1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic pwmlib implementation 4 * 5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de> 6 * Copyright (C) 2011-2012 Avionic Design GmbH 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/module.h> 11 #include <linux/of.h> 12 #include <linux/pwm.h> 13 #include <linux/list.h> 14 #include <linux/mutex.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/debugfs.h> 19 #include <linux/seq_file.h> 20 21 #include <dt-bindings/pwm/pwm.h> 22 23 #define CREATE_TRACE_POINTS 24 #include <trace/events/pwm.h> 25 26 #define MAX_PWMS 1024 27 28 static DEFINE_MUTEX(pwm_lookup_lock); 29 static LIST_HEAD(pwm_lookup_list); 30 31 /* protects access to pwm_chips and allocated_pwms */ 32 static DEFINE_MUTEX(pwm_lock); 33 34 static LIST_HEAD(pwm_chips); 35 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS); 36 37 /* Called with pwm_lock held */ 38 static int alloc_pwms(unsigned int count) 39 { 40 unsigned int start; 41 42 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0, 43 count, 0); 44 45 if (start + count > MAX_PWMS) 46 return -ENOSPC; 47 48 bitmap_set(allocated_pwms, start, count); 49 50 return start; 51 } 52 53 /* Called with pwm_lock held */ 54 static void free_pwms(struct pwm_chip *chip) 55 { 56 bitmap_clear(allocated_pwms, chip->base, chip->npwm); 57 58 kfree(chip->pwms); 59 chip->pwms = NULL; 60 } 61 62 static struct pwm_chip *pwmchip_find_by_name(const char *name) 63 { 64 struct pwm_chip *chip; 65 66 if (!name) 67 return NULL; 68 69 mutex_lock(&pwm_lock); 70 71 list_for_each_entry(chip, &pwm_chips, list) { 72 const char *chip_name = dev_name(chip->dev); 73 74 if (chip_name && strcmp(chip_name, name) == 0) { 75 mutex_unlock(&pwm_lock); 76 return chip; 77 } 78 } 79 80 mutex_unlock(&pwm_lock); 81 82 return NULL; 83 } 84 85 static int pwm_device_request(struct pwm_device *pwm, const char *label) 86 { 87 int err; 88 89 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 90 return -EBUSY; 91 92 if (!try_module_get(pwm->chip->ops->owner)) 93 return -ENODEV; 94 95 if (pwm->chip->ops->request) { 96 err = pwm->chip->ops->request(pwm->chip, pwm); 97 if (err) { 98 module_put(pwm->chip->ops->owner); 99 return err; 100 } 101 } 102 103 if (pwm->chip->ops->get_state) { 104 /* 105 * Zero-initialize state because most drivers are unaware of 106 * .usage_power. The other members of state are supposed to be 107 * set by lowlevel drivers. We still initialize the whole 108 * structure for simplicity even though this might paper over 109 * faulty implementations of .get_state(). 110 */ 111 struct pwm_state state = { 0, }; 112 113 err = pwm->chip->ops->get_state(pwm->chip, pwm, &state); 114 trace_pwm_get(pwm, &state, err); 115 116 if (!err) 117 pwm->state = state; 118 119 if (IS_ENABLED(CONFIG_PWM_DEBUG)) 120 pwm->last = pwm->state; 121 } 122 123 set_bit(PWMF_REQUESTED, &pwm->flags); 124 pwm->label = label; 125 126 return 0; 127 } 128 129 struct pwm_device * 130 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args) 131 { 132 struct pwm_device *pwm; 133 134 if (chip->of_pwm_n_cells < 2) 135 return ERR_PTR(-EINVAL); 136 137 /* flags in the third cell are optional */ 138 if (args->args_count < 2) 139 return ERR_PTR(-EINVAL); 140 141 if (args->args[0] >= chip->npwm) 142 return ERR_PTR(-EINVAL); 143 144 pwm = pwm_request_from_chip(chip, args->args[0], NULL); 145 if (IS_ERR(pwm)) 146 return pwm; 147 148 pwm->args.period = args->args[1]; 149 pwm->args.polarity = PWM_POLARITY_NORMAL; 150 151 if (chip->of_pwm_n_cells >= 3) { 152 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED) 153 pwm->args.polarity = PWM_POLARITY_INVERSED; 154 } 155 156 return pwm; 157 } 158 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags); 159 160 struct pwm_device * 161 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args) 162 { 163 struct pwm_device *pwm; 164 165 if (chip->of_pwm_n_cells < 1) 166 return ERR_PTR(-EINVAL); 167 168 /* validate that one cell is specified, optionally with flags */ 169 if (args->args_count != 1 && args->args_count != 2) 170 return ERR_PTR(-EINVAL); 171 172 pwm = pwm_request_from_chip(chip, 0, NULL); 173 if (IS_ERR(pwm)) 174 return pwm; 175 176 pwm->args.period = args->args[0]; 177 pwm->args.polarity = PWM_POLARITY_NORMAL; 178 179 if (args->args_count == 2 && args->args[1] & PWM_POLARITY_INVERTED) 180 pwm->args.polarity = PWM_POLARITY_INVERSED; 181 182 return pwm; 183 } 184 EXPORT_SYMBOL_GPL(of_pwm_single_xlate); 185 186 static void of_pwmchip_add(struct pwm_chip *chip) 187 { 188 if (!chip->dev || !chip->dev->of_node) 189 return; 190 191 if (!chip->of_xlate) { 192 u32 pwm_cells; 193 194 if (of_property_read_u32(chip->dev->of_node, "#pwm-cells", 195 &pwm_cells)) 196 pwm_cells = 2; 197 198 chip->of_xlate = of_pwm_xlate_with_flags; 199 chip->of_pwm_n_cells = pwm_cells; 200 } 201 202 of_node_get(chip->dev->of_node); 203 } 204 205 static void of_pwmchip_remove(struct pwm_chip *chip) 206 { 207 if (chip->dev) 208 of_node_put(chip->dev->of_node); 209 } 210 211 /** 212 * pwm_set_chip_data() - set private chip data for a PWM 213 * @pwm: PWM device 214 * @data: pointer to chip-specific data 215 * 216 * Returns: 0 on success or a negative error code on failure. 217 */ 218 int pwm_set_chip_data(struct pwm_device *pwm, void *data) 219 { 220 if (!pwm) 221 return -EINVAL; 222 223 pwm->chip_data = data; 224 225 return 0; 226 } 227 EXPORT_SYMBOL_GPL(pwm_set_chip_data); 228 229 /** 230 * pwm_get_chip_data() - get private chip data for a PWM 231 * @pwm: PWM device 232 * 233 * Returns: A pointer to the chip-private data for the PWM device. 234 */ 235 void *pwm_get_chip_data(struct pwm_device *pwm) 236 { 237 return pwm ? pwm->chip_data : NULL; 238 } 239 EXPORT_SYMBOL_GPL(pwm_get_chip_data); 240 241 static bool pwm_ops_check(const struct pwm_chip *chip) 242 { 243 const struct pwm_ops *ops = chip->ops; 244 245 if (!ops->apply) 246 return false; 247 248 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state) 249 dev_warn(chip->dev, 250 "Please implement the .get_state() callback\n"); 251 252 return true; 253 } 254 255 /** 256 * pwmchip_add() - register a new PWM chip 257 * @chip: the PWM chip to add 258 * 259 * Register a new PWM chip. 260 * 261 * Returns: 0 on success or a negative error code on failure. 262 */ 263 int pwmchip_add(struct pwm_chip *chip) 264 { 265 struct pwm_device *pwm; 266 unsigned int i; 267 int ret; 268 269 if (!chip || !chip->dev || !chip->ops || !chip->npwm) 270 return -EINVAL; 271 272 if (!pwm_ops_check(chip)) 273 return -EINVAL; 274 275 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL); 276 if (!chip->pwms) 277 return -ENOMEM; 278 279 mutex_lock(&pwm_lock); 280 281 ret = alloc_pwms(chip->npwm); 282 if (ret < 0) { 283 mutex_unlock(&pwm_lock); 284 kfree(chip->pwms); 285 return ret; 286 } 287 288 chip->base = ret; 289 290 for (i = 0; i < chip->npwm; i++) { 291 pwm = &chip->pwms[i]; 292 293 pwm->chip = chip; 294 pwm->pwm = chip->base + i; 295 pwm->hwpwm = i; 296 } 297 298 list_add(&chip->list, &pwm_chips); 299 300 mutex_unlock(&pwm_lock); 301 302 if (IS_ENABLED(CONFIG_OF)) 303 of_pwmchip_add(chip); 304 305 pwmchip_sysfs_export(chip); 306 307 return 0; 308 } 309 EXPORT_SYMBOL_GPL(pwmchip_add); 310 311 /** 312 * pwmchip_remove() - remove a PWM chip 313 * @chip: the PWM chip to remove 314 * 315 * Removes a PWM chip. 316 */ 317 void pwmchip_remove(struct pwm_chip *chip) 318 { 319 pwmchip_sysfs_unexport(chip); 320 321 if (IS_ENABLED(CONFIG_OF)) 322 of_pwmchip_remove(chip); 323 324 mutex_lock(&pwm_lock); 325 326 list_del_init(&chip->list); 327 328 free_pwms(chip); 329 330 mutex_unlock(&pwm_lock); 331 } 332 EXPORT_SYMBOL_GPL(pwmchip_remove); 333 334 static void devm_pwmchip_remove(void *data) 335 { 336 struct pwm_chip *chip = data; 337 338 pwmchip_remove(chip); 339 } 340 341 int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip) 342 { 343 int ret; 344 345 ret = pwmchip_add(chip); 346 if (ret) 347 return ret; 348 349 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip); 350 } 351 EXPORT_SYMBOL_GPL(devm_pwmchip_add); 352 353 /** 354 * pwm_request_from_chip() - request a PWM device relative to a PWM chip 355 * @chip: PWM chip 356 * @index: per-chip index of the PWM to request 357 * @label: a literal description string of this PWM 358 * 359 * Returns: A pointer to the PWM device at the given index of the given PWM 360 * chip. A negative error code is returned if the index is not valid for the 361 * specified PWM chip or if the PWM device cannot be requested. 362 */ 363 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, 364 unsigned int index, 365 const char *label) 366 { 367 struct pwm_device *pwm; 368 int err; 369 370 if (!chip || index >= chip->npwm) 371 return ERR_PTR(-EINVAL); 372 373 mutex_lock(&pwm_lock); 374 pwm = &chip->pwms[index]; 375 376 err = pwm_device_request(pwm, label); 377 if (err < 0) 378 pwm = ERR_PTR(err); 379 380 mutex_unlock(&pwm_lock); 381 return pwm; 382 } 383 EXPORT_SYMBOL_GPL(pwm_request_from_chip); 384 385 static void pwm_apply_state_debug(struct pwm_device *pwm, 386 const struct pwm_state *state) 387 { 388 struct pwm_state *last = &pwm->last; 389 struct pwm_chip *chip = pwm->chip; 390 struct pwm_state s1 = { 0 }, s2 = { 0 }; 391 int err; 392 393 if (!IS_ENABLED(CONFIG_PWM_DEBUG)) 394 return; 395 396 /* No reasonable diagnosis possible without .get_state() */ 397 if (!chip->ops->get_state) 398 return; 399 400 /* 401 * *state was just applied. Read out the hardware state and do some 402 * checks. 403 */ 404 405 err = chip->ops->get_state(chip, pwm, &s1); 406 trace_pwm_get(pwm, &s1, err); 407 if (err) 408 /* If that failed there isn't much to debug */ 409 return; 410 411 /* 412 * The lowlevel driver either ignored .polarity (which is a bug) or as 413 * best effort inverted .polarity and fixed .duty_cycle respectively. 414 * Undo this inversion and fixup for further tests. 415 */ 416 if (s1.enabled && s1.polarity != state->polarity) { 417 s2.polarity = state->polarity; 418 s2.duty_cycle = s1.period - s1.duty_cycle; 419 s2.period = s1.period; 420 s2.enabled = s1.enabled; 421 } else { 422 s2 = s1; 423 } 424 425 if (s2.polarity != state->polarity && 426 state->duty_cycle < state->period) 427 dev_warn(chip->dev, ".apply ignored .polarity\n"); 428 429 if (state->enabled && 430 last->polarity == state->polarity && 431 last->period > s2.period && 432 last->period <= state->period) 433 dev_warn(chip->dev, 434 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n", 435 state->period, s2.period, last->period); 436 437 if (state->enabled && state->period < s2.period) 438 dev_warn(chip->dev, 439 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n", 440 state->period, s2.period); 441 442 if (state->enabled && 443 last->polarity == state->polarity && 444 last->period == s2.period && 445 last->duty_cycle > s2.duty_cycle && 446 last->duty_cycle <= state->duty_cycle) 447 dev_warn(chip->dev, 448 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n", 449 state->duty_cycle, state->period, 450 s2.duty_cycle, s2.period, 451 last->duty_cycle, last->period); 452 453 if (state->enabled && state->duty_cycle < s2.duty_cycle) 454 dev_warn(chip->dev, 455 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n", 456 state->duty_cycle, state->period, 457 s2.duty_cycle, s2.period); 458 459 if (!state->enabled && s2.enabled && s2.duty_cycle > 0) 460 dev_warn(chip->dev, 461 "requested disabled, but yielded enabled with duty > 0\n"); 462 463 /* reapply the state that the driver reported being configured. */ 464 err = chip->ops->apply(chip, pwm, &s1); 465 trace_pwm_apply(pwm, &s1, err); 466 if (err) { 467 *last = s1; 468 dev_err(chip->dev, "failed to reapply current setting\n"); 469 return; 470 } 471 472 *last = (struct pwm_state){ 0 }; 473 err = chip->ops->get_state(chip, pwm, last); 474 trace_pwm_get(pwm, last, err); 475 if (err) 476 return; 477 478 /* reapplication of the current state should give an exact match */ 479 if (s1.enabled != last->enabled || 480 s1.polarity != last->polarity || 481 (s1.enabled && s1.period != last->period) || 482 (s1.enabled && s1.duty_cycle != last->duty_cycle)) { 483 dev_err(chip->dev, 484 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n", 485 s1.enabled, s1.polarity, s1.duty_cycle, s1.period, 486 last->enabled, last->polarity, last->duty_cycle, 487 last->period); 488 } 489 } 490 491 /** 492 * pwm_apply_state() - atomically apply a new state to a PWM device 493 * @pwm: PWM device 494 * @state: new state to apply 495 */ 496 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state) 497 { 498 struct pwm_chip *chip; 499 int err; 500 501 /* 502 * Some lowlevel driver's implementations of .apply() make use of 503 * mutexes, also with some drivers only returning when the new 504 * configuration is active calling pwm_apply_state() from atomic context 505 * is a bad idea. So make it explicit that calling this function might 506 * sleep. 507 */ 508 might_sleep(); 509 510 if (!pwm || !state || !state->period || 511 state->duty_cycle > state->period) 512 return -EINVAL; 513 514 chip = pwm->chip; 515 516 if (state->period == pwm->state.period && 517 state->duty_cycle == pwm->state.duty_cycle && 518 state->polarity == pwm->state.polarity && 519 state->enabled == pwm->state.enabled && 520 state->usage_power == pwm->state.usage_power) 521 return 0; 522 523 err = chip->ops->apply(chip, pwm, state); 524 trace_pwm_apply(pwm, state, err); 525 if (err) 526 return err; 527 528 pwm->state = *state; 529 530 /* 531 * only do this after pwm->state was applied as some 532 * implementations of .get_state depend on this 533 */ 534 pwm_apply_state_debug(pwm, state); 535 536 return 0; 537 } 538 EXPORT_SYMBOL_GPL(pwm_apply_state); 539 540 /** 541 * pwm_capture() - capture and report a PWM signal 542 * @pwm: PWM device 543 * @result: structure to fill with capture result 544 * @timeout: time to wait, in milliseconds, before giving up on capture 545 * 546 * Returns: 0 on success or a negative error code on failure. 547 */ 548 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result, 549 unsigned long timeout) 550 { 551 int err; 552 553 if (!pwm || !pwm->chip->ops) 554 return -EINVAL; 555 556 if (!pwm->chip->ops->capture) 557 return -ENOSYS; 558 559 mutex_lock(&pwm_lock); 560 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout); 561 mutex_unlock(&pwm_lock); 562 563 return err; 564 } 565 EXPORT_SYMBOL_GPL(pwm_capture); 566 567 /** 568 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments 569 * @pwm: PWM device 570 * 571 * This function will adjust the PWM config to the PWM arguments provided 572 * by the DT or PWM lookup table. This is particularly useful to adapt 573 * the bootloader config to the Linux one. 574 */ 575 int pwm_adjust_config(struct pwm_device *pwm) 576 { 577 struct pwm_state state; 578 struct pwm_args pargs; 579 580 pwm_get_args(pwm, &pargs); 581 pwm_get_state(pwm, &state); 582 583 /* 584 * If the current period is zero it means that either the PWM driver 585 * does not support initial state retrieval or the PWM has not yet 586 * been configured. 587 * 588 * In either case, we setup the new period and polarity, and assign a 589 * duty cycle of 0. 590 */ 591 if (!state.period) { 592 state.duty_cycle = 0; 593 state.period = pargs.period; 594 state.polarity = pargs.polarity; 595 596 return pwm_apply_state(pwm, &state); 597 } 598 599 /* 600 * Adjust the PWM duty cycle/period based on the period value provided 601 * in PWM args. 602 */ 603 if (pargs.period != state.period) { 604 u64 dutycycle = (u64)state.duty_cycle * pargs.period; 605 606 do_div(dutycycle, state.period); 607 state.duty_cycle = dutycycle; 608 state.period = pargs.period; 609 } 610 611 /* 612 * If the polarity changed, we should also change the duty cycle. 613 */ 614 if (pargs.polarity != state.polarity) { 615 state.polarity = pargs.polarity; 616 state.duty_cycle = state.period - state.duty_cycle; 617 } 618 619 return pwm_apply_state(pwm, &state); 620 } 621 EXPORT_SYMBOL_GPL(pwm_adjust_config); 622 623 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode) 624 { 625 struct pwm_chip *chip; 626 627 mutex_lock(&pwm_lock); 628 629 list_for_each_entry(chip, &pwm_chips, list) 630 if (chip->dev && device_match_fwnode(chip->dev, fwnode)) { 631 mutex_unlock(&pwm_lock); 632 return chip; 633 } 634 635 mutex_unlock(&pwm_lock); 636 637 return ERR_PTR(-EPROBE_DEFER); 638 } 639 640 static struct device_link *pwm_device_link_add(struct device *dev, 641 struct pwm_device *pwm) 642 { 643 struct device_link *dl; 644 645 if (!dev) { 646 /* 647 * No device for the PWM consumer has been provided. It may 648 * impact the PM sequence ordering: the PWM supplier may get 649 * suspended before the consumer. 650 */ 651 dev_warn(pwm->chip->dev, 652 "No consumer device specified to create a link to\n"); 653 return NULL; 654 } 655 656 dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER); 657 if (!dl) { 658 dev_err(dev, "failed to create device link to %s\n", 659 dev_name(pwm->chip->dev)); 660 return ERR_PTR(-EINVAL); 661 } 662 663 return dl; 664 } 665 666 /** 667 * of_pwm_get() - request a PWM via the PWM framework 668 * @dev: device for PWM consumer 669 * @np: device node to get the PWM from 670 * @con_id: consumer name 671 * 672 * Returns the PWM device parsed from the phandle and index specified in the 673 * "pwms" property of a device tree node or a negative error-code on failure. 674 * Values parsed from the device tree are stored in the returned PWM device 675 * object. 676 * 677 * If con_id is NULL, the first PWM device listed in the "pwms" property will 678 * be requested. Otherwise the "pwm-names" property is used to do a reverse 679 * lookup of the PWM index. This also means that the "pwm-names" property 680 * becomes mandatory for devices that look up the PWM device via the con_id 681 * parameter. 682 * 683 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 684 * error code on failure. 685 */ 686 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np, 687 const char *con_id) 688 { 689 struct pwm_device *pwm = NULL; 690 struct of_phandle_args args; 691 struct device_link *dl; 692 struct pwm_chip *chip; 693 int index = 0; 694 int err; 695 696 if (con_id) { 697 index = of_property_match_string(np, "pwm-names", con_id); 698 if (index < 0) 699 return ERR_PTR(index); 700 } 701 702 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index, 703 &args); 704 if (err) { 705 pr_err("%s(): can't parse \"pwms\" property\n", __func__); 706 return ERR_PTR(err); 707 } 708 709 chip = fwnode_to_pwmchip(of_fwnode_handle(args.np)); 710 if (IS_ERR(chip)) { 711 if (PTR_ERR(chip) != -EPROBE_DEFER) 712 pr_err("%s(): PWM chip not found\n", __func__); 713 714 pwm = ERR_CAST(chip); 715 goto put; 716 } 717 718 pwm = chip->of_xlate(chip, &args); 719 if (IS_ERR(pwm)) 720 goto put; 721 722 dl = pwm_device_link_add(dev, pwm); 723 if (IS_ERR(dl)) { 724 /* of_xlate ended up calling pwm_request_from_chip() */ 725 pwm_put(pwm); 726 pwm = ERR_CAST(dl); 727 goto put; 728 } 729 730 /* 731 * If a consumer name was not given, try to look it up from the 732 * "pwm-names" property if it exists. Otherwise use the name of 733 * the user device node. 734 */ 735 if (!con_id) { 736 err = of_property_read_string_index(np, "pwm-names", index, 737 &con_id); 738 if (err < 0) 739 con_id = np->name; 740 } 741 742 pwm->label = con_id; 743 744 put: 745 of_node_put(args.np); 746 747 return pwm; 748 } 749 750 /** 751 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI 752 * @fwnode: firmware node to get the "pwms" property from 753 * 754 * Returns the PWM device parsed from the fwnode and index specified in the 755 * "pwms" property or a negative error-code on failure. 756 * Values parsed from the device tree are stored in the returned PWM device 757 * object. 758 * 759 * This is analogous to of_pwm_get() except con_id is not yet supported. 760 * ACPI entries must look like 761 * Package () {"pwms", Package () 762 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}} 763 * 764 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 765 * error code on failure. 766 */ 767 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode) 768 { 769 struct pwm_device *pwm; 770 struct fwnode_reference_args args; 771 struct pwm_chip *chip; 772 int ret; 773 774 memset(&args, 0, sizeof(args)); 775 776 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args); 777 if (ret < 0) 778 return ERR_PTR(ret); 779 780 if (args.nargs < 2) 781 return ERR_PTR(-EPROTO); 782 783 chip = fwnode_to_pwmchip(args.fwnode); 784 if (IS_ERR(chip)) 785 return ERR_CAST(chip); 786 787 pwm = pwm_request_from_chip(chip, args.args[0], NULL); 788 if (IS_ERR(pwm)) 789 return pwm; 790 791 pwm->args.period = args.args[1]; 792 pwm->args.polarity = PWM_POLARITY_NORMAL; 793 794 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED) 795 pwm->args.polarity = PWM_POLARITY_INVERSED; 796 797 return pwm; 798 } 799 800 /** 801 * pwm_add_table() - register PWM device consumers 802 * @table: array of consumers to register 803 * @num: number of consumers in table 804 */ 805 void pwm_add_table(struct pwm_lookup *table, size_t num) 806 { 807 mutex_lock(&pwm_lookup_lock); 808 809 while (num--) { 810 list_add_tail(&table->list, &pwm_lookup_list); 811 table++; 812 } 813 814 mutex_unlock(&pwm_lookup_lock); 815 } 816 817 /** 818 * pwm_remove_table() - unregister PWM device consumers 819 * @table: array of consumers to unregister 820 * @num: number of consumers in table 821 */ 822 void pwm_remove_table(struct pwm_lookup *table, size_t num) 823 { 824 mutex_lock(&pwm_lookup_lock); 825 826 while (num--) { 827 list_del(&table->list); 828 table++; 829 } 830 831 mutex_unlock(&pwm_lookup_lock); 832 } 833 834 /** 835 * pwm_get() - look up and request a PWM device 836 * @dev: device for PWM consumer 837 * @con_id: consumer name 838 * 839 * Lookup is first attempted using DT. If the device was not instantiated from 840 * a device tree, a PWM chip and a relative index is looked up via a table 841 * supplied by board setup code (see pwm_add_table()). 842 * 843 * Once a PWM chip has been found the specified PWM device will be requested 844 * and is ready to be used. 845 * 846 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 847 * error code on failure. 848 */ 849 struct pwm_device *pwm_get(struct device *dev, const char *con_id) 850 { 851 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 852 const char *dev_id = dev ? dev_name(dev) : NULL; 853 struct pwm_device *pwm; 854 struct pwm_chip *chip; 855 struct device_link *dl; 856 unsigned int best = 0; 857 struct pwm_lookup *p, *chosen = NULL; 858 unsigned int match; 859 int err; 860 861 /* look up via DT first */ 862 if (is_of_node(fwnode)) 863 return of_pwm_get(dev, to_of_node(fwnode), con_id); 864 865 /* then lookup via ACPI */ 866 if (is_acpi_node(fwnode)) { 867 pwm = acpi_pwm_get(fwnode); 868 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT) 869 return pwm; 870 } 871 872 /* 873 * We look up the provider in the static table typically provided by 874 * board setup code. We first try to lookup the consumer device by 875 * name. If the consumer device was passed in as NULL or if no match 876 * was found, we try to find the consumer by directly looking it up 877 * by name. 878 * 879 * If a match is found, the provider PWM chip is looked up by name 880 * and a PWM device is requested using the PWM device per-chip index. 881 * 882 * The lookup algorithm was shamelessly taken from the clock 883 * framework: 884 * 885 * We do slightly fuzzy matching here: 886 * An entry with a NULL ID is assumed to be a wildcard. 887 * If an entry has a device ID, it must match 888 * If an entry has a connection ID, it must match 889 * Then we take the most specific entry - with the following order 890 * of precedence: dev+con > dev only > con only. 891 */ 892 mutex_lock(&pwm_lookup_lock); 893 894 list_for_each_entry(p, &pwm_lookup_list, list) { 895 match = 0; 896 897 if (p->dev_id) { 898 if (!dev_id || strcmp(p->dev_id, dev_id)) 899 continue; 900 901 match += 2; 902 } 903 904 if (p->con_id) { 905 if (!con_id || strcmp(p->con_id, con_id)) 906 continue; 907 908 match += 1; 909 } 910 911 if (match > best) { 912 chosen = p; 913 914 if (match != 3) 915 best = match; 916 else 917 break; 918 } 919 } 920 921 mutex_unlock(&pwm_lookup_lock); 922 923 if (!chosen) 924 return ERR_PTR(-ENODEV); 925 926 chip = pwmchip_find_by_name(chosen->provider); 927 928 /* 929 * If the lookup entry specifies a module, load the module and retry 930 * the PWM chip lookup. This can be used to work around driver load 931 * ordering issues if driver's can't be made to properly support the 932 * deferred probe mechanism. 933 */ 934 if (!chip && chosen->module) { 935 err = request_module(chosen->module); 936 if (err == 0) 937 chip = pwmchip_find_by_name(chosen->provider); 938 } 939 940 if (!chip) 941 return ERR_PTR(-EPROBE_DEFER); 942 943 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id); 944 if (IS_ERR(pwm)) 945 return pwm; 946 947 dl = pwm_device_link_add(dev, pwm); 948 if (IS_ERR(dl)) { 949 pwm_put(pwm); 950 return ERR_CAST(dl); 951 } 952 953 pwm->args.period = chosen->period; 954 pwm->args.polarity = chosen->polarity; 955 956 return pwm; 957 } 958 EXPORT_SYMBOL_GPL(pwm_get); 959 960 /** 961 * pwm_put() - release a PWM device 962 * @pwm: PWM device 963 */ 964 void pwm_put(struct pwm_device *pwm) 965 { 966 if (!pwm) 967 return; 968 969 mutex_lock(&pwm_lock); 970 971 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 972 pr_warn("PWM device already freed\n"); 973 goto out; 974 } 975 976 if (pwm->chip->ops->free) 977 pwm->chip->ops->free(pwm->chip, pwm); 978 979 pwm_set_chip_data(pwm, NULL); 980 pwm->label = NULL; 981 982 module_put(pwm->chip->ops->owner); 983 out: 984 mutex_unlock(&pwm_lock); 985 } 986 EXPORT_SYMBOL_GPL(pwm_put); 987 988 static void devm_pwm_release(void *pwm) 989 { 990 pwm_put(pwm); 991 } 992 993 /** 994 * devm_pwm_get() - resource managed pwm_get() 995 * @dev: device for PWM consumer 996 * @con_id: consumer name 997 * 998 * This function performs like pwm_get() but the acquired PWM device will 999 * automatically be released on driver detach. 1000 * 1001 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1002 * error code on failure. 1003 */ 1004 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id) 1005 { 1006 struct pwm_device *pwm; 1007 int ret; 1008 1009 pwm = pwm_get(dev, con_id); 1010 if (IS_ERR(pwm)) 1011 return pwm; 1012 1013 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 1014 if (ret) 1015 return ERR_PTR(ret); 1016 1017 return pwm; 1018 } 1019 EXPORT_SYMBOL_GPL(devm_pwm_get); 1020 1021 /** 1022 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node 1023 * @dev: device for PWM consumer 1024 * @fwnode: firmware node to get the PWM from 1025 * @con_id: consumer name 1026 * 1027 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and 1028 * acpi_pwm_get() for a detailed description. 1029 * 1030 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1031 * error code on failure. 1032 */ 1033 struct pwm_device *devm_fwnode_pwm_get(struct device *dev, 1034 struct fwnode_handle *fwnode, 1035 const char *con_id) 1036 { 1037 struct pwm_device *pwm = ERR_PTR(-ENODEV); 1038 int ret; 1039 1040 if (is_of_node(fwnode)) 1041 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id); 1042 else if (is_acpi_node(fwnode)) 1043 pwm = acpi_pwm_get(fwnode); 1044 if (IS_ERR(pwm)) 1045 return pwm; 1046 1047 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 1048 if (ret) 1049 return ERR_PTR(ret); 1050 1051 return pwm; 1052 } 1053 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get); 1054 1055 #ifdef CONFIG_DEBUG_FS 1056 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s) 1057 { 1058 unsigned int i; 1059 1060 for (i = 0; i < chip->npwm; i++) { 1061 struct pwm_device *pwm = &chip->pwms[i]; 1062 struct pwm_state state; 1063 1064 pwm_get_state(pwm, &state); 1065 1066 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label); 1067 1068 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 1069 seq_puts(s, " requested"); 1070 1071 if (state.enabled) 1072 seq_puts(s, " enabled"); 1073 1074 seq_printf(s, " period: %llu ns", state.period); 1075 seq_printf(s, " duty: %llu ns", state.duty_cycle); 1076 seq_printf(s, " polarity: %s", 1077 state.polarity ? "inverse" : "normal"); 1078 1079 if (state.usage_power) 1080 seq_puts(s, " usage_power"); 1081 1082 seq_puts(s, "\n"); 1083 } 1084 } 1085 1086 static void *pwm_seq_start(struct seq_file *s, loff_t *pos) 1087 { 1088 mutex_lock(&pwm_lock); 1089 s->private = ""; 1090 1091 return seq_list_start(&pwm_chips, *pos); 1092 } 1093 1094 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos) 1095 { 1096 s->private = "\n"; 1097 1098 return seq_list_next(v, &pwm_chips, pos); 1099 } 1100 1101 static void pwm_seq_stop(struct seq_file *s, void *v) 1102 { 1103 mutex_unlock(&pwm_lock); 1104 } 1105 1106 static int pwm_seq_show(struct seq_file *s, void *v) 1107 { 1108 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list); 1109 1110 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private, 1111 chip->dev->bus ? chip->dev->bus->name : "no-bus", 1112 dev_name(chip->dev), chip->npwm, 1113 (chip->npwm != 1) ? "s" : ""); 1114 1115 pwm_dbg_show(chip, s); 1116 1117 return 0; 1118 } 1119 1120 static const struct seq_operations pwm_debugfs_sops = { 1121 .start = pwm_seq_start, 1122 .next = pwm_seq_next, 1123 .stop = pwm_seq_stop, 1124 .show = pwm_seq_show, 1125 }; 1126 1127 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs); 1128 1129 static int __init pwm_debugfs_init(void) 1130 { 1131 debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops); 1132 1133 return 0; 1134 } 1135 subsys_initcall(pwm_debugfs_init); 1136 #endif /* CONFIG_DEBUG_FS */ 1137