xref: /openbmc/linux/drivers/pwm/core.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20 
21 #include <dt-bindings/pwm/pwm.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
25 
26 #define MAX_PWMS 1024
27 
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30 static DEFINE_MUTEX(pwm_lock);
31 static LIST_HEAD(pwm_chips);
32 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
33 static RADIX_TREE(pwm_tree, GFP_KERNEL);
34 
35 static struct pwm_device *pwm_to_device(unsigned int pwm)
36 {
37 	return radix_tree_lookup(&pwm_tree, pwm);
38 }
39 
40 static int alloc_pwms(int pwm, unsigned int count)
41 {
42 	unsigned int from = 0;
43 	unsigned int start;
44 
45 	if (pwm >= MAX_PWMS)
46 		return -EINVAL;
47 
48 	if (pwm >= 0)
49 		from = pwm;
50 
51 	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
52 					   count, 0);
53 
54 	if (pwm >= 0 && start != pwm)
55 		return -EEXIST;
56 
57 	if (start + count > MAX_PWMS)
58 		return -ENOSPC;
59 
60 	return start;
61 }
62 
63 static void free_pwms(struct pwm_chip *chip)
64 {
65 	unsigned int i;
66 
67 	for (i = 0; i < chip->npwm; i++) {
68 		struct pwm_device *pwm = &chip->pwms[i];
69 
70 		radix_tree_delete(&pwm_tree, pwm->pwm);
71 	}
72 
73 	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
74 
75 	kfree(chip->pwms);
76 	chip->pwms = NULL;
77 }
78 
79 static struct pwm_chip *pwmchip_find_by_name(const char *name)
80 {
81 	struct pwm_chip *chip;
82 
83 	if (!name)
84 		return NULL;
85 
86 	mutex_lock(&pwm_lock);
87 
88 	list_for_each_entry(chip, &pwm_chips, list) {
89 		const char *chip_name = dev_name(chip->dev);
90 
91 		if (chip_name && strcmp(chip_name, name) == 0) {
92 			mutex_unlock(&pwm_lock);
93 			return chip;
94 		}
95 	}
96 
97 	mutex_unlock(&pwm_lock);
98 
99 	return NULL;
100 }
101 
102 static int pwm_device_request(struct pwm_device *pwm, const char *label)
103 {
104 	int err;
105 
106 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
107 		return -EBUSY;
108 
109 	if (!try_module_get(pwm->chip->ops->owner))
110 		return -ENODEV;
111 
112 	if (pwm->chip->ops->request) {
113 		err = pwm->chip->ops->request(pwm->chip, pwm);
114 		if (err) {
115 			module_put(pwm->chip->ops->owner);
116 			return err;
117 		}
118 	}
119 
120 	if (pwm->chip->ops->get_state) {
121 		pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
122 		trace_pwm_get(pwm, &pwm->state);
123 	}
124 
125 	set_bit(PWMF_REQUESTED, &pwm->flags);
126 	pwm->label = label;
127 
128 	return 0;
129 }
130 
131 struct pwm_device *
132 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
133 {
134 	struct pwm_device *pwm;
135 
136 	/* check, whether the driver supports a third cell for flags */
137 	if (pc->of_pwm_n_cells < 3)
138 		return ERR_PTR(-EINVAL);
139 
140 	/* flags in the third cell are optional */
141 	if (args->args_count < 2)
142 		return ERR_PTR(-EINVAL);
143 
144 	if (args->args[0] >= pc->npwm)
145 		return ERR_PTR(-EINVAL);
146 
147 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
148 	if (IS_ERR(pwm))
149 		return pwm;
150 
151 	pwm->args.period = args->args[1];
152 	pwm->args.polarity = PWM_POLARITY_NORMAL;
153 
154 	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
155 		pwm->args.polarity = PWM_POLARITY_INVERSED;
156 
157 	return pwm;
158 }
159 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
160 
161 static struct pwm_device *
162 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
163 {
164 	struct pwm_device *pwm;
165 
166 	/* sanity check driver support */
167 	if (pc->of_pwm_n_cells < 2)
168 		return ERR_PTR(-EINVAL);
169 
170 	/* all cells are required */
171 	if (args->args_count != pc->of_pwm_n_cells)
172 		return ERR_PTR(-EINVAL);
173 
174 	if (args->args[0] >= pc->npwm)
175 		return ERR_PTR(-EINVAL);
176 
177 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
178 	if (IS_ERR(pwm))
179 		return pwm;
180 
181 	pwm->args.period = args->args[1];
182 
183 	return pwm;
184 }
185 
186 static void of_pwmchip_add(struct pwm_chip *chip)
187 {
188 	if (!chip->dev || !chip->dev->of_node)
189 		return;
190 
191 	if (!chip->of_xlate) {
192 		chip->of_xlate = of_pwm_simple_xlate;
193 		chip->of_pwm_n_cells = 2;
194 	}
195 
196 	of_node_get(chip->dev->of_node);
197 }
198 
199 static void of_pwmchip_remove(struct pwm_chip *chip)
200 {
201 	if (chip->dev)
202 		of_node_put(chip->dev->of_node);
203 }
204 
205 /**
206  * pwm_set_chip_data() - set private chip data for a PWM
207  * @pwm: PWM device
208  * @data: pointer to chip-specific data
209  *
210  * Returns: 0 on success or a negative error code on failure.
211  */
212 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
213 {
214 	if (!pwm)
215 		return -EINVAL;
216 
217 	pwm->chip_data = data;
218 
219 	return 0;
220 }
221 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
222 
223 /**
224  * pwm_get_chip_data() - get private chip data for a PWM
225  * @pwm: PWM device
226  *
227  * Returns: A pointer to the chip-private data for the PWM device.
228  */
229 void *pwm_get_chip_data(struct pwm_device *pwm)
230 {
231 	return pwm ? pwm->chip_data : NULL;
232 }
233 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
234 
235 static bool pwm_ops_check(const struct pwm_ops *ops)
236 {
237 	/* driver supports legacy, non-atomic operation */
238 	if (ops->config && ops->enable && ops->disable)
239 		return true;
240 
241 	/* driver supports atomic operation */
242 	if (ops->apply)
243 		return true;
244 
245 	return false;
246 }
247 
248 /**
249  * pwmchip_add_with_polarity() - register a new PWM chip
250  * @chip: the PWM chip to add
251  * @polarity: initial polarity of PWM channels
252  *
253  * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
254  * will be used. The initial polarity for all channels is specified by the
255  * @polarity parameter.
256  *
257  * Returns: 0 on success or a negative error code on failure.
258  */
259 int pwmchip_add_with_polarity(struct pwm_chip *chip,
260 			      enum pwm_polarity polarity)
261 {
262 	struct pwm_device *pwm;
263 	unsigned int i;
264 	int ret;
265 
266 	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
267 		return -EINVAL;
268 
269 	if (!pwm_ops_check(chip->ops))
270 		return -EINVAL;
271 
272 	mutex_lock(&pwm_lock);
273 
274 	ret = alloc_pwms(chip->base, chip->npwm);
275 	if (ret < 0)
276 		goto out;
277 
278 	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
279 	if (!chip->pwms) {
280 		ret = -ENOMEM;
281 		goto out;
282 	}
283 
284 	chip->base = ret;
285 
286 	for (i = 0; i < chip->npwm; i++) {
287 		pwm = &chip->pwms[i];
288 
289 		pwm->chip = chip;
290 		pwm->pwm = chip->base + i;
291 		pwm->hwpwm = i;
292 		pwm->state.polarity = polarity;
293 
294 		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
295 	}
296 
297 	bitmap_set(allocated_pwms, chip->base, chip->npwm);
298 
299 	INIT_LIST_HEAD(&chip->list);
300 	list_add(&chip->list, &pwm_chips);
301 
302 	ret = 0;
303 
304 	if (IS_ENABLED(CONFIG_OF))
305 		of_pwmchip_add(chip);
306 
307 out:
308 	mutex_unlock(&pwm_lock);
309 
310 	if (!ret)
311 		pwmchip_sysfs_export(chip);
312 
313 	return ret;
314 }
315 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
316 
317 /**
318  * pwmchip_add() - register a new PWM chip
319  * @chip: the PWM chip to add
320  *
321  * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
322  * will be used. The initial polarity for all channels is normal.
323  *
324  * Returns: 0 on success or a negative error code on failure.
325  */
326 int pwmchip_add(struct pwm_chip *chip)
327 {
328 	return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
329 }
330 EXPORT_SYMBOL_GPL(pwmchip_add);
331 
332 /**
333  * pwmchip_remove() - remove a PWM chip
334  * @chip: the PWM chip to remove
335  *
336  * Removes a PWM chip. This function may return busy if the PWM chip provides
337  * a PWM device that is still requested.
338  *
339  * Returns: 0 on success or a negative error code on failure.
340  */
341 int pwmchip_remove(struct pwm_chip *chip)
342 {
343 	unsigned int i;
344 	int ret = 0;
345 
346 	pwmchip_sysfs_unexport(chip);
347 
348 	mutex_lock(&pwm_lock);
349 
350 	for (i = 0; i < chip->npwm; i++) {
351 		struct pwm_device *pwm = &chip->pwms[i];
352 
353 		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
354 			ret = -EBUSY;
355 			goto out;
356 		}
357 	}
358 
359 	list_del_init(&chip->list);
360 
361 	if (IS_ENABLED(CONFIG_OF))
362 		of_pwmchip_remove(chip);
363 
364 	free_pwms(chip);
365 
366 out:
367 	mutex_unlock(&pwm_lock);
368 	return ret;
369 }
370 EXPORT_SYMBOL_GPL(pwmchip_remove);
371 
372 /**
373  * pwm_request() - request a PWM device
374  * @pwm: global PWM device index
375  * @label: PWM device label
376  *
377  * This function is deprecated, use pwm_get() instead.
378  *
379  * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
380  * failure.
381  */
382 struct pwm_device *pwm_request(int pwm, const char *label)
383 {
384 	struct pwm_device *dev;
385 	int err;
386 
387 	if (pwm < 0 || pwm >= MAX_PWMS)
388 		return ERR_PTR(-EINVAL);
389 
390 	mutex_lock(&pwm_lock);
391 
392 	dev = pwm_to_device(pwm);
393 	if (!dev) {
394 		dev = ERR_PTR(-EPROBE_DEFER);
395 		goto out;
396 	}
397 
398 	err = pwm_device_request(dev, label);
399 	if (err < 0)
400 		dev = ERR_PTR(err);
401 
402 out:
403 	mutex_unlock(&pwm_lock);
404 
405 	return dev;
406 }
407 EXPORT_SYMBOL_GPL(pwm_request);
408 
409 /**
410  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
411  * @chip: PWM chip
412  * @index: per-chip index of the PWM to request
413  * @label: a literal description string of this PWM
414  *
415  * Returns: A pointer to the PWM device at the given index of the given PWM
416  * chip. A negative error code is returned if the index is not valid for the
417  * specified PWM chip or if the PWM device cannot be requested.
418  */
419 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
420 					 unsigned int index,
421 					 const char *label)
422 {
423 	struct pwm_device *pwm;
424 	int err;
425 
426 	if (!chip || index >= chip->npwm)
427 		return ERR_PTR(-EINVAL);
428 
429 	mutex_lock(&pwm_lock);
430 	pwm = &chip->pwms[index];
431 
432 	err = pwm_device_request(pwm, label);
433 	if (err < 0)
434 		pwm = ERR_PTR(err);
435 
436 	mutex_unlock(&pwm_lock);
437 	return pwm;
438 }
439 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
440 
441 /**
442  * pwm_free() - free a PWM device
443  * @pwm: PWM device
444  *
445  * This function is deprecated, use pwm_put() instead.
446  */
447 void pwm_free(struct pwm_device *pwm)
448 {
449 	pwm_put(pwm);
450 }
451 EXPORT_SYMBOL_GPL(pwm_free);
452 
453 /**
454  * pwm_apply_state() - atomically apply a new state to a PWM device
455  * @pwm: PWM device
456  * @state: new state to apply
457  */
458 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
459 {
460 	struct pwm_chip *chip;
461 	int err;
462 
463 	if (!pwm || !state || !state->period ||
464 	    state->duty_cycle > state->period)
465 		return -EINVAL;
466 
467 	chip = pwm->chip;
468 
469 	if (state->period == pwm->state.period &&
470 	    state->duty_cycle == pwm->state.duty_cycle &&
471 	    state->polarity == pwm->state.polarity &&
472 	    state->enabled == pwm->state.enabled)
473 		return 0;
474 
475 	if (chip->ops->apply) {
476 		err = chip->ops->apply(chip, pwm, state);
477 		if (err)
478 			return err;
479 
480 		trace_pwm_apply(pwm, state);
481 
482 		pwm->state = *state;
483 	} else {
484 		/*
485 		 * FIXME: restore the initial state in case of error.
486 		 */
487 		if (state->polarity != pwm->state.polarity) {
488 			if (!chip->ops->set_polarity)
489 				return -ENOTSUPP;
490 
491 			/*
492 			 * Changing the polarity of a running PWM is
493 			 * only allowed when the PWM driver implements
494 			 * ->apply().
495 			 */
496 			if (pwm->state.enabled) {
497 				chip->ops->disable(chip, pwm);
498 				pwm->state.enabled = false;
499 			}
500 
501 			err = chip->ops->set_polarity(chip, pwm,
502 						      state->polarity);
503 			if (err)
504 				return err;
505 
506 			pwm->state.polarity = state->polarity;
507 		}
508 
509 		if (state->period != pwm->state.period ||
510 		    state->duty_cycle != pwm->state.duty_cycle) {
511 			err = chip->ops->config(pwm->chip, pwm,
512 						state->duty_cycle,
513 						state->period);
514 			if (err)
515 				return err;
516 
517 			pwm->state.duty_cycle = state->duty_cycle;
518 			pwm->state.period = state->period;
519 		}
520 
521 		if (state->enabled != pwm->state.enabled) {
522 			if (state->enabled) {
523 				err = chip->ops->enable(chip, pwm);
524 				if (err)
525 					return err;
526 			} else {
527 				chip->ops->disable(chip, pwm);
528 			}
529 
530 			pwm->state.enabled = state->enabled;
531 		}
532 	}
533 
534 	return 0;
535 }
536 EXPORT_SYMBOL_GPL(pwm_apply_state);
537 
538 /**
539  * pwm_capture() - capture and report a PWM signal
540  * @pwm: PWM device
541  * @result: structure to fill with capture result
542  * @timeout: time to wait, in milliseconds, before giving up on capture
543  *
544  * Returns: 0 on success or a negative error code on failure.
545  */
546 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
547 		unsigned long timeout)
548 {
549 	int err;
550 
551 	if (!pwm || !pwm->chip->ops)
552 		return -EINVAL;
553 
554 	if (!pwm->chip->ops->capture)
555 		return -ENOSYS;
556 
557 	mutex_lock(&pwm_lock);
558 	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
559 	mutex_unlock(&pwm_lock);
560 
561 	return err;
562 }
563 EXPORT_SYMBOL_GPL(pwm_capture);
564 
565 /**
566  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
567  * @pwm: PWM device
568  *
569  * This function will adjust the PWM config to the PWM arguments provided
570  * by the DT or PWM lookup table. This is particularly useful to adapt
571  * the bootloader config to the Linux one.
572  */
573 int pwm_adjust_config(struct pwm_device *pwm)
574 {
575 	struct pwm_state state;
576 	struct pwm_args pargs;
577 
578 	pwm_get_args(pwm, &pargs);
579 	pwm_get_state(pwm, &state);
580 
581 	/*
582 	 * If the current period is zero it means that either the PWM driver
583 	 * does not support initial state retrieval or the PWM has not yet
584 	 * been configured.
585 	 *
586 	 * In either case, we setup the new period and polarity, and assign a
587 	 * duty cycle of 0.
588 	 */
589 	if (!state.period) {
590 		state.duty_cycle = 0;
591 		state.period = pargs.period;
592 		state.polarity = pargs.polarity;
593 
594 		return pwm_apply_state(pwm, &state);
595 	}
596 
597 	/*
598 	 * Adjust the PWM duty cycle/period based on the period value provided
599 	 * in PWM args.
600 	 */
601 	if (pargs.period != state.period) {
602 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
603 
604 		do_div(dutycycle, state.period);
605 		state.duty_cycle = dutycycle;
606 		state.period = pargs.period;
607 	}
608 
609 	/*
610 	 * If the polarity changed, we should also change the duty cycle.
611 	 */
612 	if (pargs.polarity != state.polarity) {
613 		state.polarity = pargs.polarity;
614 		state.duty_cycle = state.period - state.duty_cycle;
615 	}
616 
617 	return pwm_apply_state(pwm, &state);
618 }
619 EXPORT_SYMBOL_GPL(pwm_adjust_config);
620 
621 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
622 {
623 	struct pwm_chip *chip;
624 
625 	mutex_lock(&pwm_lock);
626 
627 	list_for_each_entry(chip, &pwm_chips, list)
628 		if (chip->dev && chip->dev->of_node == np) {
629 			mutex_unlock(&pwm_lock);
630 			return chip;
631 		}
632 
633 	mutex_unlock(&pwm_lock);
634 
635 	return ERR_PTR(-EPROBE_DEFER);
636 }
637 
638 static struct device_link *pwm_device_link_add(struct device *dev,
639 					       struct pwm_device *pwm)
640 {
641 	struct device_link *dl;
642 
643 	if (!dev) {
644 		/*
645 		 * No device for the PWM consumer has been provided. It may
646 		 * impact the PM sequence ordering: the PWM supplier may get
647 		 * suspended before the consumer.
648 		 */
649 		dev_warn(pwm->chip->dev,
650 			 "No consumer device specified to create a link to\n");
651 		return NULL;
652 	}
653 
654 	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
655 	if (!dl) {
656 		dev_err(dev, "failed to create device link to %s\n",
657 			dev_name(pwm->chip->dev));
658 		return ERR_PTR(-EINVAL);
659 	}
660 
661 	return dl;
662 }
663 
664 /**
665  * of_pwm_get() - request a PWM via the PWM framework
666  * @dev: device for PWM consumer
667  * @np: device node to get the PWM from
668  * @con_id: consumer name
669  *
670  * Returns the PWM device parsed from the phandle and index specified in the
671  * "pwms" property of a device tree node or a negative error-code on failure.
672  * Values parsed from the device tree are stored in the returned PWM device
673  * object.
674  *
675  * If con_id is NULL, the first PWM device listed in the "pwms" property will
676  * be requested. Otherwise the "pwm-names" property is used to do a reverse
677  * lookup of the PWM index. This also means that the "pwm-names" property
678  * becomes mandatory for devices that look up the PWM device via the con_id
679  * parameter.
680  *
681  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
682  * error code on failure.
683  */
684 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
685 			      const char *con_id)
686 {
687 	struct pwm_device *pwm = NULL;
688 	struct of_phandle_args args;
689 	struct device_link *dl;
690 	struct pwm_chip *pc;
691 	int index = 0;
692 	int err;
693 
694 	if (con_id) {
695 		index = of_property_match_string(np, "pwm-names", con_id);
696 		if (index < 0)
697 			return ERR_PTR(index);
698 	}
699 
700 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
701 					 &args);
702 	if (err) {
703 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
704 		return ERR_PTR(err);
705 	}
706 
707 	pc = of_node_to_pwmchip(args.np);
708 	if (IS_ERR(pc)) {
709 		if (PTR_ERR(pc) != -EPROBE_DEFER)
710 			pr_err("%s(): PWM chip not found\n", __func__);
711 
712 		pwm = ERR_CAST(pc);
713 		goto put;
714 	}
715 
716 	pwm = pc->of_xlate(pc, &args);
717 	if (IS_ERR(pwm))
718 		goto put;
719 
720 	dl = pwm_device_link_add(dev, pwm);
721 	if (IS_ERR(dl)) {
722 		/* of_xlate ended up calling pwm_request_from_chip() */
723 		pwm_free(pwm);
724 		pwm = ERR_CAST(dl);
725 		goto put;
726 	}
727 
728 	/*
729 	 * If a consumer name was not given, try to look it up from the
730 	 * "pwm-names" property if it exists. Otherwise use the name of
731 	 * the user device node.
732 	 */
733 	if (!con_id) {
734 		err = of_property_read_string_index(np, "pwm-names", index,
735 						    &con_id);
736 		if (err < 0)
737 			con_id = np->name;
738 	}
739 
740 	pwm->label = con_id;
741 
742 put:
743 	of_node_put(args.np);
744 
745 	return pwm;
746 }
747 EXPORT_SYMBOL_GPL(of_pwm_get);
748 
749 #if IS_ENABLED(CONFIG_ACPI)
750 static struct pwm_chip *device_to_pwmchip(struct device *dev)
751 {
752 	struct pwm_chip *chip;
753 
754 	mutex_lock(&pwm_lock);
755 
756 	list_for_each_entry(chip, &pwm_chips, list) {
757 		struct acpi_device *adev = ACPI_COMPANION(chip->dev);
758 
759 		if ((chip->dev == dev) || (adev && &adev->dev == dev)) {
760 			mutex_unlock(&pwm_lock);
761 			return chip;
762 		}
763 	}
764 
765 	mutex_unlock(&pwm_lock);
766 
767 	return ERR_PTR(-EPROBE_DEFER);
768 }
769 #endif
770 
771 /**
772  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
773  * @fwnode: firmware node to get the "pwm" property from
774  *
775  * Returns the PWM device parsed from the fwnode and index specified in the
776  * "pwms" property or a negative error-code on failure.
777  * Values parsed from the device tree are stored in the returned PWM device
778  * object.
779  *
780  * This is analogous to of_pwm_get() except con_id is not yet supported.
781  * ACPI entries must look like
782  * Package () {"pwms", Package ()
783  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
784  *
785  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
786  * error code on failure.
787  */
788 static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode)
789 {
790 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
791 #if IS_ENABLED(CONFIG_ACPI)
792 	struct fwnode_reference_args args;
793 	struct acpi_device *acpi;
794 	struct pwm_chip *chip;
795 	int ret;
796 
797 	memset(&args, 0, sizeof(args));
798 
799 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
800 	if (ret < 0)
801 		return ERR_PTR(ret);
802 
803 	acpi = to_acpi_device_node(args.fwnode);
804 	if (!acpi)
805 		return ERR_PTR(-EINVAL);
806 
807 	if (args.nargs < 2)
808 		return ERR_PTR(-EPROTO);
809 
810 	chip = device_to_pwmchip(&acpi->dev);
811 	if (IS_ERR(chip))
812 		return ERR_CAST(chip);
813 
814 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
815 	if (IS_ERR(pwm))
816 		return pwm;
817 
818 	pwm->args.period = args.args[1];
819 	pwm->args.polarity = PWM_POLARITY_NORMAL;
820 
821 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
822 		pwm->args.polarity = PWM_POLARITY_INVERSED;
823 #endif
824 
825 	return pwm;
826 }
827 
828 /**
829  * pwm_add_table() - register PWM device consumers
830  * @table: array of consumers to register
831  * @num: number of consumers in table
832  */
833 void pwm_add_table(struct pwm_lookup *table, size_t num)
834 {
835 	mutex_lock(&pwm_lookup_lock);
836 
837 	while (num--) {
838 		list_add_tail(&table->list, &pwm_lookup_list);
839 		table++;
840 	}
841 
842 	mutex_unlock(&pwm_lookup_lock);
843 }
844 
845 /**
846  * pwm_remove_table() - unregister PWM device consumers
847  * @table: array of consumers to unregister
848  * @num: number of consumers in table
849  */
850 void pwm_remove_table(struct pwm_lookup *table, size_t num)
851 {
852 	mutex_lock(&pwm_lookup_lock);
853 
854 	while (num--) {
855 		list_del(&table->list);
856 		table++;
857 	}
858 
859 	mutex_unlock(&pwm_lookup_lock);
860 }
861 
862 /**
863  * pwm_get() - look up and request a PWM device
864  * @dev: device for PWM consumer
865  * @con_id: consumer name
866  *
867  * Lookup is first attempted using DT. If the device was not instantiated from
868  * a device tree, a PWM chip and a relative index is looked up via a table
869  * supplied by board setup code (see pwm_add_table()).
870  *
871  * Once a PWM chip has been found the specified PWM device will be requested
872  * and is ready to be used.
873  *
874  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
875  * error code on failure.
876  */
877 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
878 {
879 	const char *dev_id = dev ? dev_name(dev) : NULL;
880 	struct pwm_device *pwm;
881 	struct pwm_chip *chip;
882 	struct device_link *dl;
883 	unsigned int best = 0;
884 	struct pwm_lookup *p, *chosen = NULL;
885 	unsigned int match;
886 	int err;
887 
888 	/* look up via DT first */
889 	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
890 		return of_pwm_get(dev, dev->of_node, con_id);
891 
892 	/* then lookup via ACPI */
893 	if (dev && is_acpi_node(dev->fwnode)) {
894 		pwm = acpi_pwm_get(dev->fwnode);
895 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
896 			return pwm;
897 	}
898 
899 	/*
900 	 * We look up the provider in the static table typically provided by
901 	 * board setup code. We first try to lookup the consumer device by
902 	 * name. If the consumer device was passed in as NULL or if no match
903 	 * was found, we try to find the consumer by directly looking it up
904 	 * by name.
905 	 *
906 	 * If a match is found, the provider PWM chip is looked up by name
907 	 * and a PWM device is requested using the PWM device per-chip index.
908 	 *
909 	 * The lookup algorithm was shamelessly taken from the clock
910 	 * framework:
911 	 *
912 	 * We do slightly fuzzy matching here:
913 	 *  An entry with a NULL ID is assumed to be a wildcard.
914 	 *  If an entry has a device ID, it must match
915 	 *  If an entry has a connection ID, it must match
916 	 * Then we take the most specific entry - with the following order
917 	 * of precedence: dev+con > dev only > con only.
918 	 */
919 	mutex_lock(&pwm_lookup_lock);
920 
921 	list_for_each_entry(p, &pwm_lookup_list, list) {
922 		match = 0;
923 
924 		if (p->dev_id) {
925 			if (!dev_id || strcmp(p->dev_id, dev_id))
926 				continue;
927 
928 			match += 2;
929 		}
930 
931 		if (p->con_id) {
932 			if (!con_id || strcmp(p->con_id, con_id))
933 				continue;
934 
935 			match += 1;
936 		}
937 
938 		if (match > best) {
939 			chosen = p;
940 
941 			if (match != 3)
942 				best = match;
943 			else
944 				break;
945 		}
946 	}
947 
948 	mutex_unlock(&pwm_lookup_lock);
949 
950 	if (!chosen)
951 		return ERR_PTR(-ENODEV);
952 
953 	chip = pwmchip_find_by_name(chosen->provider);
954 
955 	/*
956 	 * If the lookup entry specifies a module, load the module and retry
957 	 * the PWM chip lookup. This can be used to work around driver load
958 	 * ordering issues if driver's can't be made to properly support the
959 	 * deferred probe mechanism.
960 	 */
961 	if (!chip && chosen->module) {
962 		err = request_module(chosen->module);
963 		if (err == 0)
964 			chip = pwmchip_find_by_name(chosen->provider);
965 	}
966 
967 	if (!chip)
968 		return ERR_PTR(-EPROBE_DEFER);
969 
970 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
971 	if (IS_ERR(pwm))
972 		return pwm;
973 
974 	dl = pwm_device_link_add(dev, pwm);
975 	if (IS_ERR(dl)) {
976 		pwm_free(pwm);
977 		return ERR_CAST(dl);
978 	}
979 
980 	pwm->args.period = chosen->period;
981 	pwm->args.polarity = chosen->polarity;
982 
983 	return pwm;
984 }
985 EXPORT_SYMBOL_GPL(pwm_get);
986 
987 /**
988  * pwm_put() - release a PWM device
989  * @pwm: PWM device
990  */
991 void pwm_put(struct pwm_device *pwm)
992 {
993 	if (!pwm)
994 		return;
995 
996 	mutex_lock(&pwm_lock);
997 
998 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
999 		pr_warn("PWM device already freed\n");
1000 		goto out;
1001 	}
1002 
1003 	if (pwm->chip->ops->free)
1004 		pwm->chip->ops->free(pwm->chip, pwm);
1005 
1006 	pwm_set_chip_data(pwm, NULL);
1007 	pwm->label = NULL;
1008 
1009 	module_put(pwm->chip->ops->owner);
1010 out:
1011 	mutex_unlock(&pwm_lock);
1012 }
1013 EXPORT_SYMBOL_GPL(pwm_put);
1014 
1015 static void devm_pwm_release(struct device *dev, void *res)
1016 {
1017 	pwm_put(*(struct pwm_device **)res);
1018 }
1019 
1020 /**
1021  * devm_pwm_get() - resource managed pwm_get()
1022  * @dev: device for PWM consumer
1023  * @con_id: consumer name
1024  *
1025  * This function performs like pwm_get() but the acquired PWM device will
1026  * automatically be released on driver detach.
1027  *
1028  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1029  * error code on failure.
1030  */
1031 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1032 {
1033 	struct pwm_device **ptr, *pwm;
1034 
1035 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1036 	if (!ptr)
1037 		return ERR_PTR(-ENOMEM);
1038 
1039 	pwm = pwm_get(dev, con_id);
1040 	if (!IS_ERR(pwm)) {
1041 		*ptr = pwm;
1042 		devres_add(dev, ptr);
1043 	} else {
1044 		devres_free(ptr);
1045 	}
1046 
1047 	return pwm;
1048 }
1049 EXPORT_SYMBOL_GPL(devm_pwm_get);
1050 
1051 /**
1052  * devm_of_pwm_get() - resource managed of_pwm_get()
1053  * @dev: device for PWM consumer
1054  * @np: device node to get the PWM from
1055  * @con_id: consumer name
1056  *
1057  * This function performs like of_pwm_get() but the acquired PWM device will
1058  * automatically be released on driver detach.
1059  *
1060  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1061  * error code on failure.
1062  */
1063 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1064 				   const char *con_id)
1065 {
1066 	struct pwm_device **ptr, *pwm;
1067 
1068 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1069 	if (!ptr)
1070 		return ERR_PTR(-ENOMEM);
1071 
1072 	pwm = of_pwm_get(dev, np, con_id);
1073 	if (!IS_ERR(pwm)) {
1074 		*ptr = pwm;
1075 		devres_add(dev, ptr);
1076 	} else {
1077 		devres_free(ptr);
1078 	}
1079 
1080 	return pwm;
1081 }
1082 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1083 
1084 /**
1085  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1086  * @dev: device for PWM consumer
1087  * @fwnode: firmware node to get the PWM from
1088  * @con_id: consumer name
1089  *
1090  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1091  * acpi_pwm_get() for a detailed description.
1092  *
1093  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1094  * error code on failure.
1095  */
1096 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1097 				       struct fwnode_handle *fwnode,
1098 				       const char *con_id)
1099 {
1100 	struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV);
1101 
1102 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1103 	if (!ptr)
1104 		return ERR_PTR(-ENOMEM);
1105 
1106 	if (is_of_node(fwnode))
1107 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1108 	else if (is_acpi_node(fwnode))
1109 		pwm = acpi_pwm_get(fwnode);
1110 
1111 	if (!IS_ERR(pwm)) {
1112 		*ptr = pwm;
1113 		devres_add(dev, ptr);
1114 	} else {
1115 		devres_free(ptr);
1116 	}
1117 
1118 	return pwm;
1119 }
1120 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1121 
1122 static int devm_pwm_match(struct device *dev, void *res, void *data)
1123 {
1124 	struct pwm_device **p = res;
1125 
1126 	if (WARN_ON(!p || !*p))
1127 		return 0;
1128 
1129 	return *p == data;
1130 }
1131 
1132 /**
1133  * devm_pwm_put() - resource managed pwm_put()
1134  * @dev: device for PWM consumer
1135  * @pwm: PWM device
1136  *
1137  * Release a PWM previously allocated using devm_pwm_get(). Calling this
1138  * function is usually not needed because devm-allocated resources are
1139  * automatically released on driver detach.
1140  */
1141 void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
1142 {
1143 	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
1144 }
1145 EXPORT_SYMBOL_GPL(devm_pwm_put);
1146 
1147 #ifdef CONFIG_DEBUG_FS
1148 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1149 {
1150 	unsigned int i;
1151 
1152 	for (i = 0; i < chip->npwm; i++) {
1153 		struct pwm_device *pwm = &chip->pwms[i];
1154 		struct pwm_state state;
1155 
1156 		pwm_get_state(pwm, &state);
1157 
1158 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1159 
1160 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1161 			seq_puts(s, " requested");
1162 
1163 		if (state.enabled)
1164 			seq_puts(s, " enabled");
1165 
1166 		seq_printf(s, " period: %u ns", state.period);
1167 		seq_printf(s, " duty: %u ns", state.duty_cycle);
1168 		seq_printf(s, " polarity: %s",
1169 			   state.polarity ? "inverse" : "normal");
1170 
1171 		seq_puts(s, "\n");
1172 	}
1173 }
1174 
1175 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1176 {
1177 	mutex_lock(&pwm_lock);
1178 	s->private = "";
1179 
1180 	return seq_list_start(&pwm_chips, *pos);
1181 }
1182 
1183 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1184 {
1185 	s->private = "\n";
1186 
1187 	return seq_list_next(v, &pwm_chips, pos);
1188 }
1189 
1190 static void pwm_seq_stop(struct seq_file *s, void *v)
1191 {
1192 	mutex_unlock(&pwm_lock);
1193 }
1194 
1195 static int pwm_seq_show(struct seq_file *s, void *v)
1196 {
1197 	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1198 
1199 	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1200 		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1201 		   dev_name(chip->dev), chip->npwm,
1202 		   (chip->npwm != 1) ? "s" : "");
1203 
1204 	pwm_dbg_show(chip, s);
1205 
1206 	return 0;
1207 }
1208 
1209 static const struct seq_operations pwm_seq_ops = {
1210 	.start = pwm_seq_start,
1211 	.next = pwm_seq_next,
1212 	.stop = pwm_seq_stop,
1213 	.show = pwm_seq_show,
1214 };
1215 
1216 static int pwm_seq_open(struct inode *inode, struct file *file)
1217 {
1218 	return seq_open(file, &pwm_seq_ops);
1219 }
1220 
1221 static const struct file_operations pwm_debugfs_ops = {
1222 	.owner = THIS_MODULE,
1223 	.open = pwm_seq_open,
1224 	.read = seq_read,
1225 	.llseek = seq_lseek,
1226 	.release = seq_release,
1227 };
1228 
1229 static int __init pwm_debugfs_init(void)
1230 {
1231 	debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1232 			    &pwm_debugfs_ops);
1233 
1234 	return 0;
1235 }
1236 subsys_initcall(pwm_debugfs_init);
1237 #endif /* CONFIG_DEBUG_FS */
1238