xref: /openbmc/linux/drivers/pwm/core.c (revision c4849f88)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20 
21 #include <dt-bindings/pwm/pwm.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
25 
26 #define MAX_PWMS 1024
27 
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30 static DEFINE_MUTEX(pwm_lock);
31 static LIST_HEAD(pwm_chips);
32 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
33 static RADIX_TREE(pwm_tree, GFP_KERNEL);
34 
35 static struct pwm_device *pwm_to_device(unsigned int pwm)
36 {
37 	return radix_tree_lookup(&pwm_tree, pwm);
38 }
39 
40 static int alloc_pwms(unsigned int count)
41 {
42 	unsigned int start;
43 
44 	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
45 					   count, 0);
46 
47 	if (start + count > MAX_PWMS)
48 		return -ENOSPC;
49 
50 	return start;
51 }
52 
53 static void free_pwms(struct pwm_chip *chip)
54 {
55 	unsigned int i;
56 
57 	for (i = 0; i < chip->npwm; i++) {
58 		struct pwm_device *pwm = &chip->pwms[i];
59 
60 		radix_tree_delete(&pwm_tree, pwm->pwm);
61 	}
62 
63 	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
64 
65 	kfree(chip->pwms);
66 	chip->pwms = NULL;
67 }
68 
69 static struct pwm_chip *pwmchip_find_by_name(const char *name)
70 {
71 	struct pwm_chip *chip;
72 
73 	if (!name)
74 		return NULL;
75 
76 	mutex_lock(&pwm_lock);
77 
78 	list_for_each_entry(chip, &pwm_chips, list) {
79 		const char *chip_name = dev_name(chip->dev);
80 
81 		if (chip_name && strcmp(chip_name, name) == 0) {
82 			mutex_unlock(&pwm_lock);
83 			return chip;
84 		}
85 	}
86 
87 	mutex_unlock(&pwm_lock);
88 
89 	return NULL;
90 }
91 
92 static int pwm_device_request(struct pwm_device *pwm, const char *label)
93 {
94 	int err;
95 
96 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
97 		return -EBUSY;
98 
99 	if (!try_module_get(pwm->chip->ops->owner))
100 		return -ENODEV;
101 
102 	if (pwm->chip->ops->request) {
103 		err = pwm->chip->ops->request(pwm->chip, pwm);
104 		if (err) {
105 			module_put(pwm->chip->ops->owner);
106 			return err;
107 		}
108 	}
109 
110 	if (pwm->chip->ops->get_state) {
111 		pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
112 		trace_pwm_get(pwm, &pwm->state);
113 
114 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
115 			pwm->last = pwm->state;
116 	}
117 
118 	set_bit(PWMF_REQUESTED, &pwm->flags);
119 	pwm->label = label;
120 
121 	return 0;
122 }
123 
124 struct pwm_device *
125 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
126 {
127 	struct pwm_device *pwm;
128 
129 	if (pc->of_pwm_n_cells < 2)
130 		return ERR_PTR(-EINVAL);
131 
132 	/* flags in the third cell are optional */
133 	if (args->args_count < 2)
134 		return ERR_PTR(-EINVAL);
135 
136 	if (args->args[0] >= pc->npwm)
137 		return ERR_PTR(-EINVAL);
138 
139 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
140 	if (IS_ERR(pwm))
141 		return pwm;
142 
143 	pwm->args.period = args->args[1];
144 	pwm->args.polarity = PWM_POLARITY_NORMAL;
145 
146 	if (pc->of_pwm_n_cells >= 3) {
147 		if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
148 			pwm->args.polarity = PWM_POLARITY_INVERSED;
149 	}
150 
151 	return pwm;
152 }
153 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
154 
155 struct pwm_device *
156 of_pwm_single_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
157 {
158 	struct pwm_device *pwm;
159 
160 	if (pc->of_pwm_n_cells < 1)
161 		return ERR_PTR(-EINVAL);
162 
163 	/* validate that one cell is specified, optionally with flags */
164 	if (args->args_count != 1 && args->args_count != 2)
165 		return ERR_PTR(-EINVAL);
166 
167 	pwm = pwm_request_from_chip(pc, 0, NULL);
168 	if (IS_ERR(pwm))
169 		return pwm;
170 
171 	pwm->args.period = args->args[0];
172 	pwm->args.polarity = PWM_POLARITY_NORMAL;
173 
174 	if (args->args_count == 2 && args->args[2] & PWM_POLARITY_INVERTED)
175 		pwm->args.polarity = PWM_POLARITY_INVERSED;
176 
177 	return pwm;
178 }
179 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
180 
181 static void of_pwmchip_add(struct pwm_chip *chip)
182 {
183 	if (!chip->dev || !chip->dev->of_node)
184 		return;
185 
186 	if (!chip->of_xlate) {
187 		u32 pwm_cells;
188 
189 		if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
190 					 &pwm_cells))
191 			pwm_cells = 2;
192 
193 		chip->of_xlate = of_pwm_xlate_with_flags;
194 		chip->of_pwm_n_cells = pwm_cells;
195 	}
196 
197 	of_node_get(chip->dev->of_node);
198 }
199 
200 static void of_pwmchip_remove(struct pwm_chip *chip)
201 {
202 	if (chip->dev)
203 		of_node_put(chip->dev->of_node);
204 }
205 
206 /**
207  * pwm_set_chip_data() - set private chip data for a PWM
208  * @pwm: PWM device
209  * @data: pointer to chip-specific data
210  *
211  * Returns: 0 on success or a negative error code on failure.
212  */
213 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
214 {
215 	if (!pwm)
216 		return -EINVAL;
217 
218 	pwm->chip_data = data;
219 
220 	return 0;
221 }
222 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
223 
224 /**
225  * pwm_get_chip_data() - get private chip data for a PWM
226  * @pwm: PWM device
227  *
228  * Returns: A pointer to the chip-private data for the PWM device.
229  */
230 void *pwm_get_chip_data(struct pwm_device *pwm)
231 {
232 	return pwm ? pwm->chip_data : NULL;
233 }
234 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
235 
236 static bool pwm_ops_check(const struct pwm_chip *chip)
237 {
238 
239 	const struct pwm_ops *ops = chip->ops;
240 
241 	/* driver supports legacy, non-atomic operation */
242 	if (ops->config && ops->enable && ops->disable) {
243 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
244 			dev_warn(chip->dev,
245 				 "Driver needs updating to atomic API\n");
246 
247 		return true;
248 	}
249 
250 	if (!ops->apply)
251 		return false;
252 
253 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
254 		dev_warn(chip->dev,
255 			 "Please implement the .get_state() callback\n");
256 
257 	return true;
258 }
259 
260 /**
261  * pwmchip_add() - register a new PWM chip
262  * @chip: the PWM chip to add
263  *
264  * Register a new PWM chip.
265  *
266  * Returns: 0 on success or a negative error code on failure.
267  */
268 int pwmchip_add(struct pwm_chip *chip)
269 {
270 	struct pwm_device *pwm;
271 	unsigned int i;
272 	int ret;
273 
274 	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
275 		return -EINVAL;
276 
277 	if (!pwm_ops_check(chip))
278 		return -EINVAL;
279 
280 	mutex_lock(&pwm_lock);
281 
282 	ret = alloc_pwms(chip->npwm);
283 	if (ret < 0)
284 		goto out;
285 
286 	chip->base = ret;
287 
288 	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
289 	if (!chip->pwms) {
290 		ret = -ENOMEM;
291 		goto out;
292 	}
293 
294 	for (i = 0; i < chip->npwm; i++) {
295 		pwm = &chip->pwms[i];
296 
297 		pwm->chip = chip;
298 		pwm->pwm = chip->base + i;
299 		pwm->hwpwm = i;
300 
301 		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
302 	}
303 
304 	bitmap_set(allocated_pwms, chip->base, chip->npwm);
305 
306 	INIT_LIST_HEAD(&chip->list);
307 	list_add(&chip->list, &pwm_chips);
308 
309 	ret = 0;
310 
311 	if (IS_ENABLED(CONFIG_OF))
312 		of_pwmchip_add(chip);
313 
314 out:
315 	mutex_unlock(&pwm_lock);
316 
317 	if (!ret)
318 		pwmchip_sysfs_export(chip);
319 
320 	return ret;
321 }
322 EXPORT_SYMBOL_GPL(pwmchip_add);
323 
324 /**
325  * pwmchip_remove() - remove a PWM chip
326  * @chip: the PWM chip to remove
327  *
328  * Removes a PWM chip. This function may return busy if the PWM chip provides
329  * a PWM device that is still requested.
330  *
331  * Returns: 0 on success or a negative error code on failure.
332  */
333 void pwmchip_remove(struct pwm_chip *chip)
334 {
335 	pwmchip_sysfs_unexport(chip);
336 
337 	mutex_lock(&pwm_lock);
338 
339 	list_del_init(&chip->list);
340 
341 	if (IS_ENABLED(CONFIG_OF))
342 		of_pwmchip_remove(chip);
343 
344 	free_pwms(chip);
345 
346 	mutex_unlock(&pwm_lock);
347 }
348 EXPORT_SYMBOL_GPL(pwmchip_remove);
349 
350 static void devm_pwmchip_remove(void *data)
351 {
352 	struct pwm_chip *chip = data;
353 
354 	pwmchip_remove(chip);
355 }
356 
357 int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
358 {
359 	int ret;
360 
361 	ret = pwmchip_add(chip);
362 	if (ret)
363 		return ret;
364 
365 	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
366 }
367 EXPORT_SYMBOL_GPL(devm_pwmchip_add);
368 
369 /**
370  * pwm_request() - request a PWM device
371  * @pwm: global PWM device index
372  * @label: PWM device label
373  *
374  * This function is deprecated, use pwm_get() instead.
375  *
376  * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
377  * failure.
378  */
379 struct pwm_device *pwm_request(int pwm, const char *label)
380 {
381 	struct pwm_device *dev;
382 	int err;
383 
384 	if (pwm < 0 || pwm >= MAX_PWMS)
385 		return ERR_PTR(-EINVAL);
386 
387 	mutex_lock(&pwm_lock);
388 
389 	dev = pwm_to_device(pwm);
390 	if (!dev) {
391 		dev = ERR_PTR(-EPROBE_DEFER);
392 		goto out;
393 	}
394 
395 	err = pwm_device_request(dev, label);
396 	if (err < 0)
397 		dev = ERR_PTR(err);
398 
399 out:
400 	mutex_unlock(&pwm_lock);
401 
402 	return dev;
403 }
404 EXPORT_SYMBOL_GPL(pwm_request);
405 
406 /**
407  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
408  * @chip: PWM chip
409  * @index: per-chip index of the PWM to request
410  * @label: a literal description string of this PWM
411  *
412  * Returns: A pointer to the PWM device at the given index of the given PWM
413  * chip. A negative error code is returned if the index is not valid for the
414  * specified PWM chip or if the PWM device cannot be requested.
415  */
416 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
417 					 unsigned int index,
418 					 const char *label)
419 {
420 	struct pwm_device *pwm;
421 	int err;
422 
423 	if (!chip || index >= chip->npwm)
424 		return ERR_PTR(-EINVAL);
425 
426 	mutex_lock(&pwm_lock);
427 	pwm = &chip->pwms[index];
428 
429 	err = pwm_device_request(pwm, label);
430 	if (err < 0)
431 		pwm = ERR_PTR(err);
432 
433 	mutex_unlock(&pwm_lock);
434 	return pwm;
435 }
436 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
437 
438 /**
439  * pwm_free() - free a PWM device
440  * @pwm: PWM device
441  *
442  * This function is deprecated, use pwm_put() instead.
443  */
444 void pwm_free(struct pwm_device *pwm)
445 {
446 	pwm_put(pwm);
447 }
448 EXPORT_SYMBOL_GPL(pwm_free);
449 
450 static void pwm_apply_state_debug(struct pwm_device *pwm,
451 				  const struct pwm_state *state)
452 {
453 	struct pwm_state *last = &pwm->last;
454 	struct pwm_chip *chip = pwm->chip;
455 	struct pwm_state s1, s2;
456 	int err;
457 
458 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
459 		return;
460 
461 	/* No reasonable diagnosis possible without .get_state() */
462 	if (!chip->ops->get_state)
463 		return;
464 
465 	/*
466 	 * *state was just applied. Read out the hardware state and do some
467 	 * checks.
468 	 */
469 
470 	chip->ops->get_state(chip, pwm, &s1);
471 	trace_pwm_get(pwm, &s1);
472 
473 	/*
474 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
475 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
476 	 * Undo this inversion and fixup for further tests.
477 	 */
478 	if (s1.enabled && s1.polarity != state->polarity) {
479 		s2.polarity = state->polarity;
480 		s2.duty_cycle = s1.period - s1.duty_cycle;
481 		s2.period = s1.period;
482 		s2.enabled = s1.enabled;
483 	} else {
484 		s2 = s1;
485 	}
486 
487 	if (s2.polarity != state->polarity &&
488 	    state->duty_cycle < state->period)
489 		dev_warn(chip->dev, ".apply ignored .polarity\n");
490 
491 	if (state->enabled &&
492 	    last->polarity == state->polarity &&
493 	    last->period > s2.period &&
494 	    last->period <= state->period)
495 		dev_warn(chip->dev,
496 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
497 			 state->period, s2.period, last->period);
498 
499 	if (state->enabled && state->period < s2.period)
500 		dev_warn(chip->dev,
501 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
502 			 state->period, s2.period);
503 
504 	if (state->enabled &&
505 	    last->polarity == state->polarity &&
506 	    last->period == s2.period &&
507 	    last->duty_cycle > s2.duty_cycle &&
508 	    last->duty_cycle <= state->duty_cycle)
509 		dev_warn(chip->dev,
510 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
511 			 state->duty_cycle, state->period,
512 			 s2.duty_cycle, s2.period,
513 			 last->duty_cycle, last->period);
514 
515 	if (state->enabled && state->duty_cycle < s2.duty_cycle)
516 		dev_warn(chip->dev,
517 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
518 			 state->duty_cycle, state->period,
519 			 s2.duty_cycle, s2.period);
520 
521 	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
522 		dev_warn(chip->dev,
523 			 "requested disabled, but yielded enabled with duty > 0\n");
524 
525 	/* reapply the state that the driver reported being configured. */
526 	err = chip->ops->apply(chip, pwm, &s1);
527 	if (err) {
528 		*last = s1;
529 		dev_err(chip->dev, "failed to reapply current setting\n");
530 		return;
531 	}
532 
533 	trace_pwm_apply(pwm, &s1);
534 
535 	chip->ops->get_state(chip, pwm, last);
536 	trace_pwm_get(pwm, last);
537 
538 	/* reapplication of the current state should give an exact match */
539 	if (s1.enabled != last->enabled ||
540 	    s1.polarity != last->polarity ||
541 	    (s1.enabled && s1.period != last->period) ||
542 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
543 		dev_err(chip->dev,
544 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
545 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
546 			last->enabled, last->polarity, last->duty_cycle,
547 			last->period);
548 	}
549 }
550 
551 /**
552  * pwm_apply_state() - atomically apply a new state to a PWM device
553  * @pwm: PWM device
554  * @state: new state to apply
555  */
556 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
557 {
558 	struct pwm_chip *chip;
559 	int err;
560 
561 	/*
562 	 * Some lowlevel driver's implementations of .apply() make use of
563 	 * mutexes, also with some drivers only returning when the new
564 	 * configuration is active calling pwm_apply_state() from atomic context
565 	 * is a bad idea. So make it explicit that calling this function might
566 	 * sleep.
567 	 */
568 	might_sleep();
569 
570 	if (!pwm || !state || !state->period ||
571 	    state->duty_cycle > state->period)
572 		return -EINVAL;
573 
574 	chip = pwm->chip;
575 
576 	if (state->period == pwm->state.period &&
577 	    state->duty_cycle == pwm->state.duty_cycle &&
578 	    state->polarity == pwm->state.polarity &&
579 	    state->enabled == pwm->state.enabled &&
580 	    state->usage_power == pwm->state.usage_power)
581 		return 0;
582 
583 	if (chip->ops->apply) {
584 		err = chip->ops->apply(chip, pwm, state);
585 		if (err)
586 			return err;
587 
588 		trace_pwm_apply(pwm, state);
589 
590 		pwm->state = *state;
591 
592 		/*
593 		 * only do this after pwm->state was applied as some
594 		 * implementations of .get_state depend on this
595 		 */
596 		pwm_apply_state_debug(pwm, state);
597 	} else {
598 		/*
599 		 * FIXME: restore the initial state in case of error.
600 		 */
601 		if (state->polarity != pwm->state.polarity) {
602 			if (!chip->ops->set_polarity)
603 				return -EINVAL;
604 
605 			/*
606 			 * Changing the polarity of a running PWM is
607 			 * only allowed when the PWM driver implements
608 			 * ->apply().
609 			 */
610 			if (pwm->state.enabled) {
611 				chip->ops->disable(chip, pwm);
612 				pwm->state.enabled = false;
613 			}
614 
615 			err = chip->ops->set_polarity(chip, pwm,
616 						      state->polarity);
617 			if (err)
618 				return err;
619 
620 			pwm->state.polarity = state->polarity;
621 		}
622 
623 		if (state->period != pwm->state.period ||
624 		    state->duty_cycle != pwm->state.duty_cycle) {
625 			err = chip->ops->config(pwm->chip, pwm,
626 						state->duty_cycle,
627 						state->period);
628 			if (err)
629 				return err;
630 
631 			pwm->state.duty_cycle = state->duty_cycle;
632 			pwm->state.period = state->period;
633 		}
634 
635 		if (state->enabled != pwm->state.enabled) {
636 			if (state->enabled) {
637 				err = chip->ops->enable(chip, pwm);
638 				if (err)
639 					return err;
640 			} else {
641 				chip->ops->disable(chip, pwm);
642 			}
643 
644 			pwm->state.enabled = state->enabled;
645 		}
646 	}
647 
648 	return 0;
649 }
650 EXPORT_SYMBOL_GPL(pwm_apply_state);
651 
652 /**
653  * pwm_capture() - capture and report a PWM signal
654  * @pwm: PWM device
655  * @result: structure to fill with capture result
656  * @timeout: time to wait, in milliseconds, before giving up on capture
657  *
658  * Returns: 0 on success or a negative error code on failure.
659  */
660 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
661 		unsigned long timeout)
662 {
663 	int err;
664 
665 	if (!pwm || !pwm->chip->ops)
666 		return -EINVAL;
667 
668 	if (!pwm->chip->ops->capture)
669 		return -ENOSYS;
670 
671 	mutex_lock(&pwm_lock);
672 	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
673 	mutex_unlock(&pwm_lock);
674 
675 	return err;
676 }
677 EXPORT_SYMBOL_GPL(pwm_capture);
678 
679 /**
680  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
681  * @pwm: PWM device
682  *
683  * This function will adjust the PWM config to the PWM arguments provided
684  * by the DT or PWM lookup table. This is particularly useful to adapt
685  * the bootloader config to the Linux one.
686  */
687 int pwm_adjust_config(struct pwm_device *pwm)
688 {
689 	struct pwm_state state;
690 	struct pwm_args pargs;
691 
692 	pwm_get_args(pwm, &pargs);
693 	pwm_get_state(pwm, &state);
694 
695 	/*
696 	 * If the current period is zero it means that either the PWM driver
697 	 * does not support initial state retrieval or the PWM has not yet
698 	 * been configured.
699 	 *
700 	 * In either case, we setup the new period and polarity, and assign a
701 	 * duty cycle of 0.
702 	 */
703 	if (!state.period) {
704 		state.duty_cycle = 0;
705 		state.period = pargs.period;
706 		state.polarity = pargs.polarity;
707 
708 		return pwm_apply_state(pwm, &state);
709 	}
710 
711 	/*
712 	 * Adjust the PWM duty cycle/period based on the period value provided
713 	 * in PWM args.
714 	 */
715 	if (pargs.period != state.period) {
716 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
717 
718 		do_div(dutycycle, state.period);
719 		state.duty_cycle = dutycycle;
720 		state.period = pargs.period;
721 	}
722 
723 	/*
724 	 * If the polarity changed, we should also change the duty cycle.
725 	 */
726 	if (pargs.polarity != state.polarity) {
727 		state.polarity = pargs.polarity;
728 		state.duty_cycle = state.period - state.duty_cycle;
729 	}
730 
731 	return pwm_apply_state(pwm, &state);
732 }
733 EXPORT_SYMBOL_GPL(pwm_adjust_config);
734 
735 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
736 {
737 	struct pwm_chip *chip;
738 
739 	mutex_lock(&pwm_lock);
740 
741 	list_for_each_entry(chip, &pwm_chips, list)
742 		if (chip->dev && dev_fwnode(chip->dev) == fwnode) {
743 			mutex_unlock(&pwm_lock);
744 			return chip;
745 		}
746 
747 	mutex_unlock(&pwm_lock);
748 
749 	return ERR_PTR(-EPROBE_DEFER);
750 }
751 
752 static struct device_link *pwm_device_link_add(struct device *dev,
753 					       struct pwm_device *pwm)
754 {
755 	struct device_link *dl;
756 
757 	if (!dev) {
758 		/*
759 		 * No device for the PWM consumer has been provided. It may
760 		 * impact the PM sequence ordering: the PWM supplier may get
761 		 * suspended before the consumer.
762 		 */
763 		dev_warn(pwm->chip->dev,
764 			 "No consumer device specified to create a link to\n");
765 		return NULL;
766 	}
767 
768 	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
769 	if (!dl) {
770 		dev_err(dev, "failed to create device link to %s\n",
771 			dev_name(pwm->chip->dev));
772 		return ERR_PTR(-EINVAL);
773 	}
774 
775 	return dl;
776 }
777 
778 /**
779  * of_pwm_get() - request a PWM via the PWM framework
780  * @dev: device for PWM consumer
781  * @np: device node to get the PWM from
782  * @con_id: consumer name
783  *
784  * Returns the PWM device parsed from the phandle and index specified in the
785  * "pwms" property of a device tree node or a negative error-code on failure.
786  * Values parsed from the device tree are stored in the returned PWM device
787  * object.
788  *
789  * If con_id is NULL, the first PWM device listed in the "pwms" property will
790  * be requested. Otherwise the "pwm-names" property is used to do a reverse
791  * lookup of the PWM index. This also means that the "pwm-names" property
792  * becomes mandatory for devices that look up the PWM device via the con_id
793  * parameter.
794  *
795  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
796  * error code on failure.
797  */
798 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
799 			      const char *con_id)
800 {
801 	struct pwm_device *pwm = NULL;
802 	struct of_phandle_args args;
803 	struct device_link *dl;
804 	struct pwm_chip *pc;
805 	int index = 0;
806 	int err;
807 
808 	if (con_id) {
809 		index = of_property_match_string(np, "pwm-names", con_id);
810 		if (index < 0)
811 			return ERR_PTR(index);
812 	}
813 
814 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
815 					 &args);
816 	if (err) {
817 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
818 		return ERR_PTR(err);
819 	}
820 
821 	pc = fwnode_to_pwmchip(of_fwnode_handle(args.np));
822 	if (IS_ERR(pc)) {
823 		if (PTR_ERR(pc) != -EPROBE_DEFER)
824 			pr_err("%s(): PWM chip not found\n", __func__);
825 
826 		pwm = ERR_CAST(pc);
827 		goto put;
828 	}
829 
830 	pwm = pc->of_xlate(pc, &args);
831 	if (IS_ERR(pwm))
832 		goto put;
833 
834 	dl = pwm_device_link_add(dev, pwm);
835 	if (IS_ERR(dl)) {
836 		/* of_xlate ended up calling pwm_request_from_chip() */
837 		pwm_free(pwm);
838 		pwm = ERR_CAST(dl);
839 		goto put;
840 	}
841 
842 	/*
843 	 * If a consumer name was not given, try to look it up from the
844 	 * "pwm-names" property if it exists. Otherwise use the name of
845 	 * the user device node.
846 	 */
847 	if (!con_id) {
848 		err = of_property_read_string_index(np, "pwm-names", index,
849 						    &con_id);
850 		if (err < 0)
851 			con_id = np->name;
852 	}
853 
854 	pwm->label = con_id;
855 
856 put:
857 	of_node_put(args.np);
858 
859 	return pwm;
860 }
861 EXPORT_SYMBOL_GPL(of_pwm_get);
862 
863 /**
864  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
865  * @fwnode: firmware node to get the "pwms" property from
866  *
867  * Returns the PWM device parsed from the fwnode and index specified in the
868  * "pwms" property or a negative error-code on failure.
869  * Values parsed from the device tree are stored in the returned PWM device
870  * object.
871  *
872  * This is analogous to of_pwm_get() except con_id is not yet supported.
873  * ACPI entries must look like
874  * Package () {"pwms", Package ()
875  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
876  *
877  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
878  * error code on failure.
879  */
880 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
881 {
882 	struct pwm_device *pwm;
883 	struct fwnode_reference_args args;
884 	struct pwm_chip *chip;
885 	int ret;
886 
887 	memset(&args, 0, sizeof(args));
888 
889 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
890 	if (ret < 0)
891 		return ERR_PTR(ret);
892 
893 	if (args.nargs < 2)
894 		return ERR_PTR(-EPROTO);
895 
896 	chip = fwnode_to_pwmchip(args.fwnode);
897 	if (IS_ERR(chip))
898 		return ERR_CAST(chip);
899 
900 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
901 	if (IS_ERR(pwm))
902 		return pwm;
903 
904 	pwm->args.period = args.args[1];
905 	pwm->args.polarity = PWM_POLARITY_NORMAL;
906 
907 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
908 		pwm->args.polarity = PWM_POLARITY_INVERSED;
909 
910 	return pwm;
911 }
912 
913 /**
914  * pwm_add_table() - register PWM device consumers
915  * @table: array of consumers to register
916  * @num: number of consumers in table
917  */
918 void pwm_add_table(struct pwm_lookup *table, size_t num)
919 {
920 	mutex_lock(&pwm_lookup_lock);
921 
922 	while (num--) {
923 		list_add_tail(&table->list, &pwm_lookup_list);
924 		table++;
925 	}
926 
927 	mutex_unlock(&pwm_lookup_lock);
928 }
929 
930 /**
931  * pwm_remove_table() - unregister PWM device consumers
932  * @table: array of consumers to unregister
933  * @num: number of consumers in table
934  */
935 void pwm_remove_table(struct pwm_lookup *table, size_t num)
936 {
937 	mutex_lock(&pwm_lookup_lock);
938 
939 	while (num--) {
940 		list_del(&table->list);
941 		table++;
942 	}
943 
944 	mutex_unlock(&pwm_lookup_lock);
945 }
946 
947 /**
948  * pwm_get() - look up and request a PWM device
949  * @dev: device for PWM consumer
950  * @con_id: consumer name
951  *
952  * Lookup is first attempted using DT. If the device was not instantiated from
953  * a device tree, a PWM chip and a relative index is looked up via a table
954  * supplied by board setup code (see pwm_add_table()).
955  *
956  * Once a PWM chip has been found the specified PWM device will be requested
957  * and is ready to be used.
958  *
959  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
960  * error code on failure.
961  */
962 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
963 {
964 	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
965 	const char *dev_id = dev ? dev_name(dev) : NULL;
966 	struct pwm_device *pwm;
967 	struct pwm_chip *chip;
968 	struct device_link *dl;
969 	unsigned int best = 0;
970 	struct pwm_lookup *p, *chosen = NULL;
971 	unsigned int match;
972 	int err;
973 
974 	/* look up via DT first */
975 	if (is_of_node(fwnode))
976 		return of_pwm_get(dev, to_of_node(fwnode), con_id);
977 
978 	/* then lookup via ACPI */
979 	if (is_acpi_node(fwnode)) {
980 		pwm = acpi_pwm_get(fwnode);
981 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
982 			return pwm;
983 	}
984 
985 	/*
986 	 * We look up the provider in the static table typically provided by
987 	 * board setup code. We first try to lookup the consumer device by
988 	 * name. If the consumer device was passed in as NULL or if no match
989 	 * was found, we try to find the consumer by directly looking it up
990 	 * by name.
991 	 *
992 	 * If a match is found, the provider PWM chip is looked up by name
993 	 * and a PWM device is requested using the PWM device per-chip index.
994 	 *
995 	 * The lookup algorithm was shamelessly taken from the clock
996 	 * framework:
997 	 *
998 	 * We do slightly fuzzy matching here:
999 	 *  An entry with a NULL ID is assumed to be a wildcard.
1000 	 *  If an entry has a device ID, it must match
1001 	 *  If an entry has a connection ID, it must match
1002 	 * Then we take the most specific entry - with the following order
1003 	 * of precedence: dev+con > dev only > con only.
1004 	 */
1005 	mutex_lock(&pwm_lookup_lock);
1006 
1007 	list_for_each_entry(p, &pwm_lookup_list, list) {
1008 		match = 0;
1009 
1010 		if (p->dev_id) {
1011 			if (!dev_id || strcmp(p->dev_id, dev_id))
1012 				continue;
1013 
1014 			match += 2;
1015 		}
1016 
1017 		if (p->con_id) {
1018 			if (!con_id || strcmp(p->con_id, con_id))
1019 				continue;
1020 
1021 			match += 1;
1022 		}
1023 
1024 		if (match > best) {
1025 			chosen = p;
1026 
1027 			if (match != 3)
1028 				best = match;
1029 			else
1030 				break;
1031 		}
1032 	}
1033 
1034 	mutex_unlock(&pwm_lookup_lock);
1035 
1036 	if (!chosen)
1037 		return ERR_PTR(-ENODEV);
1038 
1039 	chip = pwmchip_find_by_name(chosen->provider);
1040 
1041 	/*
1042 	 * If the lookup entry specifies a module, load the module and retry
1043 	 * the PWM chip lookup. This can be used to work around driver load
1044 	 * ordering issues if driver's can't be made to properly support the
1045 	 * deferred probe mechanism.
1046 	 */
1047 	if (!chip && chosen->module) {
1048 		err = request_module(chosen->module);
1049 		if (err == 0)
1050 			chip = pwmchip_find_by_name(chosen->provider);
1051 	}
1052 
1053 	if (!chip)
1054 		return ERR_PTR(-EPROBE_DEFER);
1055 
1056 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1057 	if (IS_ERR(pwm))
1058 		return pwm;
1059 
1060 	dl = pwm_device_link_add(dev, pwm);
1061 	if (IS_ERR(dl)) {
1062 		pwm_free(pwm);
1063 		return ERR_CAST(dl);
1064 	}
1065 
1066 	pwm->args.period = chosen->period;
1067 	pwm->args.polarity = chosen->polarity;
1068 
1069 	return pwm;
1070 }
1071 EXPORT_SYMBOL_GPL(pwm_get);
1072 
1073 /**
1074  * pwm_put() - release a PWM device
1075  * @pwm: PWM device
1076  */
1077 void pwm_put(struct pwm_device *pwm)
1078 {
1079 	if (!pwm)
1080 		return;
1081 
1082 	mutex_lock(&pwm_lock);
1083 
1084 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1085 		pr_warn("PWM device already freed\n");
1086 		goto out;
1087 	}
1088 
1089 	if (pwm->chip->ops->free)
1090 		pwm->chip->ops->free(pwm->chip, pwm);
1091 
1092 	pwm_set_chip_data(pwm, NULL);
1093 	pwm->label = NULL;
1094 
1095 	module_put(pwm->chip->ops->owner);
1096 out:
1097 	mutex_unlock(&pwm_lock);
1098 }
1099 EXPORT_SYMBOL_GPL(pwm_put);
1100 
1101 static void devm_pwm_release(void *pwm)
1102 {
1103 	pwm_put(pwm);
1104 }
1105 
1106 /**
1107  * devm_pwm_get() - resource managed pwm_get()
1108  * @dev: device for PWM consumer
1109  * @con_id: consumer name
1110  *
1111  * This function performs like pwm_get() but the acquired PWM device will
1112  * automatically be released on driver detach.
1113  *
1114  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1115  * error code on failure.
1116  */
1117 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1118 {
1119 	struct pwm_device *pwm;
1120 	int ret;
1121 
1122 	pwm = pwm_get(dev, con_id);
1123 	if (IS_ERR(pwm))
1124 		return pwm;
1125 
1126 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1127 	if (ret)
1128 		return ERR_PTR(ret);
1129 
1130 	return pwm;
1131 }
1132 EXPORT_SYMBOL_GPL(devm_pwm_get);
1133 
1134 /**
1135  * devm_of_pwm_get() - resource managed of_pwm_get()
1136  * @dev: device for PWM consumer
1137  * @np: device node to get the PWM from
1138  * @con_id: consumer name
1139  *
1140  * This function performs like of_pwm_get() but the acquired PWM device will
1141  * automatically be released on driver detach.
1142  *
1143  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1144  * error code on failure.
1145  */
1146 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1147 				   const char *con_id)
1148 {
1149 	struct pwm_device *pwm;
1150 	int ret;
1151 
1152 	pwm = of_pwm_get(dev, np, con_id);
1153 	if (IS_ERR(pwm))
1154 		return pwm;
1155 
1156 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1157 	if (ret)
1158 		return ERR_PTR(ret);
1159 
1160 	return pwm;
1161 }
1162 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1163 
1164 /**
1165  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1166  * @dev: device for PWM consumer
1167  * @fwnode: firmware node to get the PWM from
1168  * @con_id: consumer name
1169  *
1170  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1171  * acpi_pwm_get() for a detailed description.
1172  *
1173  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1174  * error code on failure.
1175  */
1176 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1177 				       struct fwnode_handle *fwnode,
1178 				       const char *con_id)
1179 {
1180 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
1181 	int ret;
1182 
1183 	if (is_of_node(fwnode))
1184 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1185 	else if (is_acpi_node(fwnode))
1186 		pwm = acpi_pwm_get(fwnode);
1187 	if (IS_ERR(pwm))
1188 		return pwm;
1189 
1190 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1191 	if (ret)
1192 		return ERR_PTR(ret);
1193 
1194 	return pwm;
1195 }
1196 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1197 
1198 #ifdef CONFIG_DEBUG_FS
1199 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1200 {
1201 	unsigned int i;
1202 
1203 	for (i = 0; i < chip->npwm; i++) {
1204 		struct pwm_device *pwm = &chip->pwms[i];
1205 		struct pwm_state state;
1206 
1207 		pwm_get_state(pwm, &state);
1208 
1209 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1210 
1211 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1212 			seq_puts(s, " requested");
1213 
1214 		if (state.enabled)
1215 			seq_puts(s, " enabled");
1216 
1217 		seq_printf(s, " period: %llu ns", state.period);
1218 		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1219 		seq_printf(s, " polarity: %s",
1220 			   state.polarity ? "inverse" : "normal");
1221 
1222 		if (state.usage_power)
1223 			seq_puts(s, " usage_power");
1224 
1225 		seq_puts(s, "\n");
1226 	}
1227 }
1228 
1229 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1230 {
1231 	mutex_lock(&pwm_lock);
1232 	s->private = "";
1233 
1234 	return seq_list_start(&pwm_chips, *pos);
1235 }
1236 
1237 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1238 {
1239 	s->private = "\n";
1240 
1241 	return seq_list_next(v, &pwm_chips, pos);
1242 }
1243 
1244 static void pwm_seq_stop(struct seq_file *s, void *v)
1245 {
1246 	mutex_unlock(&pwm_lock);
1247 }
1248 
1249 static int pwm_seq_show(struct seq_file *s, void *v)
1250 {
1251 	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1252 
1253 	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1254 		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1255 		   dev_name(chip->dev), chip->npwm,
1256 		   (chip->npwm != 1) ? "s" : "");
1257 
1258 	pwm_dbg_show(chip, s);
1259 
1260 	return 0;
1261 }
1262 
1263 static const struct seq_operations pwm_debugfs_sops = {
1264 	.start = pwm_seq_start,
1265 	.next = pwm_seq_next,
1266 	.stop = pwm_seq_stop,
1267 	.show = pwm_seq_show,
1268 };
1269 
1270 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1271 
1272 static int __init pwm_debugfs_init(void)
1273 {
1274 	debugfs_create_file("pwm", S_IFREG | 0444, NULL, NULL,
1275 			    &pwm_debugfs_fops);
1276 
1277 	return 0;
1278 }
1279 subsys_initcall(pwm_debugfs_init);
1280 #endif /* CONFIG_DEBUG_FS */
1281