xref: /openbmc/linux/drivers/pwm/core.c (revision b9f0bfd1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20 
21 #include <dt-bindings/pwm/pwm.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
25 
26 #define MAX_PWMS 1024
27 
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30 static DEFINE_MUTEX(pwm_lock);
31 static LIST_HEAD(pwm_chips);
32 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
33 static RADIX_TREE(pwm_tree, GFP_KERNEL);
34 
35 static struct pwm_device *pwm_to_device(unsigned int pwm)
36 {
37 	return radix_tree_lookup(&pwm_tree, pwm);
38 }
39 
40 static int alloc_pwms(unsigned int count)
41 {
42 	unsigned int start;
43 
44 	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
45 					   count, 0);
46 
47 	if (start + count > MAX_PWMS)
48 		return -ENOSPC;
49 
50 	return start;
51 }
52 
53 static void free_pwms(struct pwm_chip *chip)
54 {
55 	unsigned int i;
56 
57 	for (i = 0; i < chip->npwm; i++) {
58 		struct pwm_device *pwm = &chip->pwms[i];
59 
60 		radix_tree_delete(&pwm_tree, pwm->pwm);
61 	}
62 
63 	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
64 
65 	kfree(chip->pwms);
66 	chip->pwms = NULL;
67 }
68 
69 static struct pwm_chip *pwmchip_find_by_name(const char *name)
70 {
71 	struct pwm_chip *chip;
72 
73 	if (!name)
74 		return NULL;
75 
76 	mutex_lock(&pwm_lock);
77 
78 	list_for_each_entry(chip, &pwm_chips, list) {
79 		const char *chip_name = dev_name(chip->dev);
80 
81 		if (chip_name && strcmp(chip_name, name) == 0) {
82 			mutex_unlock(&pwm_lock);
83 			return chip;
84 		}
85 	}
86 
87 	mutex_unlock(&pwm_lock);
88 
89 	return NULL;
90 }
91 
92 static int pwm_device_request(struct pwm_device *pwm, const char *label)
93 {
94 	int err;
95 
96 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
97 		return -EBUSY;
98 
99 	if (!try_module_get(pwm->chip->ops->owner))
100 		return -ENODEV;
101 
102 	if (pwm->chip->ops->request) {
103 		err = pwm->chip->ops->request(pwm->chip, pwm);
104 		if (err) {
105 			module_put(pwm->chip->ops->owner);
106 			return err;
107 		}
108 	}
109 
110 	if (pwm->chip->ops->get_state) {
111 		pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
112 		trace_pwm_get(pwm, &pwm->state);
113 
114 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
115 			pwm->last = pwm->state;
116 	}
117 
118 	set_bit(PWMF_REQUESTED, &pwm->flags);
119 	pwm->label = label;
120 
121 	return 0;
122 }
123 
124 struct pwm_device *
125 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
126 {
127 	struct pwm_device *pwm;
128 
129 	if (pc->of_pwm_n_cells < 2)
130 		return ERR_PTR(-EINVAL);
131 
132 	/* flags in the third cell are optional */
133 	if (args->args_count < 2)
134 		return ERR_PTR(-EINVAL);
135 
136 	if (args->args[0] >= pc->npwm)
137 		return ERR_PTR(-EINVAL);
138 
139 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
140 	if (IS_ERR(pwm))
141 		return pwm;
142 
143 	pwm->args.period = args->args[1];
144 	pwm->args.polarity = PWM_POLARITY_NORMAL;
145 
146 	if (pc->of_pwm_n_cells >= 3) {
147 		if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
148 			pwm->args.polarity = PWM_POLARITY_INVERSED;
149 	}
150 
151 	return pwm;
152 }
153 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
154 
155 static void of_pwmchip_add(struct pwm_chip *chip)
156 {
157 	if (!chip->dev || !chip->dev->of_node)
158 		return;
159 
160 	if (!chip->of_xlate) {
161 		u32 pwm_cells;
162 
163 		if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
164 					 &pwm_cells))
165 			pwm_cells = 2;
166 
167 		chip->of_xlate = of_pwm_xlate_with_flags;
168 		chip->of_pwm_n_cells = pwm_cells;
169 	}
170 
171 	of_node_get(chip->dev->of_node);
172 }
173 
174 static void of_pwmchip_remove(struct pwm_chip *chip)
175 {
176 	if (chip->dev)
177 		of_node_put(chip->dev->of_node);
178 }
179 
180 /**
181  * pwm_set_chip_data() - set private chip data for a PWM
182  * @pwm: PWM device
183  * @data: pointer to chip-specific data
184  *
185  * Returns: 0 on success or a negative error code on failure.
186  */
187 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
188 {
189 	if (!pwm)
190 		return -EINVAL;
191 
192 	pwm->chip_data = data;
193 
194 	return 0;
195 }
196 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
197 
198 /**
199  * pwm_get_chip_data() - get private chip data for a PWM
200  * @pwm: PWM device
201  *
202  * Returns: A pointer to the chip-private data for the PWM device.
203  */
204 void *pwm_get_chip_data(struct pwm_device *pwm)
205 {
206 	return pwm ? pwm->chip_data : NULL;
207 }
208 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
209 
210 static bool pwm_ops_check(const struct pwm_chip *chip)
211 {
212 
213 	const struct pwm_ops *ops = chip->ops;
214 
215 	/* driver supports legacy, non-atomic operation */
216 	if (ops->config && ops->enable && ops->disable) {
217 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
218 			dev_warn(chip->dev,
219 				 "Driver needs updating to atomic API\n");
220 
221 		return true;
222 	}
223 
224 	if (!ops->apply)
225 		return false;
226 
227 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
228 		dev_warn(chip->dev,
229 			 "Please implement the .get_state() callback\n");
230 
231 	return true;
232 }
233 
234 /**
235  * pwmchip_add() - register a new PWM chip
236  * @chip: the PWM chip to add
237  *
238  * Register a new PWM chip.
239  *
240  * Returns: 0 on success or a negative error code on failure.
241  */
242 int pwmchip_add(struct pwm_chip *chip)
243 {
244 	struct pwm_device *pwm;
245 	unsigned int i;
246 	int ret;
247 
248 	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
249 		return -EINVAL;
250 
251 	if (!pwm_ops_check(chip))
252 		return -EINVAL;
253 
254 	mutex_lock(&pwm_lock);
255 
256 	ret = alloc_pwms(chip->npwm);
257 	if (ret < 0)
258 		goto out;
259 
260 	chip->base = ret;
261 
262 	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
263 	if (!chip->pwms) {
264 		ret = -ENOMEM;
265 		goto out;
266 	}
267 
268 	for (i = 0; i < chip->npwm; i++) {
269 		pwm = &chip->pwms[i];
270 
271 		pwm->chip = chip;
272 		pwm->pwm = chip->base + i;
273 		pwm->hwpwm = i;
274 
275 		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
276 	}
277 
278 	bitmap_set(allocated_pwms, chip->base, chip->npwm);
279 
280 	INIT_LIST_HEAD(&chip->list);
281 	list_add(&chip->list, &pwm_chips);
282 
283 	ret = 0;
284 
285 	if (IS_ENABLED(CONFIG_OF))
286 		of_pwmchip_add(chip);
287 
288 out:
289 	mutex_unlock(&pwm_lock);
290 
291 	if (!ret)
292 		pwmchip_sysfs_export(chip);
293 
294 	return ret;
295 }
296 EXPORT_SYMBOL_GPL(pwmchip_add);
297 
298 /**
299  * pwmchip_remove() - remove a PWM chip
300  * @chip: the PWM chip to remove
301  *
302  * Removes a PWM chip. This function may return busy if the PWM chip provides
303  * a PWM device that is still requested.
304  *
305  * Returns: 0 on success or a negative error code on failure.
306  */
307 void pwmchip_remove(struct pwm_chip *chip)
308 {
309 	pwmchip_sysfs_unexport(chip);
310 
311 	mutex_lock(&pwm_lock);
312 
313 	list_del_init(&chip->list);
314 
315 	if (IS_ENABLED(CONFIG_OF))
316 		of_pwmchip_remove(chip);
317 
318 	free_pwms(chip);
319 
320 	mutex_unlock(&pwm_lock);
321 }
322 EXPORT_SYMBOL_GPL(pwmchip_remove);
323 
324 static void devm_pwmchip_remove(void *data)
325 {
326 	struct pwm_chip *chip = data;
327 
328 	pwmchip_remove(chip);
329 }
330 
331 int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
332 {
333 	int ret;
334 
335 	ret = pwmchip_add(chip);
336 	if (ret)
337 		return ret;
338 
339 	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
340 }
341 EXPORT_SYMBOL_GPL(devm_pwmchip_add);
342 
343 /**
344  * pwm_request() - request a PWM device
345  * @pwm: global PWM device index
346  * @label: PWM device label
347  *
348  * This function is deprecated, use pwm_get() instead.
349  *
350  * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
351  * failure.
352  */
353 struct pwm_device *pwm_request(int pwm, const char *label)
354 {
355 	struct pwm_device *dev;
356 	int err;
357 
358 	if (pwm < 0 || pwm >= MAX_PWMS)
359 		return ERR_PTR(-EINVAL);
360 
361 	mutex_lock(&pwm_lock);
362 
363 	dev = pwm_to_device(pwm);
364 	if (!dev) {
365 		dev = ERR_PTR(-EPROBE_DEFER);
366 		goto out;
367 	}
368 
369 	err = pwm_device_request(dev, label);
370 	if (err < 0)
371 		dev = ERR_PTR(err);
372 
373 out:
374 	mutex_unlock(&pwm_lock);
375 
376 	return dev;
377 }
378 EXPORT_SYMBOL_GPL(pwm_request);
379 
380 /**
381  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
382  * @chip: PWM chip
383  * @index: per-chip index of the PWM to request
384  * @label: a literal description string of this PWM
385  *
386  * Returns: A pointer to the PWM device at the given index of the given PWM
387  * chip. A negative error code is returned if the index is not valid for the
388  * specified PWM chip or if the PWM device cannot be requested.
389  */
390 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
391 					 unsigned int index,
392 					 const char *label)
393 {
394 	struct pwm_device *pwm;
395 	int err;
396 
397 	if (!chip || index >= chip->npwm)
398 		return ERR_PTR(-EINVAL);
399 
400 	mutex_lock(&pwm_lock);
401 	pwm = &chip->pwms[index];
402 
403 	err = pwm_device_request(pwm, label);
404 	if (err < 0)
405 		pwm = ERR_PTR(err);
406 
407 	mutex_unlock(&pwm_lock);
408 	return pwm;
409 }
410 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
411 
412 /**
413  * pwm_free() - free a PWM device
414  * @pwm: PWM device
415  *
416  * This function is deprecated, use pwm_put() instead.
417  */
418 void pwm_free(struct pwm_device *pwm)
419 {
420 	pwm_put(pwm);
421 }
422 EXPORT_SYMBOL_GPL(pwm_free);
423 
424 static void pwm_apply_state_debug(struct pwm_device *pwm,
425 				  const struct pwm_state *state)
426 {
427 	struct pwm_state *last = &pwm->last;
428 	struct pwm_chip *chip = pwm->chip;
429 	struct pwm_state s1, s2;
430 	int err;
431 
432 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
433 		return;
434 
435 	/* No reasonable diagnosis possible without .get_state() */
436 	if (!chip->ops->get_state)
437 		return;
438 
439 	/*
440 	 * *state was just applied. Read out the hardware state and do some
441 	 * checks.
442 	 */
443 
444 	chip->ops->get_state(chip, pwm, &s1);
445 	trace_pwm_get(pwm, &s1);
446 
447 	/*
448 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
449 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
450 	 * Undo this inversion and fixup for further tests.
451 	 */
452 	if (s1.enabled && s1.polarity != state->polarity) {
453 		s2.polarity = state->polarity;
454 		s2.duty_cycle = s1.period - s1.duty_cycle;
455 		s2.period = s1.period;
456 		s2.enabled = s1.enabled;
457 	} else {
458 		s2 = s1;
459 	}
460 
461 	if (s2.polarity != state->polarity &&
462 	    state->duty_cycle < state->period)
463 		dev_warn(chip->dev, ".apply ignored .polarity\n");
464 
465 	if (state->enabled &&
466 	    last->polarity == state->polarity &&
467 	    last->period > s2.period &&
468 	    last->period <= state->period)
469 		dev_warn(chip->dev,
470 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
471 			 state->period, s2.period, last->period);
472 
473 	if (state->enabled && state->period < s2.period)
474 		dev_warn(chip->dev,
475 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
476 			 state->period, s2.period);
477 
478 	if (state->enabled &&
479 	    last->polarity == state->polarity &&
480 	    last->period == s2.period &&
481 	    last->duty_cycle > s2.duty_cycle &&
482 	    last->duty_cycle <= state->duty_cycle)
483 		dev_warn(chip->dev,
484 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
485 			 state->duty_cycle, state->period,
486 			 s2.duty_cycle, s2.period,
487 			 last->duty_cycle, last->period);
488 
489 	if (state->enabled && state->duty_cycle < s2.duty_cycle)
490 		dev_warn(chip->dev,
491 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
492 			 state->duty_cycle, state->period,
493 			 s2.duty_cycle, s2.period);
494 
495 	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
496 		dev_warn(chip->dev,
497 			 "requested disabled, but yielded enabled with duty > 0\n");
498 
499 	/* reapply the state that the driver reported being configured. */
500 	err = chip->ops->apply(chip, pwm, &s1);
501 	if (err) {
502 		*last = s1;
503 		dev_err(chip->dev, "failed to reapply current setting\n");
504 		return;
505 	}
506 
507 	trace_pwm_apply(pwm, &s1);
508 
509 	chip->ops->get_state(chip, pwm, last);
510 	trace_pwm_get(pwm, last);
511 
512 	/* reapplication of the current state should give an exact match */
513 	if (s1.enabled != last->enabled ||
514 	    s1.polarity != last->polarity ||
515 	    (s1.enabled && s1.period != last->period) ||
516 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
517 		dev_err(chip->dev,
518 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
519 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
520 			last->enabled, last->polarity, last->duty_cycle,
521 			last->period);
522 	}
523 }
524 
525 /**
526  * pwm_apply_state() - atomically apply a new state to a PWM device
527  * @pwm: PWM device
528  * @state: new state to apply
529  */
530 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
531 {
532 	struct pwm_chip *chip;
533 	int err;
534 
535 	/*
536 	 * Some lowlevel driver's implementations of .apply() make use of
537 	 * mutexes, also with some drivers only returning when the new
538 	 * configuration is active calling pwm_apply_state() from atomic context
539 	 * is a bad idea. So make it explicit that calling this function might
540 	 * sleep.
541 	 */
542 	might_sleep();
543 
544 	if (!pwm || !state || !state->period ||
545 	    state->duty_cycle > state->period)
546 		return -EINVAL;
547 
548 	chip = pwm->chip;
549 
550 	if (state->period == pwm->state.period &&
551 	    state->duty_cycle == pwm->state.duty_cycle &&
552 	    state->polarity == pwm->state.polarity &&
553 	    state->enabled == pwm->state.enabled &&
554 	    state->usage_power == pwm->state.usage_power)
555 		return 0;
556 
557 	if (chip->ops->apply) {
558 		err = chip->ops->apply(chip, pwm, state);
559 		if (err)
560 			return err;
561 
562 		trace_pwm_apply(pwm, state);
563 
564 		pwm->state = *state;
565 
566 		/*
567 		 * only do this after pwm->state was applied as some
568 		 * implementations of .get_state depend on this
569 		 */
570 		pwm_apply_state_debug(pwm, state);
571 	} else {
572 		/*
573 		 * FIXME: restore the initial state in case of error.
574 		 */
575 		if (state->polarity != pwm->state.polarity) {
576 			if (!chip->ops->set_polarity)
577 				return -EINVAL;
578 
579 			/*
580 			 * Changing the polarity of a running PWM is
581 			 * only allowed when the PWM driver implements
582 			 * ->apply().
583 			 */
584 			if (pwm->state.enabled) {
585 				chip->ops->disable(chip, pwm);
586 				pwm->state.enabled = false;
587 			}
588 
589 			err = chip->ops->set_polarity(chip, pwm,
590 						      state->polarity);
591 			if (err)
592 				return err;
593 
594 			pwm->state.polarity = state->polarity;
595 		}
596 
597 		if (state->period != pwm->state.period ||
598 		    state->duty_cycle != pwm->state.duty_cycle) {
599 			err = chip->ops->config(pwm->chip, pwm,
600 						state->duty_cycle,
601 						state->period);
602 			if (err)
603 				return err;
604 
605 			pwm->state.duty_cycle = state->duty_cycle;
606 			pwm->state.period = state->period;
607 		}
608 
609 		if (state->enabled != pwm->state.enabled) {
610 			if (state->enabled) {
611 				err = chip->ops->enable(chip, pwm);
612 				if (err)
613 					return err;
614 			} else {
615 				chip->ops->disable(chip, pwm);
616 			}
617 
618 			pwm->state.enabled = state->enabled;
619 		}
620 	}
621 
622 	return 0;
623 }
624 EXPORT_SYMBOL_GPL(pwm_apply_state);
625 
626 /**
627  * pwm_capture() - capture and report a PWM signal
628  * @pwm: PWM device
629  * @result: structure to fill with capture result
630  * @timeout: time to wait, in milliseconds, before giving up on capture
631  *
632  * Returns: 0 on success or a negative error code on failure.
633  */
634 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
635 		unsigned long timeout)
636 {
637 	int err;
638 
639 	if (!pwm || !pwm->chip->ops)
640 		return -EINVAL;
641 
642 	if (!pwm->chip->ops->capture)
643 		return -ENOSYS;
644 
645 	mutex_lock(&pwm_lock);
646 	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
647 	mutex_unlock(&pwm_lock);
648 
649 	return err;
650 }
651 EXPORT_SYMBOL_GPL(pwm_capture);
652 
653 /**
654  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
655  * @pwm: PWM device
656  *
657  * This function will adjust the PWM config to the PWM arguments provided
658  * by the DT or PWM lookup table. This is particularly useful to adapt
659  * the bootloader config to the Linux one.
660  */
661 int pwm_adjust_config(struct pwm_device *pwm)
662 {
663 	struct pwm_state state;
664 	struct pwm_args pargs;
665 
666 	pwm_get_args(pwm, &pargs);
667 	pwm_get_state(pwm, &state);
668 
669 	/*
670 	 * If the current period is zero it means that either the PWM driver
671 	 * does not support initial state retrieval or the PWM has not yet
672 	 * been configured.
673 	 *
674 	 * In either case, we setup the new period and polarity, and assign a
675 	 * duty cycle of 0.
676 	 */
677 	if (!state.period) {
678 		state.duty_cycle = 0;
679 		state.period = pargs.period;
680 		state.polarity = pargs.polarity;
681 
682 		return pwm_apply_state(pwm, &state);
683 	}
684 
685 	/*
686 	 * Adjust the PWM duty cycle/period based on the period value provided
687 	 * in PWM args.
688 	 */
689 	if (pargs.period != state.period) {
690 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
691 
692 		do_div(dutycycle, state.period);
693 		state.duty_cycle = dutycycle;
694 		state.period = pargs.period;
695 	}
696 
697 	/*
698 	 * If the polarity changed, we should also change the duty cycle.
699 	 */
700 	if (pargs.polarity != state.polarity) {
701 		state.polarity = pargs.polarity;
702 		state.duty_cycle = state.period - state.duty_cycle;
703 	}
704 
705 	return pwm_apply_state(pwm, &state);
706 }
707 EXPORT_SYMBOL_GPL(pwm_adjust_config);
708 
709 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
710 {
711 	struct pwm_chip *chip;
712 
713 	mutex_lock(&pwm_lock);
714 
715 	list_for_each_entry(chip, &pwm_chips, list)
716 		if (chip->dev && dev_fwnode(chip->dev) == fwnode) {
717 			mutex_unlock(&pwm_lock);
718 			return chip;
719 		}
720 
721 	mutex_unlock(&pwm_lock);
722 
723 	return ERR_PTR(-EPROBE_DEFER);
724 }
725 
726 static struct device_link *pwm_device_link_add(struct device *dev,
727 					       struct pwm_device *pwm)
728 {
729 	struct device_link *dl;
730 
731 	if (!dev) {
732 		/*
733 		 * No device for the PWM consumer has been provided. It may
734 		 * impact the PM sequence ordering: the PWM supplier may get
735 		 * suspended before the consumer.
736 		 */
737 		dev_warn(pwm->chip->dev,
738 			 "No consumer device specified to create a link to\n");
739 		return NULL;
740 	}
741 
742 	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
743 	if (!dl) {
744 		dev_err(dev, "failed to create device link to %s\n",
745 			dev_name(pwm->chip->dev));
746 		return ERR_PTR(-EINVAL);
747 	}
748 
749 	return dl;
750 }
751 
752 /**
753  * of_pwm_get() - request a PWM via the PWM framework
754  * @dev: device for PWM consumer
755  * @np: device node to get the PWM from
756  * @con_id: consumer name
757  *
758  * Returns the PWM device parsed from the phandle and index specified in the
759  * "pwms" property of a device tree node or a negative error-code on failure.
760  * Values parsed from the device tree are stored in the returned PWM device
761  * object.
762  *
763  * If con_id is NULL, the first PWM device listed in the "pwms" property will
764  * be requested. Otherwise the "pwm-names" property is used to do a reverse
765  * lookup of the PWM index. This also means that the "pwm-names" property
766  * becomes mandatory for devices that look up the PWM device via the con_id
767  * parameter.
768  *
769  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
770  * error code on failure.
771  */
772 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
773 			      const char *con_id)
774 {
775 	struct pwm_device *pwm = NULL;
776 	struct of_phandle_args args;
777 	struct device_link *dl;
778 	struct pwm_chip *pc;
779 	int index = 0;
780 	int err;
781 
782 	if (con_id) {
783 		index = of_property_match_string(np, "pwm-names", con_id);
784 		if (index < 0)
785 			return ERR_PTR(index);
786 	}
787 
788 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
789 					 &args);
790 	if (err) {
791 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
792 		return ERR_PTR(err);
793 	}
794 
795 	pc = fwnode_to_pwmchip(of_fwnode_handle(args.np));
796 	if (IS_ERR(pc)) {
797 		if (PTR_ERR(pc) != -EPROBE_DEFER)
798 			pr_err("%s(): PWM chip not found\n", __func__);
799 
800 		pwm = ERR_CAST(pc);
801 		goto put;
802 	}
803 
804 	pwm = pc->of_xlate(pc, &args);
805 	if (IS_ERR(pwm))
806 		goto put;
807 
808 	dl = pwm_device_link_add(dev, pwm);
809 	if (IS_ERR(dl)) {
810 		/* of_xlate ended up calling pwm_request_from_chip() */
811 		pwm_free(pwm);
812 		pwm = ERR_CAST(dl);
813 		goto put;
814 	}
815 
816 	/*
817 	 * If a consumer name was not given, try to look it up from the
818 	 * "pwm-names" property if it exists. Otherwise use the name of
819 	 * the user device node.
820 	 */
821 	if (!con_id) {
822 		err = of_property_read_string_index(np, "pwm-names", index,
823 						    &con_id);
824 		if (err < 0)
825 			con_id = np->name;
826 	}
827 
828 	pwm->label = con_id;
829 
830 put:
831 	of_node_put(args.np);
832 
833 	return pwm;
834 }
835 EXPORT_SYMBOL_GPL(of_pwm_get);
836 
837 /**
838  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
839  * @fwnode: firmware node to get the "pwms" property from
840  *
841  * Returns the PWM device parsed from the fwnode and index specified in the
842  * "pwms" property or a negative error-code on failure.
843  * Values parsed from the device tree are stored in the returned PWM device
844  * object.
845  *
846  * This is analogous to of_pwm_get() except con_id is not yet supported.
847  * ACPI entries must look like
848  * Package () {"pwms", Package ()
849  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
850  *
851  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
852  * error code on failure.
853  */
854 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
855 {
856 	struct pwm_device *pwm;
857 	struct fwnode_reference_args args;
858 	struct pwm_chip *chip;
859 	int ret;
860 
861 	memset(&args, 0, sizeof(args));
862 
863 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
864 	if (ret < 0)
865 		return ERR_PTR(ret);
866 
867 	if (args.nargs < 2)
868 		return ERR_PTR(-EPROTO);
869 
870 	chip = fwnode_to_pwmchip(args.fwnode);
871 	if (IS_ERR(chip))
872 		return ERR_CAST(chip);
873 
874 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
875 	if (IS_ERR(pwm))
876 		return pwm;
877 
878 	pwm->args.period = args.args[1];
879 	pwm->args.polarity = PWM_POLARITY_NORMAL;
880 
881 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
882 		pwm->args.polarity = PWM_POLARITY_INVERSED;
883 
884 	return pwm;
885 }
886 
887 /**
888  * pwm_add_table() - register PWM device consumers
889  * @table: array of consumers to register
890  * @num: number of consumers in table
891  */
892 void pwm_add_table(struct pwm_lookup *table, size_t num)
893 {
894 	mutex_lock(&pwm_lookup_lock);
895 
896 	while (num--) {
897 		list_add_tail(&table->list, &pwm_lookup_list);
898 		table++;
899 	}
900 
901 	mutex_unlock(&pwm_lookup_lock);
902 }
903 
904 /**
905  * pwm_remove_table() - unregister PWM device consumers
906  * @table: array of consumers to unregister
907  * @num: number of consumers in table
908  */
909 void pwm_remove_table(struct pwm_lookup *table, size_t num)
910 {
911 	mutex_lock(&pwm_lookup_lock);
912 
913 	while (num--) {
914 		list_del(&table->list);
915 		table++;
916 	}
917 
918 	mutex_unlock(&pwm_lookup_lock);
919 }
920 
921 /**
922  * pwm_get() - look up and request a PWM device
923  * @dev: device for PWM consumer
924  * @con_id: consumer name
925  *
926  * Lookup is first attempted using DT. If the device was not instantiated from
927  * a device tree, a PWM chip and a relative index is looked up via a table
928  * supplied by board setup code (see pwm_add_table()).
929  *
930  * Once a PWM chip has been found the specified PWM device will be requested
931  * and is ready to be used.
932  *
933  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
934  * error code on failure.
935  */
936 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
937 {
938 	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
939 	const char *dev_id = dev ? dev_name(dev) : NULL;
940 	struct pwm_device *pwm;
941 	struct pwm_chip *chip;
942 	struct device_link *dl;
943 	unsigned int best = 0;
944 	struct pwm_lookup *p, *chosen = NULL;
945 	unsigned int match;
946 	int err;
947 
948 	/* look up via DT first */
949 	if (is_of_node(fwnode))
950 		return of_pwm_get(dev, to_of_node(fwnode), con_id);
951 
952 	/* then lookup via ACPI */
953 	if (is_acpi_node(fwnode)) {
954 		pwm = acpi_pwm_get(fwnode);
955 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
956 			return pwm;
957 	}
958 
959 	/*
960 	 * We look up the provider in the static table typically provided by
961 	 * board setup code. We first try to lookup the consumer device by
962 	 * name. If the consumer device was passed in as NULL or if no match
963 	 * was found, we try to find the consumer by directly looking it up
964 	 * by name.
965 	 *
966 	 * If a match is found, the provider PWM chip is looked up by name
967 	 * and a PWM device is requested using the PWM device per-chip index.
968 	 *
969 	 * The lookup algorithm was shamelessly taken from the clock
970 	 * framework:
971 	 *
972 	 * We do slightly fuzzy matching here:
973 	 *  An entry with a NULL ID is assumed to be a wildcard.
974 	 *  If an entry has a device ID, it must match
975 	 *  If an entry has a connection ID, it must match
976 	 * Then we take the most specific entry - with the following order
977 	 * of precedence: dev+con > dev only > con only.
978 	 */
979 	mutex_lock(&pwm_lookup_lock);
980 
981 	list_for_each_entry(p, &pwm_lookup_list, list) {
982 		match = 0;
983 
984 		if (p->dev_id) {
985 			if (!dev_id || strcmp(p->dev_id, dev_id))
986 				continue;
987 
988 			match += 2;
989 		}
990 
991 		if (p->con_id) {
992 			if (!con_id || strcmp(p->con_id, con_id))
993 				continue;
994 
995 			match += 1;
996 		}
997 
998 		if (match > best) {
999 			chosen = p;
1000 
1001 			if (match != 3)
1002 				best = match;
1003 			else
1004 				break;
1005 		}
1006 	}
1007 
1008 	mutex_unlock(&pwm_lookup_lock);
1009 
1010 	if (!chosen)
1011 		return ERR_PTR(-ENODEV);
1012 
1013 	chip = pwmchip_find_by_name(chosen->provider);
1014 
1015 	/*
1016 	 * If the lookup entry specifies a module, load the module and retry
1017 	 * the PWM chip lookup. This can be used to work around driver load
1018 	 * ordering issues if driver's can't be made to properly support the
1019 	 * deferred probe mechanism.
1020 	 */
1021 	if (!chip && chosen->module) {
1022 		err = request_module(chosen->module);
1023 		if (err == 0)
1024 			chip = pwmchip_find_by_name(chosen->provider);
1025 	}
1026 
1027 	if (!chip)
1028 		return ERR_PTR(-EPROBE_DEFER);
1029 
1030 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1031 	if (IS_ERR(pwm))
1032 		return pwm;
1033 
1034 	dl = pwm_device_link_add(dev, pwm);
1035 	if (IS_ERR(dl)) {
1036 		pwm_free(pwm);
1037 		return ERR_CAST(dl);
1038 	}
1039 
1040 	pwm->args.period = chosen->period;
1041 	pwm->args.polarity = chosen->polarity;
1042 
1043 	return pwm;
1044 }
1045 EXPORT_SYMBOL_GPL(pwm_get);
1046 
1047 /**
1048  * pwm_put() - release a PWM device
1049  * @pwm: PWM device
1050  */
1051 void pwm_put(struct pwm_device *pwm)
1052 {
1053 	if (!pwm)
1054 		return;
1055 
1056 	mutex_lock(&pwm_lock);
1057 
1058 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1059 		pr_warn("PWM device already freed\n");
1060 		goto out;
1061 	}
1062 
1063 	if (pwm->chip->ops->free)
1064 		pwm->chip->ops->free(pwm->chip, pwm);
1065 
1066 	pwm_set_chip_data(pwm, NULL);
1067 	pwm->label = NULL;
1068 
1069 	module_put(pwm->chip->ops->owner);
1070 out:
1071 	mutex_unlock(&pwm_lock);
1072 }
1073 EXPORT_SYMBOL_GPL(pwm_put);
1074 
1075 static void devm_pwm_release(void *pwm)
1076 {
1077 	pwm_put(pwm);
1078 }
1079 
1080 /**
1081  * devm_pwm_get() - resource managed pwm_get()
1082  * @dev: device for PWM consumer
1083  * @con_id: consumer name
1084  *
1085  * This function performs like pwm_get() but the acquired PWM device will
1086  * automatically be released on driver detach.
1087  *
1088  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1089  * error code on failure.
1090  */
1091 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1092 {
1093 	struct pwm_device *pwm;
1094 	int ret;
1095 
1096 	pwm = pwm_get(dev, con_id);
1097 	if (IS_ERR(pwm))
1098 		return pwm;
1099 
1100 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1101 	if (ret)
1102 		return ERR_PTR(ret);
1103 
1104 	return pwm;
1105 }
1106 EXPORT_SYMBOL_GPL(devm_pwm_get);
1107 
1108 /**
1109  * devm_of_pwm_get() - resource managed of_pwm_get()
1110  * @dev: device for PWM consumer
1111  * @np: device node to get the PWM from
1112  * @con_id: consumer name
1113  *
1114  * This function performs like of_pwm_get() but the acquired PWM device will
1115  * automatically be released on driver detach.
1116  *
1117  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1118  * error code on failure.
1119  */
1120 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1121 				   const char *con_id)
1122 {
1123 	struct pwm_device *pwm;
1124 	int ret;
1125 
1126 	pwm = of_pwm_get(dev, np, con_id);
1127 	if (IS_ERR(pwm))
1128 		return pwm;
1129 
1130 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1131 	if (ret)
1132 		return ERR_PTR(ret);
1133 
1134 	return pwm;
1135 }
1136 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1137 
1138 /**
1139  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1140  * @dev: device for PWM consumer
1141  * @fwnode: firmware node to get the PWM from
1142  * @con_id: consumer name
1143  *
1144  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1145  * acpi_pwm_get() for a detailed description.
1146  *
1147  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1148  * error code on failure.
1149  */
1150 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1151 				       struct fwnode_handle *fwnode,
1152 				       const char *con_id)
1153 {
1154 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
1155 	int ret;
1156 
1157 	if (is_of_node(fwnode))
1158 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1159 	else if (is_acpi_node(fwnode))
1160 		pwm = acpi_pwm_get(fwnode);
1161 	if (IS_ERR(pwm))
1162 		return pwm;
1163 
1164 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1165 	if (ret)
1166 		return ERR_PTR(ret);
1167 
1168 	return pwm;
1169 }
1170 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1171 
1172 #ifdef CONFIG_DEBUG_FS
1173 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1174 {
1175 	unsigned int i;
1176 
1177 	for (i = 0; i < chip->npwm; i++) {
1178 		struct pwm_device *pwm = &chip->pwms[i];
1179 		struct pwm_state state;
1180 
1181 		pwm_get_state(pwm, &state);
1182 
1183 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1184 
1185 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1186 			seq_puts(s, " requested");
1187 
1188 		if (state.enabled)
1189 			seq_puts(s, " enabled");
1190 
1191 		seq_printf(s, " period: %llu ns", state.period);
1192 		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1193 		seq_printf(s, " polarity: %s",
1194 			   state.polarity ? "inverse" : "normal");
1195 
1196 		if (state.usage_power)
1197 			seq_puts(s, " usage_power");
1198 
1199 		seq_puts(s, "\n");
1200 	}
1201 }
1202 
1203 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1204 {
1205 	mutex_lock(&pwm_lock);
1206 	s->private = "";
1207 
1208 	return seq_list_start(&pwm_chips, *pos);
1209 }
1210 
1211 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1212 {
1213 	s->private = "\n";
1214 
1215 	return seq_list_next(v, &pwm_chips, pos);
1216 }
1217 
1218 static void pwm_seq_stop(struct seq_file *s, void *v)
1219 {
1220 	mutex_unlock(&pwm_lock);
1221 }
1222 
1223 static int pwm_seq_show(struct seq_file *s, void *v)
1224 {
1225 	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1226 
1227 	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1228 		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1229 		   dev_name(chip->dev), chip->npwm,
1230 		   (chip->npwm != 1) ? "s" : "");
1231 
1232 	pwm_dbg_show(chip, s);
1233 
1234 	return 0;
1235 }
1236 
1237 static const struct seq_operations pwm_debugfs_sops = {
1238 	.start = pwm_seq_start,
1239 	.next = pwm_seq_next,
1240 	.stop = pwm_seq_stop,
1241 	.show = pwm_seq_show,
1242 };
1243 
1244 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1245 
1246 static int __init pwm_debugfs_init(void)
1247 {
1248 	debugfs_create_file("pwm", S_IFREG | 0444, NULL, NULL,
1249 			    &pwm_debugfs_fops);
1250 
1251 	return 0;
1252 }
1253 subsys_initcall(pwm_debugfs_init);
1254 #endif /* CONFIG_DEBUG_FS */
1255