calling pwm_request_from_chip() */
728 		pwm_put(pwm);
729 		pwm = ERR_CAST(dl);
730 		goto put;
731 	}
732 
733 	/*
734 	 * If a consumer name was not given, try to look it up from the
735 	 * "pwm-names" property if it exists. Otherwise use the name of
736 	 * the user device node.
737 	 */
738 	if (!con_id) {
739 		err = of_property_read_string_index(np, "pwm-names", index,
740 						    &con_id);
741 		if (err < 0)
742 			con_id = np->name;
743 	}
744 
745 	pwm->label = con_id;
746 
747 put:
748 	of_node_put(args.np);
749 
750 	return pwm;
751 }
752 
753 /**
754  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
755  * @fwnode: firmware node to get the "pwms" property from
756  *
757  * Returns the PWM device parsed from the fwnode and index specified in the
758  * "pwms" property or a negative error-code on failure.
759  * Values parsed from the device tree are stored in the returned PWM device
760  * object.
761  *
762  * This is analogous to of_pwm_get() except con_id is not yet supported.
763  * ACPI entries must look like
764  * Package () {"pwms", Package ()
765  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
766  *
767  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
768  * error code on failure.
769  */
770 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
771 {
772 	struct pwm_device *pwm;
773 	struct fwnode_reference_args args;
774 	struct pwm_chip *chip;
775 	int ret;
776 
777 	memset(&args, 0, sizeof(args));
778 
779 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
780 	if (ret < 0)
781 		return ERR_PTR(ret);
782 
783 	if (args.nargs < 2)
784 		return ERR_PTR(-EPROTO);
785 
786 	chip = fwnode_to_pwmchip(args.fwnode);
787 	if (IS_ERR(chip))
788 		return ERR_CAST(chip);
789 
790 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
791 	if (IS_ERR(pwm))
792 		return pwm;
793 
794 	pwm->args.period = args.args[1];
795 	pwm->args.polarity = PWM_POLARITY_NORMAL;
796 
797 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
798 		pwm->args.polarity = PWM_POLARITY_INVERSED;
799 
800 	return pwm;
801 }
802 
803 /**
804  * pwm_add_table() - register PWM device consumers
805  * @table: array of consumers to register
806  * @num: number of consumers in table
807  */
808 void pwm_add_table(struct pwm_lookup *table, size_t num)
809 {
810 	mutex_lock(&pwm_lookup_lock);
811 
812 	while (num--) {
813 		list_add_tail(&table->list, &pwm_lookup_list);
814 		table++;
815 	}
816 
817 	mutex_unlock(&pwm_lookup_lock);
818 }
819 
820 /**
821  * pwm_remove_table() - unregister PWM device consumers
822  * @table: array of consumers to unregister
823  * @num: number of consumers in table
824  */
825 void pwm_remove_table(struct pwm_lookup *table, size_t num)
826 {
827 	mutex_lock(&pwm_lookup_lock);
828 
829 	while (num--) {
830 		list_del(&table->list);
831 		table++;
832 	}
833 
834 	mutex_unlock(&pwm_lookup_lock);
835 }
836 
837 /**
838  * pwm_get() - look up and request a PWM device
839  * @dev: device for PWM consumer
840  * @con_id: consumer name
841  *
842  * Lookup is first attempted using DT. If the device was not instantiated from
843  * a device tree, a PWM chip and a relative index is looked up via a table
844  * supplied by board setup code (see pwm_add_table()).
845  *
846  * Once a PWM chip has been found the specified PWM device will be requested
847  * and is ready to be used.
848  *
849  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
850  * error code on failure.
851  */
852 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
853 {
854 	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
855 	const char *dev_id = dev ? dev_name(dev) : NULL;
856 	struct pwm_device *pwm;
857 	struct pwm_chip *chip;
858 	struct device_link *dl;
859 	unsigned int best = 0;
860 	struct pwm_lookup *p, *chosen = NULL;
861 	unsigned int match;
862 	int err;
863 
864 	/* look up via DT first */
865 	if (is_of_node(fwnode))
866 		return of_pwm_get(dev, to_of_node(fwnode), con_id);
867 
868 	/* then lookup via ACPI */
869 	if (is_acpi_node(fwnode)) {
870 		pwm = acpi_pwm_get(fwnode);
871 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
872 			return pwm;
873 	}
874 
875 	/*
876 	 * We look up the provider in the static table typically provided by
877 	 * board setup code. We first try to lookup the consumer device by
878 	 * name. If the consumer device was passed in as NULL or if no match
879 	 * was found, we try to find the consumer by directly looking it up
880 	 * by name.
881 	 *
882 	 * If a match is found, the provider PWM chip is looked up by name
883 	 * and a PWM device is requested using the PWM device per-chip index.
884 	 *
885 	 * The lookup algorithm was shamelessly taken from the clock
886 	 * framework:
887 	 *
888 	 * We do slightly fuzzy matching here:
889 	 *  An entry with a NULL ID is assumed to be a wildcard.
890 	 *  If an entry has a device ID, it must match
891 	 *  If an entry has a connection ID, it must match
892 	 * Then we take the most specific entry - with the following order
893 	 * of precedence: dev+con > dev only > con only.
894 	 */
895 	mutex_lock(&pwm_lookup_lock);
896 
897 	list_for_each_entry(p, &pwm_lookup_list, list) {
898 		match = 0;
899 
900 		if (p->dev_id) {
901 			if (!dev_id || strcmp(p->dev_id, dev_id))
902 				continue;
903 
904 			match += 2;
905 		}
906 
907 		if (p->con_id) {
908 			if (!con_id || strcmp(p->con_id, con_id))
909 				continue;
910 
911 			match += 1;
912 		}
913 
914 		if (match > best) {
915 			chosen = p;
916 
917 			if (match != 3)
918 				best = match;
919 			else
920 				break;
921 		}
922 	}
923 
924 	mutex_unlock(&pwm_lookup_lock);
925 
926 	if (!chosen)
927 		return ERR_PTR(-ENODEV);
928 
929 	chip = pwmchip_find_by_name(chosen->provider);
930 
931 	/*
932 	 * If the lookup entry specifies a module, load the module and retry
933 	 * the PWM chip lookup. This can be used to work around driver load
934 	 * ordering issues if driver's can't be made to properly support the
935 	 * deferred probe mechanism.
936 	 */
937 	if (!chip && chosen->module) {
938 		err = request_module(chosen->module);
939 		if (err == 0)
940 			chip = pwmchip_find_by_name(chosen->provider);
941 	}
942 
943 	if (!chip)
944 		return ERR_PTR(-EPROBE_DEFER);
945 
946 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
947 	if (IS_ERR(pwm))
948 		return pwm;
949 
950 	dl = pwm_device_link_add(dev, pwm);
951 	if (IS_ERR(dl)) {
952 		pwm_put(pwm);
953 		return ERR_CAST(dl);
954 	}
955 
956 	pwm->args.period = chosen->period;
957 	pwm->args.polarity = chosen->polarity;
958 
959 	return pwm;
960 }
961 EXPORT_SYMBOL_GPL(pwm_get);
962 
963 /**
964  * pwm_put() - release a PWM device
965  * @pwm: PWM device
966  */
967 void pwm_put(struct pwm_device *pwm)
968 {
969 	if (!pwm)
970 		return;
971 
972 	mutex_lock(&pwm_lock);
973 
974 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
975 		pr_warn("PWM device already freed\n");
976 		goto out;
977 	}
978 
979 	if (pwm->chip->ops->free)
980 		pwm->chip->ops->free(pwm->chip, pwm);
981 
982 	pwm_set_chip_data(pwm, NULL);
983 	pwm->label = NULL;
984 
985 	module_put(pwm->chip->ops->owner);
986 out:
987 	mutex_unlock(&pwm_lock);
988 }
989 EXPORT_SYMBOL_GPL(pwm_put);
990 
991 static void devm_pwm_release(void *pwm)
992 {
993 	pwm_put(pwm);
994 }
995 
996 /**
997  * devm_pwm_get() - resource managed pwm_get()
998  * @dev: device for PWM consumer
999  * @con_id: consumer name
1000  *
1001  * This function performs like pwm_get() but the acquired PWM device will
1002  * automatically be released on driver detach.
1003  *
1004  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1005  * error code on failure.
1006  */
1007 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1008 {
1009 	struct pwm_device *pwm;
1010 	int ret;
1011 
1012 	pwm = pwm_get(dev, con_id);
1013 	if (IS_ERR(pwm))
1014 		return pwm;
1015 
1016 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1017 	if (ret)
1018 		return ERR_PTR(ret);
1019 
1020 	return pwm;
1021 }
1022 EXPORT_SYMBOL_GPL(devm_pwm_get);
1023 
1024 /**
1025  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1026  * @dev: device for PWM consumer
1027  * @fwnode: firmware node to get the PWM from
1028  * @con_id: consumer name
1029  *
1030  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1031  * acpi_pwm_get() for a detailed description.
1032  *
1033  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1034  * error code on failure.
1035  */
1036 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1037 				       struct fwnode_handle *fwnode,
1038 				       const char *con_id)
1039 {
1040 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
1041 	int ret;
1042 
1043 	if (is_of_node(fwnode))
1044 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1045 	else if (is_acpi_node(fwnode))
1046 		pwm = acpi_pwm_get(fwnode);
1047 	if (IS_ERR(pwm))
1048 		return pwm;
1049 
1050 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1051 	if (ret)
1052 		return ERR_PTR(ret);
1053 
1054 	return pwm;
1055 }
1056 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1057 
1058 #ifdef CONFIG_DEBUG_FS
1059 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1060 {
1061 	unsigned int i;
1062 
1063 	for (i = 0; i < chip->npwm; i++) {
1064 		struct pwm_device *pwm = &chip->pwms[i];
1065 		struct pwm_state state;
1066 
1067 		pwm_get_state(pwm, &state);
1068 
1069 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1070 
1071 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1072 			seq_puts(s, " requested");
1073 
1074 		if (state.enabled)
1075 			seq_puts(s, " enabled");
1076 
1077 		seq_printf(s, " period: %llu ns", state.period);
1078 		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1079 		seq_printf(s, " polarity: %s",
1080 			   state.polarity ? "inverse" : "normal");
1081 
1082 		if (state.usage_power)
1083 			seq_puts(s, " usage_power");
1084 
1085 		seq_puts(s, "\n");
1086 	}
1087 }
1088 
1089 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1090 {
1091 	mutex_lock(&pwm_lock);
1092 	s->private = "";
1093 
1094 	return seq_list_start(&pwm_chips, *pos);
1095 }
1096 
1097 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1098 {
1099 	s->private = "\n";
1100 
1101 	return seq_list_next(v, &pwm_chips, pos);
1102 }
1103 
1104 static void pwm_seq_stop(struct seq_file *s, void *v)
1105 {
1106 	mutex_unlock(&pwm_lock);
1107 }
1108 
1109 static int pwm_seq_show(struct seq_file *s, void *v)
1110 {
1111 	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1112 
1113 	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1114 		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1115 		   dev_name(chip->dev), chip->npwm,
1116 		   (chip->npwm != 1) ? "s" : "");
1117 
1118 	pwm_dbg_show(chip, s);
1119 
1120 	return 0;
1121 }
1122 
1123 static const struct seq_operations pwm_debugfs_sops = {
1124 	.start = pwm_seq_start,
1125 	.next = pwm_seq_next,
1126 	.stop = pwm_seq_stop,
1127 	.show = pwm_seq_show,
1128 };
1129 
1130 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1131 
1132 static int __init pwm_debugfs_init(void)
1133 {
1134 	debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
1135 
1136 	return 0;
1137 }
1138 subsys_initcall(pwm_debugfs_init);
1139 #endif /* CONFIG_DEBUG_FS */
1140