1 /* 2 * Generic pwmlib implementation 3 * 4 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de> 5 * Copyright (C) 2011-2012 Avionic Design GmbH 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2, or (at your option) 10 * any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; see the file COPYING. If not, write to 19 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 #include <linux/module.h> 23 #include <linux/pwm.h> 24 #include <linux/radix-tree.h> 25 #include <linux/list.h> 26 #include <linux/mutex.h> 27 #include <linux/err.h> 28 #include <linux/slab.h> 29 #include <linux/device.h> 30 #include <linux/debugfs.h> 31 #include <linux/seq_file.h> 32 33 #include <dt-bindings/pwm/pwm.h> 34 35 #define MAX_PWMS 1024 36 37 static DEFINE_MUTEX(pwm_lookup_lock); 38 static LIST_HEAD(pwm_lookup_list); 39 static DEFINE_MUTEX(pwm_lock); 40 static LIST_HEAD(pwm_chips); 41 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS); 42 static RADIX_TREE(pwm_tree, GFP_KERNEL); 43 44 static struct pwm_device *pwm_to_device(unsigned int pwm) 45 { 46 return radix_tree_lookup(&pwm_tree, pwm); 47 } 48 49 static int alloc_pwms(int pwm, unsigned int count) 50 { 51 unsigned int from = 0; 52 unsigned int start; 53 54 if (pwm >= MAX_PWMS) 55 return -EINVAL; 56 57 if (pwm >= 0) 58 from = pwm; 59 60 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from, 61 count, 0); 62 63 if (pwm >= 0 && start != pwm) 64 return -EEXIST; 65 66 if (start + count > MAX_PWMS) 67 return -ENOSPC; 68 69 return start; 70 } 71 72 static void free_pwms(struct pwm_chip *chip) 73 { 74 unsigned int i; 75 76 for (i = 0; i < chip->npwm; i++) { 77 struct pwm_device *pwm = &chip->pwms[i]; 78 79 radix_tree_delete(&pwm_tree, pwm->pwm); 80 } 81 82 bitmap_clear(allocated_pwms, chip->base, chip->npwm); 83 84 kfree(chip->pwms); 85 chip->pwms = NULL; 86 } 87 88 static struct pwm_chip *pwmchip_find_by_name(const char *name) 89 { 90 struct pwm_chip *chip; 91 92 if (!name) 93 return NULL; 94 95 mutex_lock(&pwm_lock); 96 97 list_for_each_entry(chip, &pwm_chips, list) { 98 const char *chip_name = dev_name(chip->dev); 99 100 if (chip_name && strcmp(chip_name, name) == 0) { 101 mutex_unlock(&pwm_lock); 102 return chip; 103 } 104 } 105 106 mutex_unlock(&pwm_lock); 107 108 return NULL; 109 } 110 111 static int pwm_device_request(struct pwm_device *pwm, const char *label) 112 { 113 int err; 114 115 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 116 return -EBUSY; 117 118 if (!try_module_get(pwm->chip->ops->owner)) 119 return -ENODEV; 120 121 if (pwm->chip->ops->request) { 122 err = pwm->chip->ops->request(pwm->chip, pwm); 123 if (err) { 124 module_put(pwm->chip->ops->owner); 125 return err; 126 } 127 } 128 129 set_bit(PWMF_REQUESTED, &pwm->flags); 130 pwm->label = label; 131 132 return 0; 133 } 134 135 struct pwm_device * 136 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args) 137 { 138 struct pwm_device *pwm; 139 140 /* check, whether the driver supports a third cell for flags */ 141 if (pc->of_pwm_n_cells < 3) 142 return ERR_PTR(-EINVAL); 143 144 /* flags in the third cell are optional */ 145 if (args->args_count < 2) 146 return ERR_PTR(-EINVAL); 147 148 if (args->args[0] >= pc->npwm) 149 return ERR_PTR(-EINVAL); 150 151 pwm = pwm_request_from_chip(pc, args->args[0], NULL); 152 if (IS_ERR(pwm)) 153 return pwm; 154 155 pwm->args.period = args->args[1]; 156 pwm->args.polarity = PWM_POLARITY_NORMAL; 157 158 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED) 159 pwm->args.polarity = PWM_POLARITY_INVERSED; 160 161 return pwm; 162 } 163 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags); 164 165 static struct pwm_device * 166 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args) 167 { 168 struct pwm_device *pwm; 169 170 /* sanity check driver support */ 171 if (pc->of_pwm_n_cells < 2) 172 return ERR_PTR(-EINVAL); 173 174 /* all cells are required */ 175 if (args->args_count != pc->of_pwm_n_cells) 176 return ERR_PTR(-EINVAL); 177 178 if (args->args[0] >= pc->npwm) 179 return ERR_PTR(-EINVAL); 180 181 pwm = pwm_request_from_chip(pc, args->args[0], NULL); 182 if (IS_ERR(pwm)) 183 return pwm; 184 185 pwm->args.period = args->args[1]; 186 187 return pwm; 188 } 189 190 static void of_pwmchip_add(struct pwm_chip *chip) 191 { 192 if (!chip->dev || !chip->dev->of_node) 193 return; 194 195 if (!chip->of_xlate) { 196 chip->of_xlate = of_pwm_simple_xlate; 197 chip->of_pwm_n_cells = 2; 198 } 199 200 of_node_get(chip->dev->of_node); 201 } 202 203 static void of_pwmchip_remove(struct pwm_chip *chip) 204 { 205 if (chip->dev) 206 of_node_put(chip->dev->of_node); 207 } 208 209 /** 210 * pwm_set_chip_data() - set private chip data for a PWM 211 * @pwm: PWM device 212 * @data: pointer to chip-specific data 213 * 214 * Returns: 0 on success or a negative error code on failure. 215 */ 216 int pwm_set_chip_data(struct pwm_device *pwm, void *data) 217 { 218 if (!pwm) 219 return -EINVAL; 220 221 pwm->chip_data = data; 222 223 return 0; 224 } 225 EXPORT_SYMBOL_GPL(pwm_set_chip_data); 226 227 /** 228 * pwm_get_chip_data() - get private chip data for a PWM 229 * @pwm: PWM device 230 * 231 * Returns: A pointer to the chip-private data for the PWM device. 232 */ 233 void *pwm_get_chip_data(struct pwm_device *pwm) 234 { 235 return pwm ? pwm->chip_data : NULL; 236 } 237 EXPORT_SYMBOL_GPL(pwm_get_chip_data); 238 239 static bool pwm_ops_check(const struct pwm_ops *ops) 240 { 241 /* driver supports legacy, non-atomic operation */ 242 if (ops->config && ops->enable && ops->disable) 243 return true; 244 245 /* driver supports atomic operation */ 246 if (ops->apply) 247 return true; 248 249 return false; 250 } 251 252 /** 253 * pwmchip_add_with_polarity() - register a new PWM chip 254 * @chip: the PWM chip to add 255 * @polarity: initial polarity of PWM channels 256 * 257 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base 258 * will be used. The initial polarity for all channels is specified by the 259 * @polarity parameter. 260 * 261 * Returns: 0 on success or a negative error code on failure. 262 */ 263 int pwmchip_add_with_polarity(struct pwm_chip *chip, 264 enum pwm_polarity polarity) 265 { 266 struct pwm_device *pwm; 267 unsigned int i; 268 int ret; 269 270 if (!chip || !chip->dev || !chip->ops || !chip->npwm) 271 return -EINVAL; 272 273 if (!pwm_ops_check(chip->ops)) 274 return -EINVAL; 275 276 mutex_lock(&pwm_lock); 277 278 ret = alloc_pwms(chip->base, chip->npwm); 279 if (ret < 0) 280 goto out; 281 282 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL); 283 if (!chip->pwms) { 284 ret = -ENOMEM; 285 goto out; 286 } 287 288 chip->base = ret; 289 290 for (i = 0; i < chip->npwm; i++) { 291 pwm = &chip->pwms[i]; 292 293 pwm->chip = chip; 294 pwm->pwm = chip->base + i; 295 pwm->hwpwm = i; 296 pwm->state.polarity = polarity; 297 298 if (chip->ops->get_state) 299 chip->ops->get_state(chip, pwm, &pwm->state); 300 301 radix_tree_insert(&pwm_tree, pwm->pwm, pwm); 302 } 303 304 bitmap_set(allocated_pwms, chip->base, chip->npwm); 305 306 INIT_LIST_HEAD(&chip->list); 307 list_add(&chip->list, &pwm_chips); 308 309 ret = 0; 310 311 if (IS_ENABLED(CONFIG_OF)) 312 of_pwmchip_add(chip); 313 314 pwmchip_sysfs_export(chip); 315 316 out: 317 mutex_unlock(&pwm_lock); 318 return ret; 319 } 320 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity); 321 322 /** 323 * pwmchip_add() - register a new PWM chip 324 * @chip: the PWM chip to add 325 * 326 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base 327 * will be used. The initial polarity for all channels is normal. 328 * 329 * Returns: 0 on success or a negative error code on failure. 330 */ 331 int pwmchip_add(struct pwm_chip *chip) 332 { 333 return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL); 334 } 335 EXPORT_SYMBOL_GPL(pwmchip_add); 336 337 /** 338 * pwmchip_remove() - remove a PWM chip 339 * @chip: the PWM chip to remove 340 * 341 * Removes a PWM chip. This function may return busy if the PWM chip provides 342 * a PWM device that is still requested. 343 * 344 * Returns: 0 on success or a negative error code on failure. 345 */ 346 int pwmchip_remove(struct pwm_chip *chip) 347 { 348 unsigned int i; 349 int ret = 0; 350 351 pwmchip_sysfs_unexport_children(chip); 352 353 mutex_lock(&pwm_lock); 354 355 for (i = 0; i < chip->npwm; i++) { 356 struct pwm_device *pwm = &chip->pwms[i]; 357 358 if (test_bit(PWMF_REQUESTED, &pwm->flags)) { 359 ret = -EBUSY; 360 goto out; 361 } 362 } 363 364 list_del_init(&chip->list); 365 366 if (IS_ENABLED(CONFIG_OF)) 367 of_pwmchip_remove(chip); 368 369 free_pwms(chip); 370 371 pwmchip_sysfs_unexport(chip); 372 373 out: 374 mutex_unlock(&pwm_lock); 375 return ret; 376 } 377 EXPORT_SYMBOL_GPL(pwmchip_remove); 378 379 /** 380 * pwm_request() - request a PWM device 381 * @pwm: global PWM device index 382 * @label: PWM device label 383 * 384 * This function is deprecated, use pwm_get() instead. 385 * 386 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on 387 * failure. 388 */ 389 struct pwm_device *pwm_request(int pwm, const char *label) 390 { 391 struct pwm_device *dev; 392 int err; 393 394 if (pwm < 0 || pwm >= MAX_PWMS) 395 return ERR_PTR(-EINVAL); 396 397 mutex_lock(&pwm_lock); 398 399 dev = pwm_to_device(pwm); 400 if (!dev) { 401 dev = ERR_PTR(-EPROBE_DEFER); 402 goto out; 403 } 404 405 err = pwm_device_request(dev, label); 406 if (err < 0) 407 dev = ERR_PTR(err); 408 409 out: 410 mutex_unlock(&pwm_lock); 411 412 return dev; 413 } 414 EXPORT_SYMBOL_GPL(pwm_request); 415 416 /** 417 * pwm_request_from_chip() - request a PWM device relative to a PWM chip 418 * @chip: PWM chip 419 * @index: per-chip index of the PWM to request 420 * @label: a literal description string of this PWM 421 * 422 * Returns: A pointer to the PWM device at the given index of the given PWM 423 * chip. A negative error code is returned if the index is not valid for the 424 * specified PWM chip or if the PWM device cannot be requested. 425 */ 426 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, 427 unsigned int index, 428 const char *label) 429 { 430 struct pwm_device *pwm; 431 int err; 432 433 if (!chip || index >= chip->npwm) 434 return ERR_PTR(-EINVAL); 435 436 mutex_lock(&pwm_lock); 437 pwm = &chip->pwms[index]; 438 439 err = pwm_device_request(pwm, label); 440 if (err < 0) 441 pwm = ERR_PTR(err); 442 443 mutex_unlock(&pwm_lock); 444 return pwm; 445 } 446 EXPORT_SYMBOL_GPL(pwm_request_from_chip); 447 448 /** 449 * pwm_free() - free a PWM device 450 * @pwm: PWM device 451 * 452 * This function is deprecated, use pwm_put() instead. 453 */ 454 void pwm_free(struct pwm_device *pwm) 455 { 456 pwm_put(pwm); 457 } 458 EXPORT_SYMBOL_GPL(pwm_free); 459 460 /** 461 * pwm_apply_state() - atomically apply a new state to a PWM device 462 * @pwm: PWM device 463 * @state: new state to apply. This can be adjusted by the PWM driver 464 * if the requested config is not achievable, for example, 465 * ->duty_cycle and ->period might be approximated. 466 */ 467 int pwm_apply_state(struct pwm_device *pwm, struct pwm_state *state) 468 { 469 int err; 470 471 if (!pwm || !state || !state->period || 472 state->duty_cycle > state->period) 473 return -EINVAL; 474 475 if (!memcmp(state, &pwm->state, sizeof(*state))) 476 return 0; 477 478 if (pwm->chip->ops->apply) { 479 err = pwm->chip->ops->apply(pwm->chip, pwm, state); 480 if (err) 481 return err; 482 483 pwm->state = *state; 484 } else { 485 /* 486 * FIXME: restore the initial state in case of error. 487 */ 488 if (state->polarity != pwm->state.polarity) { 489 if (!pwm->chip->ops->set_polarity) 490 return -ENOTSUPP; 491 492 /* 493 * Changing the polarity of a running PWM is 494 * only allowed when the PWM driver implements 495 * ->apply(). 496 */ 497 if (pwm->state.enabled) { 498 pwm->chip->ops->disable(pwm->chip, pwm); 499 pwm->state.enabled = false; 500 } 501 502 err = pwm->chip->ops->set_polarity(pwm->chip, pwm, 503 state->polarity); 504 if (err) 505 return err; 506 507 pwm->state.polarity = state->polarity; 508 } 509 510 if (state->period != pwm->state.period || 511 state->duty_cycle != pwm->state.duty_cycle) { 512 err = pwm->chip->ops->config(pwm->chip, pwm, 513 state->duty_cycle, 514 state->period); 515 if (err) 516 return err; 517 518 pwm->state.duty_cycle = state->duty_cycle; 519 pwm->state.period = state->period; 520 } 521 522 if (state->enabled != pwm->state.enabled) { 523 if (state->enabled) { 524 err = pwm->chip->ops->enable(pwm->chip, pwm); 525 if (err) 526 return err; 527 } else { 528 pwm->chip->ops->disable(pwm->chip, pwm); 529 } 530 531 pwm->state.enabled = state->enabled; 532 } 533 } 534 535 return 0; 536 } 537 EXPORT_SYMBOL_GPL(pwm_apply_state); 538 539 /** 540 * pwm_capture() - capture and report a PWM signal 541 * @pwm: PWM device 542 * @result: structure to fill with capture result 543 * @timeout: time to wait, in milliseconds, before giving up on capture 544 * 545 * Returns: 0 on success or a negative error code on failure. 546 */ 547 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result, 548 unsigned long timeout) 549 { 550 int err; 551 552 if (!pwm || !pwm->chip->ops) 553 return -EINVAL; 554 555 if (!pwm->chip->ops->capture) 556 return -ENOSYS; 557 558 mutex_lock(&pwm_lock); 559 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout); 560 mutex_unlock(&pwm_lock); 561 562 return err; 563 } 564 EXPORT_SYMBOL_GPL(pwm_capture); 565 566 /** 567 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments 568 * @pwm: PWM device 569 * 570 * This function will adjust the PWM config to the PWM arguments provided 571 * by the DT or PWM lookup table. This is particularly useful to adapt 572 * the bootloader config to the Linux one. 573 */ 574 int pwm_adjust_config(struct pwm_device *pwm) 575 { 576 struct pwm_state state; 577 struct pwm_args pargs; 578 579 pwm_get_args(pwm, &pargs); 580 pwm_get_state(pwm, &state); 581 582 /* 583 * If the current period is zero it means that either the PWM driver 584 * does not support initial state retrieval or the PWM has not yet 585 * been configured. 586 * 587 * In either case, we setup the new period and polarity, and assign a 588 * duty cycle of 0. 589 */ 590 if (!state.period) { 591 state.duty_cycle = 0; 592 state.period = pargs.period; 593 state.polarity = pargs.polarity; 594 595 return pwm_apply_state(pwm, &state); 596 } 597 598 /* 599 * Adjust the PWM duty cycle/period based on the period value provided 600 * in PWM args. 601 */ 602 if (pargs.period != state.period) { 603 u64 dutycycle = (u64)state.duty_cycle * pargs.period; 604 605 do_div(dutycycle, state.period); 606 state.duty_cycle = dutycycle; 607 state.period = pargs.period; 608 } 609 610 /* 611 * If the polarity changed, we should also change the duty cycle. 612 */ 613 if (pargs.polarity != state.polarity) { 614 state.polarity = pargs.polarity; 615 state.duty_cycle = state.period - state.duty_cycle; 616 } 617 618 return pwm_apply_state(pwm, &state); 619 } 620 EXPORT_SYMBOL_GPL(pwm_adjust_config); 621 622 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np) 623 { 624 struct pwm_chip *chip; 625 626 mutex_lock(&pwm_lock); 627 628 list_for_each_entry(chip, &pwm_chips, list) 629 if (chip->dev && chip->dev->of_node == np) { 630 mutex_unlock(&pwm_lock); 631 return chip; 632 } 633 634 mutex_unlock(&pwm_lock); 635 636 return ERR_PTR(-EPROBE_DEFER); 637 } 638 639 /** 640 * of_pwm_get() - request a PWM via the PWM framework 641 * @np: device node to get the PWM from 642 * @con_id: consumer name 643 * 644 * Returns the PWM device parsed from the phandle and index specified in the 645 * "pwms" property of a device tree node or a negative error-code on failure. 646 * Values parsed from the device tree are stored in the returned PWM device 647 * object. 648 * 649 * If con_id is NULL, the first PWM device listed in the "pwms" property will 650 * be requested. Otherwise the "pwm-names" property is used to do a reverse 651 * lookup of the PWM index. This also means that the "pwm-names" property 652 * becomes mandatory for devices that look up the PWM device via the con_id 653 * parameter. 654 * 655 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 656 * error code on failure. 657 */ 658 struct pwm_device *of_pwm_get(struct device_node *np, const char *con_id) 659 { 660 struct pwm_device *pwm = NULL; 661 struct of_phandle_args args; 662 struct pwm_chip *pc; 663 int index = 0; 664 int err; 665 666 if (con_id) { 667 index = of_property_match_string(np, "pwm-names", con_id); 668 if (index < 0) 669 return ERR_PTR(index); 670 } 671 672 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index, 673 &args); 674 if (err) { 675 pr_err("%s(): can't parse \"pwms\" property\n", __func__); 676 return ERR_PTR(err); 677 } 678 679 pc = of_node_to_pwmchip(args.np); 680 if (IS_ERR(pc)) { 681 if (PTR_ERR(pc) != -EPROBE_DEFER) 682 pr_err("%s(): PWM chip not found\n", __func__); 683 684 pwm = ERR_CAST(pc); 685 goto put; 686 } 687 688 pwm = pc->of_xlate(pc, &args); 689 if (IS_ERR(pwm)) 690 goto put; 691 692 /* 693 * If a consumer name was not given, try to look it up from the 694 * "pwm-names" property if it exists. Otherwise use the name of 695 * the user device node. 696 */ 697 if (!con_id) { 698 err = of_property_read_string_index(np, "pwm-names", index, 699 &con_id); 700 if (err < 0) 701 con_id = np->name; 702 } 703 704 pwm->label = con_id; 705 706 put: 707 of_node_put(args.np); 708 709 return pwm; 710 } 711 EXPORT_SYMBOL_GPL(of_pwm_get); 712 713 /** 714 * pwm_add_table() - register PWM device consumers 715 * @table: array of consumers to register 716 * @num: number of consumers in table 717 */ 718 void pwm_add_table(struct pwm_lookup *table, size_t num) 719 { 720 mutex_lock(&pwm_lookup_lock); 721 722 while (num--) { 723 list_add_tail(&table->list, &pwm_lookup_list); 724 table++; 725 } 726 727 mutex_unlock(&pwm_lookup_lock); 728 } 729 730 /** 731 * pwm_remove_table() - unregister PWM device consumers 732 * @table: array of consumers to unregister 733 * @num: number of consumers in table 734 */ 735 void pwm_remove_table(struct pwm_lookup *table, size_t num) 736 { 737 mutex_lock(&pwm_lookup_lock); 738 739 while (num--) { 740 list_del(&table->list); 741 table++; 742 } 743 744 mutex_unlock(&pwm_lookup_lock); 745 } 746 747 /** 748 * pwm_get() - look up and request a PWM device 749 * @dev: device for PWM consumer 750 * @con_id: consumer name 751 * 752 * Lookup is first attempted using DT. If the device was not instantiated from 753 * a device tree, a PWM chip and a relative index is looked up via a table 754 * supplied by board setup code (see pwm_add_table()). 755 * 756 * Once a PWM chip has been found the specified PWM device will be requested 757 * and is ready to be used. 758 * 759 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 760 * error code on failure. 761 */ 762 struct pwm_device *pwm_get(struct device *dev, const char *con_id) 763 { 764 const char *dev_id = dev ? dev_name(dev) : NULL; 765 struct pwm_device *pwm; 766 struct pwm_chip *chip; 767 unsigned int best = 0; 768 struct pwm_lookup *p, *chosen = NULL; 769 unsigned int match; 770 int err; 771 772 /* look up via DT first */ 773 if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node) 774 return of_pwm_get(dev->of_node, con_id); 775 776 /* 777 * We look up the provider in the static table typically provided by 778 * board setup code. We first try to lookup the consumer device by 779 * name. If the consumer device was passed in as NULL or if no match 780 * was found, we try to find the consumer by directly looking it up 781 * by name. 782 * 783 * If a match is found, the provider PWM chip is looked up by name 784 * and a PWM device is requested using the PWM device per-chip index. 785 * 786 * The lookup algorithm was shamelessly taken from the clock 787 * framework: 788 * 789 * We do slightly fuzzy matching here: 790 * An entry with a NULL ID is assumed to be a wildcard. 791 * If an entry has a device ID, it must match 792 * If an entry has a connection ID, it must match 793 * Then we take the most specific entry - with the following order 794 * of precedence: dev+con > dev only > con only. 795 */ 796 mutex_lock(&pwm_lookup_lock); 797 798 list_for_each_entry(p, &pwm_lookup_list, list) { 799 match = 0; 800 801 if (p->dev_id) { 802 if (!dev_id || strcmp(p->dev_id, dev_id)) 803 continue; 804 805 match += 2; 806 } 807 808 if (p->con_id) { 809 if (!con_id || strcmp(p->con_id, con_id)) 810 continue; 811 812 match += 1; 813 } 814 815 if (match > best) { 816 chosen = p; 817 818 if (match != 3) 819 best = match; 820 else 821 break; 822 } 823 } 824 825 mutex_unlock(&pwm_lookup_lock); 826 827 if (!chosen) 828 return ERR_PTR(-ENODEV); 829 830 chip = pwmchip_find_by_name(chosen->provider); 831 832 /* 833 * If the lookup entry specifies a module, load the module and retry 834 * the PWM chip lookup. This can be used to work around driver load 835 * ordering issues if driver's can't be made to properly support the 836 * deferred probe mechanism. 837 */ 838 if (!chip && chosen->module) { 839 err = request_module(chosen->module); 840 if (err == 0) 841 chip = pwmchip_find_by_name(chosen->provider); 842 } 843 844 if (!chip) 845 return ERR_PTR(-EPROBE_DEFER); 846 847 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id); 848 if (IS_ERR(pwm)) 849 return pwm; 850 851 pwm->args.period = chosen->period; 852 pwm->args.polarity = chosen->polarity; 853 854 return pwm; 855 } 856 EXPORT_SYMBOL_GPL(pwm_get); 857 858 /** 859 * pwm_put() - release a PWM device 860 * @pwm: PWM device 861 */ 862 void pwm_put(struct pwm_device *pwm) 863 { 864 if (!pwm) 865 return; 866 867 mutex_lock(&pwm_lock); 868 869 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 870 pr_warn("PWM device already freed\n"); 871 goto out; 872 } 873 874 if (pwm->chip->ops->free) 875 pwm->chip->ops->free(pwm->chip, pwm); 876 877 pwm->label = NULL; 878 879 module_put(pwm->chip->ops->owner); 880 out: 881 mutex_unlock(&pwm_lock); 882 } 883 EXPORT_SYMBOL_GPL(pwm_put); 884 885 static void devm_pwm_release(struct device *dev, void *res) 886 { 887 pwm_put(*(struct pwm_device **)res); 888 } 889 890 /** 891 * devm_pwm_get() - resource managed pwm_get() 892 * @dev: device for PWM consumer 893 * @con_id: consumer name 894 * 895 * This function performs like pwm_get() but the acquired PWM device will 896 * automatically be released on driver detach. 897 * 898 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 899 * error code on failure. 900 */ 901 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id) 902 { 903 struct pwm_device **ptr, *pwm; 904 905 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL); 906 if (!ptr) 907 return ERR_PTR(-ENOMEM); 908 909 pwm = pwm_get(dev, con_id); 910 if (!IS_ERR(pwm)) { 911 *ptr = pwm; 912 devres_add(dev, ptr); 913 } else { 914 devres_free(ptr); 915 } 916 917 return pwm; 918 } 919 EXPORT_SYMBOL_GPL(devm_pwm_get); 920 921 /** 922 * devm_of_pwm_get() - resource managed of_pwm_get() 923 * @dev: device for PWM consumer 924 * @np: device node to get the PWM from 925 * @con_id: consumer name 926 * 927 * This function performs like of_pwm_get() but the acquired PWM device will 928 * automatically be released on driver detach. 929 * 930 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 931 * error code on failure. 932 */ 933 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np, 934 const char *con_id) 935 { 936 struct pwm_device **ptr, *pwm; 937 938 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL); 939 if (!ptr) 940 return ERR_PTR(-ENOMEM); 941 942 pwm = of_pwm_get(np, con_id); 943 if (!IS_ERR(pwm)) { 944 *ptr = pwm; 945 devres_add(dev, ptr); 946 } else { 947 devres_free(ptr); 948 } 949 950 return pwm; 951 } 952 EXPORT_SYMBOL_GPL(devm_of_pwm_get); 953 954 static int devm_pwm_match(struct device *dev, void *res, void *data) 955 { 956 struct pwm_device **p = res; 957 958 if (WARN_ON(!p || !*p)) 959 return 0; 960 961 return *p == data; 962 } 963 964 /** 965 * devm_pwm_put() - resource managed pwm_put() 966 * @dev: device for PWM consumer 967 * @pwm: PWM device 968 * 969 * Release a PWM previously allocated using devm_pwm_get(). Calling this 970 * function is usually not needed because devm-allocated resources are 971 * automatically released on driver detach. 972 */ 973 void devm_pwm_put(struct device *dev, struct pwm_device *pwm) 974 { 975 WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm)); 976 } 977 EXPORT_SYMBOL_GPL(devm_pwm_put); 978 979 #ifdef CONFIG_DEBUG_FS 980 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s) 981 { 982 unsigned int i; 983 984 for (i = 0; i < chip->npwm; i++) { 985 struct pwm_device *pwm = &chip->pwms[i]; 986 struct pwm_state state; 987 988 pwm_get_state(pwm, &state); 989 990 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label); 991 992 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 993 seq_puts(s, " requested"); 994 995 if (state.enabled) 996 seq_puts(s, " enabled"); 997 998 seq_printf(s, " period: %u ns", state.period); 999 seq_printf(s, " duty: %u ns", state.duty_cycle); 1000 seq_printf(s, " polarity: %s", 1001 state.polarity ? "inverse" : "normal"); 1002 1003 seq_puts(s, "\n"); 1004 } 1005 } 1006 1007 static void *pwm_seq_start(struct seq_file *s, loff_t *pos) 1008 { 1009 mutex_lock(&pwm_lock); 1010 s->private = ""; 1011 1012 return seq_list_start(&pwm_chips, *pos); 1013 } 1014 1015 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos) 1016 { 1017 s->private = "\n"; 1018 1019 return seq_list_next(v, &pwm_chips, pos); 1020 } 1021 1022 static void pwm_seq_stop(struct seq_file *s, void *v) 1023 { 1024 mutex_unlock(&pwm_lock); 1025 } 1026 1027 static int pwm_seq_show(struct seq_file *s, void *v) 1028 { 1029 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list); 1030 1031 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private, 1032 chip->dev->bus ? chip->dev->bus->name : "no-bus", 1033 dev_name(chip->dev), chip->npwm, 1034 (chip->npwm != 1) ? "s" : ""); 1035 1036 if (chip->ops->dbg_show) 1037 chip->ops->dbg_show(chip, s); 1038 else 1039 pwm_dbg_show(chip, s); 1040 1041 return 0; 1042 } 1043 1044 static const struct seq_operations pwm_seq_ops = { 1045 .start = pwm_seq_start, 1046 .next = pwm_seq_next, 1047 .stop = pwm_seq_stop, 1048 .show = pwm_seq_show, 1049 }; 1050 1051 static int pwm_seq_open(struct inode *inode, struct file *file) 1052 { 1053 return seq_open(file, &pwm_seq_ops); 1054 } 1055 1056 static const struct file_operations pwm_debugfs_ops = { 1057 .owner = THIS_MODULE, 1058 .open = pwm_seq_open, 1059 .read = seq_read, 1060 .llseek = seq_lseek, 1061 .release = seq_release, 1062 }; 1063 1064 static int __init pwm_debugfs_init(void) 1065 { 1066 debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL, 1067 &pwm_debugfs_ops); 1068 1069 return 0; 1070 } 1071 subsys_initcall(pwm_debugfs_init); 1072 #endif /* CONFIG_DEBUG_FS */ 1073