xref: /openbmc/linux/drivers/pwm/core.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20 
21 #include <dt-bindings/pwm/pwm.h>
22 
23 #define MAX_PWMS 1024
24 
25 static DEFINE_MUTEX(pwm_lookup_lock);
26 static LIST_HEAD(pwm_lookup_list);
27 static DEFINE_MUTEX(pwm_lock);
28 static LIST_HEAD(pwm_chips);
29 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
30 static RADIX_TREE(pwm_tree, GFP_KERNEL);
31 
32 static struct pwm_device *pwm_to_device(unsigned int pwm)
33 {
34 	return radix_tree_lookup(&pwm_tree, pwm);
35 }
36 
37 static int alloc_pwms(int pwm, unsigned int count)
38 {
39 	unsigned int from = 0;
40 	unsigned int start;
41 
42 	if (pwm >= MAX_PWMS)
43 		return -EINVAL;
44 
45 	if (pwm >= 0)
46 		from = pwm;
47 
48 	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
49 					   count, 0);
50 
51 	if (pwm >= 0 && start != pwm)
52 		return -EEXIST;
53 
54 	if (start + count > MAX_PWMS)
55 		return -ENOSPC;
56 
57 	return start;
58 }
59 
60 static void free_pwms(struct pwm_chip *chip)
61 {
62 	unsigned int i;
63 
64 	for (i = 0; i < chip->npwm; i++) {
65 		struct pwm_device *pwm = &chip->pwms[i];
66 
67 		radix_tree_delete(&pwm_tree, pwm->pwm);
68 	}
69 
70 	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
71 
72 	kfree(chip->pwms);
73 	chip->pwms = NULL;
74 }
75 
76 static struct pwm_chip *pwmchip_find_by_name(const char *name)
77 {
78 	struct pwm_chip *chip;
79 
80 	if (!name)
81 		return NULL;
82 
83 	mutex_lock(&pwm_lock);
84 
85 	list_for_each_entry(chip, &pwm_chips, list) {
86 		const char *chip_name = dev_name(chip->dev);
87 
88 		if (chip_name && strcmp(chip_name, name) == 0) {
89 			mutex_unlock(&pwm_lock);
90 			return chip;
91 		}
92 	}
93 
94 	mutex_unlock(&pwm_lock);
95 
96 	return NULL;
97 }
98 
99 static int pwm_device_request(struct pwm_device *pwm, const char *label)
100 {
101 	int err;
102 
103 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
104 		return -EBUSY;
105 
106 	if (!try_module_get(pwm->chip->ops->owner))
107 		return -ENODEV;
108 
109 	if (pwm->chip->ops->request) {
110 		err = pwm->chip->ops->request(pwm->chip, pwm);
111 		if (err) {
112 			module_put(pwm->chip->ops->owner);
113 			return err;
114 		}
115 	}
116 
117 	set_bit(PWMF_REQUESTED, &pwm->flags);
118 	pwm->label = label;
119 
120 	return 0;
121 }
122 
123 struct pwm_device *
124 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
125 {
126 	struct pwm_device *pwm;
127 
128 	/* check, whether the driver supports a third cell for flags */
129 	if (pc->of_pwm_n_cells < 3)
130 		return ERR_PTR(-EINVAL);
131 
132 	/* flags in the third cell are optional */
133 	if (args->args_count < 2)
134 		return ERR_PTR(-EINVAL);
135 
136 	if (args->args[0] >= pc->npwm)
137 		return ERR_PTR(-EINVAL);
138 
139 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
140 	if (IS_ERR(pwm))
141 		return pwm;
142 
143 	pwm->args.period = args->args[1];
144 	pwm->args.polarity = PWM_POLARITY_NORMAL;
145 
146 	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
147 		pwm->args.polarity = PWM_POLARITY_INVERSED;
148 
149 	return pwm;
150 }
151 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
152 
153 static struct pwm_device *
154 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
155 {
156 	struct pwm_device *pwm;
157 
158 	/* sanity check driver support */
159 	if (pc->of_pwm_n_cells < 2)
160 		return ERR_PTR(-EINVAL);
161 
162 	/* all cells are required */
163 	if (args->args_count != pc->of_pwm_n_cells)
164 		return ERR_PTR(-EINVAL);
165 
166 	if (args->args[0] >= pc->npwm)
167 		return ERR_PTR(-EINVAL);
168 
169 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
170 	if (IS_ERR(pwm))
171 		return pwm;
172 
173 	pwm->args.period = args->args[1];
174 
175 	return pwm;
176 }
177 
178 static void of_pwmchip_add(struct pwm_chip *chip)
179 {
180 	if (!chip->dev || !chip->dev->of_node)
181 		return;
182 
183 	if (!chip->of_xlate) {
184 		chip->of_xlate = of_pwm_simple_xlate;
185 		chip->of_pwm_n_cells = 2;
186 	}
187 
188 	of_node_get(chip->dev->of_node);
189 }
190 
191 static void of_pwmchip_remove(struct pwm_chip *chip)
192 {
193 	if (chip->dev)
194 		of_node_put(chip->dev->of_node);
195 }
196 
197 /**
198  * pwm_set_chip_data() - set private chip data for a PWM
199  * @pwm: PWM device
200  * @data: pointer to chip-specific data
201  *
202  * Returns: 0 on success or a negative error code on failure.
203  */
204 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
205 {
206 	if (!pwm)
207 		return -EINVAL;
208 
209 	pwm->chip_data = data;
210 
211 	return 0;
212 }
213 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
214 
215 /**
216  * pwm_get_chip_data() - get private chip data for a PWM
217  * @pwm: PWM device
218  *
219  * Returns: A pointer to the chip-private data for the PWM device.
220  */
221 void *pwm_get_chip_data(struct pwm_device *pwm)
222 {
223 	return pwm ? pwm->chip_data : NULL;
224 }
225 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
226 
227 static bool pwm_ops_check(const struct pwm_ops *ops)
228 {
229 	/* driver supports legacy, non-atomic operation */
230 	if (ops->config && ops->enable && ops->disable)
231 		return true;
232 
233 	/* driver supports atomic operation */
234 	if (ops->apply)
235 		return true;
236 
237 	return false;
238 }
239 
240 /**
241  * pwmchip_add_with_polarity() - register a new PWM chip
242  * @chip: the PWM chip to add
243  * @polarity: initial polarity of PWM channels
244  *
245  * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
246  * will be used. The initial polarity for all channels is specified by the
247  * @polarity parameter.
248  *
249  * Returns: 0 on success or a negative error code on failure.
250  */
251 int pwmchip_add_with_polarity(struct pwm_chip *chip,
252 			      enum pwm_polarity polarity)
253 {
254 	struct pwm_device *pwm;
255 	unsigned int i;
256 	int ret;
257 
258 	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
259 		return -EINVAL;
260 
261 	if (!pwm_ops_check(chip->ops))
262 		return -EINVAL;
263 
264 	mutex_lock(&pwm_lock);
265 
266 	ret = alloc_pwms(chip->base, chip->npwm);
267 	if (ret < 0)
268 		goto out;
269 
270 	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
271 	if (!chip->pwms) {
272 		ret = -ENOMEM;
273 		goto out;
274 	}
275 
276 	chip->base = ret;
277 
278 	for (i = 0; i < chip->npwm; i++) {
279 		pwm = &chip->pwms[i];
280 
281 		pwm->chip = chip;
282 		pwm->pwm = chip->base + i;
283 		pwm->hwpwm = i;
284 		pwm->state.polarity = polarity;
285 
286 		if (chip->ops->get_state)
287 			chip->ops->get_state(chip, pwm, &pwm->state);
288 
289 		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
290 	}
291 
292 	bitmap_set(allocated_pwms, chip->base, chip->npwm);
293 
294 	INIT_LIST_HEAD(&chip->list);
295 	list_add(&chip->list, &pwm_chips);
296 
297 	ret = 0;
298 
299 	if (IS_ENABLED(CONFIG_OF))
300 		of_pwmchip_add(chip);
301 
302 out:
303 	mutex_unlock(&pwm_lock);
304 
305 	if (!ret)
306 		pwmchip_sysfs_export(chip);
307 
308 	return ret;
309 }
310 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
311 
312 /**
313  * pwmchip_add() - register a new PWM chip
314  * @chip: the PWM chip to add
315  *
316  * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
317  * will be used. The initial polarity for all channels is normal.
318  *
319  * Returns: 0 on success or a negative error code on failure.
320  */
321 int pwmchip_add(struct pwm_chip *chip)
322 {
323 	return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
324 }
325 EXPORT_SYMBOL_GPL(pwmchip_add);
326 
327 /**
328  * pwmchip_remove() - remove a PWM chip
329  * @chip: the PWM chip to remove
330  *
331  * Removes a PWM chip. This function may return busy if the PWM chip provides
332  * a PWM device that is still requested.
333  *
334  * Returns: 0 on success or a negative error code on failure.
335  */
336 int pwmchip_remove(struct pwm_chip *chip)
337 {
338 	unsigned int i;
339 	int ret = 0;
340 
341 	pwmchip_sysfs_unexport(chip);
342 
343 	mutex_lock(&pwm_lock);
344 
345 	for (i = 0; i < chip->npwm; i++) {
346 		struct pwm_device *pwm = &chip->pwms[i];
347 
348 		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
349 			ret = -EBUSY;
350 			goto out;
351 		}
352 	}
353 
354 	list_del_init(&chip->list);
355 
356 	if (IS_ENABLED(CONFIG_OF))
357 		of_pwmchip_remove(chip);
358 
359 	free_pwms(chip);
360 
361 out:
362 	mutex_unlock(&pwm_lock);
363 	return ret;
364 }
365 EXPORT_SYMBOL_GPL(pwmchip_remove);
366 
367 /**
368  * pwm_request() - request a PWM device
369  * @pwm: global PWM device index
370  * @label: PWM device label
371  *
372  * This function is deprecated, use pwm_get() instead.
373  *
374  * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
375  * failure.
376  */
377 struct pwm_device *pwm_request(int pwm, const char *label)
378 {
379 	struct pwm_device *dev;
380 	int err;
381 
382 	if (pwm < 0 || pwm >= MAX_PWMS)
383 		return ERR_PTR(-EINVAL);
384 
385 	mutex_lock(&pwm_lock);
386 
387 	dev = pwm_to_device(pwm);
388 	if (!dev) {
389 		dev = ERR_PTR(-EPROBE_DEFER);
390 		goto out;
391 	}
392 
393 	err = pwm_device_request(dev, label);
394 	if (err < 0)
395 		dev = ERR_PTR(err);
396 
397 out:
398 	mutex_unlock(&pwm_lock);
399 
400 	return dev;
401 }
402 EXPORT_SYMBOL_GPL(pwm_request);
403 
404 /**
405  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
406  * @chip: PWM chip
407  * @index: per-chip index of the PWM to request
408  * @label: a literal description string of this PWM
409  *
410  * Returns: A pointer to the PWM device at the given index of the given PWM
411  * chip. A negative error code is returned if the index is not valid for the
412  * specified PWM chip or if the PWM device cannot be requested.
413  */
414 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
415 					 unsigned int index,
416 					 const char *label)
417 {
418 	struct pwm_device *pwm;
419 	int err;
420 
421 	if (!chip || index >= chip->npwm)
422 		return ERR_PTR(-EINVAL);
423 
424 	mutex_lock(&pwm_lock);
425 	pwm = &chip->pwms[index];
426 
427 	err = pwm_device_request(pwm, label);
428 	if (err < 0)
429 		pwm = ERR_PTR(err);
430 
431 	mutex_unlock(&pwm_lock);
432 	return pwm;
433 }
434 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
435 
436 /**
437  * pwm_free() - free a PWM device
438  * @pwm: PWM device
439  *
440  * This function is deprecated, use pwm_put() instead.
441  */
442 void pwm_free(struct pwm_device *pwm)
443 {
444 	pwm_put(pwm);
445 }
446 EXPORT_SYMBOL_GPL(pwm_free);
447 
448 /**
449  * pwm_apply_state() - atomically apply a new state to a PWM device
450  * @pwm: PWM device
451  * @state: new state to apply
452  */
453 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
454 {
455 	struct pwm_chip *chip;
456 	int err;
457 
458 	if (!pwm || !state || !state->period ||
459 	    state->duty_cycle > state->period)
460 		return -EINVAL;
461 
462 	chip = pwm->chip;
463 
464 	if (state->period == pwm->state.period &&
465 	    state->duty_cycle == pwm->state.duty_cycle &&
466 	    state->polarity == pwm->state.polarity &&
467 	    state->enabled == pwm->state.enabled)
468 		return 0;
469 
470 	if (chip->ops->apply) {
471 		err = chip->ops->apply(chip, pwm, state);
472 		if (err)
473 			return err;
474 
475 		pwm->state = *state;
476 	} else {
477 		/*
478 		 * FIXME: restore the initial state in case of error.
479 		 */
480 		if (state->polarity != pwm->state.polarity) {
481 			if (!chip->ops->set_polarity)
482 				return -ENOTSUPP;
483 
484 			/*
485 			 * Changing the polarity of a running PWM is
486 			 * only allowed when the PWM driver implements
487 			 * ->apply().
488 			 */
489 			if (pwm->state.enabled) {
490 				chip->ops->disable(chip, pwm);
491 				pwm->state.enabled = false;
492 			}
493 
494 			err = chip->ops->set_polarity(chip, pwm,
495 						      state->polarity);
496 			if (err)
497 				return err;
498 
499 			pwm->state.polarity = state->polarity;
500 		}
501 
502 		if (state->period != pwm->state.period ||
503 		    state->duty_cycle != pwm->state.duty_cycle) {
504 			err = chip->ops->config(pwm->chip, pwm,
505 						state->duty_cycle,
506 						state->period);
507 			if (err)
508 				return err;
509 
510 			pwm->state.duty_cycle = state->duty_cycle;
511 			pwm->state.period = state->period;
512 		}
513 
514 		if (state->enabled != pwm->state.enabled) {
515 			if (state->enabled) {
516 				err = chip->ops->enable(chip, pwm);
517 				if (err)
518 					return err;
519 			} else {
520 				chip->ops->disable(chip, pwm);
521 			}
522 
523 			pwm->state.enabled = state->enabled;
524 		}
525 	}
526 
527 	return 0;
528 }
529 EXPORT_SYMBOL_GPL(pwm_apply_state);
530 
531 /**
532  * pwm_capture() - capture and report a PWM signal
533  * @pwm: PWM device
534  * @result: structure to fill with capture result
535  * @timeout: time to wait, in milliseconds, before giving up on capture
536  *
537  * Returns: 0 on success or a negative error code on failure.
538  */
539 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
540 		unsigned long timeout)
541 {
542 	int err;
543 
544 	if (!pwm || !pwm->chip->ops)
545 		return -EINVAL;
546 
547 	if (!pwm->chip->ops->capture)
548 		return -ENOSYS;
549 
550 	mutex_lock(&pwm_lock);
551 	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
552 	mutex_unlock(&pwm_lock);
553 
554 	return err;
555 }
556 EXPORT_SYMBOL_GPL(pwm_capture);
557 
558 /**
559  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
560  * @pwm: PWM device
561  *
562  * This function will adjust the PWM config to the PWM arguments provided
563  * by the DT or PWM lookup table. This is particularly useful to adapt
564  * the bootloader config to the Linux one.
565  */
566 int pwm_adjust_config(struct pwm_device *pwm)
567 {
568 	struct pwm_state state;
569 	struct pwm_args pargs;
570 
571 	pwm_get_args(pwm, &pargs);
572 	pwm_get_state(pwm, &state);
573 
574 	/*
575 	 * If the current period is zero it means that either the PWM driver
576 	 * does not support initial state retrieval or the PWM has not yet
577 	 * been configured.
578 	 *
579 	 * In either case, we setup the new period and polarity, and assign a
580 	 * duty cycle of 0.
581 	 */
582 	if (!state.period) {
583 		state.duty_cycle = 0;
584 		state.period = pargs.period;
585 		state.polarity = pargs.polarity;
586 
587 		return pwm_apply_state(pwm, &state);
588 	}
589 
590 	/*
591 	 * Adjust the PWM duty cycle/period based on the period value provided
592 	 * in PWM args.
593 	 */
594 	if (pargs.period != state.period) {
595 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
596 
597 		do_div(dutycycle, state.period);
598 		state.duty_cycle = dutycycle;
599 		state.period = pargs.period;
600 	}
601 
602 	/*
603 	 * If the polarity changed, we should also change the duty cycle.
604 	 */
605 	if (pargs.polarity != state.polarity) {
606 		state.polarity = pargs.polarity;
607 		state.duty_cycle = state.period - state.duty_cycle;
608 	}
609 
610 	return pwm_apply_state(pwm, &state);
611 }
612 EXPORT_SYMBOL_GPL(pwm_adjust_config);
613 
614 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
615 {
616 	struct pwm_chip *chip;
617 
618 	mutex_lock(&pwm_lock);
619 
620 	list_for_each_entry(chip, &pwm_chips, list)
621 		if (chip->dev && chip->dev->of_node == np) {
622 			mutex_unlock(&pwm_lock);
623 			return chip;
624 		}
625 
626 	mutex_unlock(&pwm_lock);
627 
628 	return ERR_PTR(-EPROBE_DEFER);
629 }
630 
631 static struct device_link *pwm_device_link_add(struct device *dev,
632 					       struct pwm_device *pwm)
633 {
634 	struct device_link *dl;
635 
636 	if (!dev) {
637 		/*
638 		 * No device for the PWM consumer has been provided. It may
639 		 * impact the PM sequence ordering: the PWM supplier may get
640 		 * suspended before the consumer.
641 		 */
642 		dev_warn(pwm->chip->dev,
643 			 "No consumer device specified to create a link to\n");
644 		return NULL;
645 	}
646 
647 	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
648 	if (!dl) {
649 		dev_err(dev, "failed to create device link to %s\n",
650 			dev_name(pwm->chip->dev));
651 		return ERR_PTR(-EINVAL);
652 	}
653 
654 	return dl;
655 }
656 
657 /**
658  * of_pwm_get() - request a PWM via the PWM framework
659  * @dev: device for PWM consumer
660  * @np: device node to get the PWM from
661  * @con_id: consumer name
662  *
663  * Returns the PWM device parsed from the phandle and index specified in the
664  * "pwms" property of a device tree node or a negative error-code on failure.
665  * Values parsed from the device tree are stored in the returned PWM device
666  * object.
667  *
668  * If con_id is NULL, the first PWM device listed in the "pwms" property will
669  * be requested. Otherwise the "pwm-names" property is used to do a reverse
670  * lookup of the PWM index. This also means that the "pwm-names" property
671  * becomes mandatory for devices that look up the PWM device via the con_id
672  * parameter.
673  *
674  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
675  * error code on failure.
676  */
677 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
678 			      const char *con_id)
679 {
680 	struct pwm_device *pwm = NULL;
681 	struct of_phandle_args args;
682 	struct device_link *dl;
683 	struct pwm_chip *pc;
684 	int index = 0;
685 	int err;
686 
687 	if (con_id) {
688 		index = of_property_match_string(np, "pwm-names", con_id);
689 		if (index < 0)
690 			return ERR_PTR(index);
691 	}
692 
693 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
694 					 &args);
695 	if (err) {
696 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
697 		return ERR_PTR(err);
698 	}
699 
700 	pc = of_node_to_pwmchip(args.np);
701 	if (IS_ERR(pc)) {
702 		if (PTR_ERR(pc) != -EPROBE_DEFER)
703 			pr_err("%s(): PWM chip not found\n", __func__);
704 
705 		pwm = ERR_CAST(pc);
706 		goto put;
707 	}
708 
709 	pwm = pc->of_xlate(pc, &args);
710 	if (IS_ERR(pwm))
711 		goto put;
712 
713 	dl = pwm_device_link_add(dev, pwm);
714 	if (IS_ERR(dl)) {
715 		/* of_xlate ended up calling pwm_request_from_chip() */
716 		pwm_free(pwm);
717 		pwm = ERR_CAST(dl);
718 		goto put;
719 	}
720 
721 	/*
722 	 * If a consumer name was not given, try to look it up from the
723 	 * "pwm-names" property if it exists. Otherwise use the name of
724 	 * the user device node.
725 	 */
726 	if (!con_id) {
727 		err = of_property_read_string_index(np, "pwm-names", index,
728 						    &con_id);
729 		if (err < 0)
730 			con_id = np->name;
731 	}
732 
733 	pwm->label = con_id;
734 
735 put:
736 	of_node_put(args.np);
737 
738 	return pwm;
739 }
740 EXPORT_SYMBOL_GPL(of_pwm_get);
741 
742 #if IS_ENABLED(CONFIG_ACPI)
743 static struct pwm_chip *device_to_pwmchip(struct device *dev)
744 {
745 	struct pwm_chip *chip;
746 
747 	mutex_lock(&pwm_lock);
748 
749 	list_for_each_entry(chip, &pwm_chips, list) {
750 		struct acpi_device *adev = ACPI_COMPANION(chip->dev);
751 
752 		if ((chip->dev == dev) || (adev && &adev->dev == dev)) {
753 			mutex_unlock(&pwm_lock);
754 			return chip;
755 		}
756 	}
757 
758 	mutex_unlock(&pwm_lock);
759 
760 	return ERR_PTR(-EPROBE_DEFER);
761 }
762 #endif
763 
764 /**
765  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
766  * @fwnode: firmware node to get the "pwm" property from
767  *
768  * Returns the PWM device parsed from the fwnode and index specified in the
769  * "pwms" property or a negative error-code on failure.
770  * Values parsed from the device tree are stored in the returned PWM device
771  * object.
772  *
773  * This is analogous to of_pwm_get() except con_id is not yet supported.
774  * ACPI entries must look like
775  * Package () {"pwms", Package ()
776  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
777  *
778  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
779  * error code on failure.
780  */
781 static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode)
782 {
783 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
784 #if IS_ENABLED(CONFIG_ACPI)
785 	struct fwnode_reference_args args;
786 	struct acpi_device *acpi;
787 	struct pwm_chip *chip;
788 	int ret;
789 
790 	memset(&args, 0, sizeof(args));
791 
792 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
793 	if (ret < 0)
794 		return ERR_PTR(ret);
795 
796 	acpi = to_acpi_device_node(args.fwnode);
797 	if (!acpi)
798 		return ERR_PTR(-EINVAL);
799 
800 	if (args.nargs < 2)
801 		return ERR_PTR(-EPROTO);
802 
803 	chip = device_to_pwmchip(&acpi->dev);
804 	if (IS_ERR(chip))
805 		return ERR_CAST(chip);
806 
807 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
808 	if (IS_ERR(pwm))
809 		return pwm;
810 
811 	pwm->args.period = args.args[1];
812 	pwm->args.polarity = PWM_POLARITY_NORMAL;
813 
814 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
815 		pwm->args.polarity = PWM_POLARITY_INVERSED;
816 #endif
817 
818 	return pwm;
819 }
820 
821 /**
822  * pwm_add_table() - register PWM device consumers
823  * @table: array of consumers to register
824  * @num: number of consumers in table
825  */
826 void pwm_add_table(struct pwm_lookup *table, size_t num)
827 {
828 	mutex_lock(&pwm_lookup_lock);
829 
830 	while (num--) {
831 		list_add_tail(&table->list, &pwm_lookup_list);
832 		table++;
833 	}
834 
835 	mutex_unlock(&pwm_lookup_lock);
836 }
837 
838 /**
839  * pwm_remove_table() - unregister PWM device consumers
840  * @table: array of consumers to unregister
841  * @num: number of consumers in table
842  */
843 void pwm_remove_table(struct pwm_lookup *table, size_t num)
844 {
845 	mutex_lock(&pwm_lookup_lock);
846 
847 	while (num--) {
848 		list_del(&table->list);
849 		table++;
850 	}
851 
852 	mutex_unlock(&pwm_lookup_lock);
853 }
854 
855 /**
856  * pwm_get() - look up and request a PWM device
857  * @dev: device for PWM consumer
858  * @con_id: consumer name
859  *
860  * Lookup is first attempted using DT. If the device was not instantiated from
861  * a device tree, a PWM chip and a relative index is looked up via a table
862  * supplied by board setup code (see pwm_add_table()).
863  *
864  * Once a PWM chip has been found the specified PWM device will be requested
865  * and is ready to be used.
866  *
867  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
868  * error code on failure.
869  */
870 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
871 {
872 	const char *dev_id = dev ? dev_name(dev) : NULL;
873 	struct pwm_device *pwm;
874 	struct pwm_chip *chip;
875 	struct device_link *dl;
876 	unsigned int best = 0;
877 	struct pwm_lookup *p, *chosen = NULL;
878 	unsigned int match;
879 	int err;
880 
881 	/* look up via DT first */
882 	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
883 		return of_pwm_get(dev, dev->of_node, con_id);
884 
885 	/* then lookup via ACPI */
886 	if (dev && is_acpi_node(dev->fwnode)) {
887 		pwm = acpi_pwm_get(dev->fwnode);
888 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
889 			return pwm;
890 	}
891 
892 	/*
893 	 * We look up the provider in the static table typically provided by
894 	 * board setup code. We first try to lookup the consumer device by
895 	 * name. If the consumer device was passed in as NULL or if no match
896 	 * was found, we try to find the consumer by directly looking it up
897 	 * by name.
898 	 *
899 	 * If a match is found, the provider PWM chip is looked up by name
900 	 * and a PWM device is requested using the PWM device per-chip index.
901 	 *
902 	 * The lookup algorithm was shamelessly taken from the clock
903 	 * framework:
904 	 *
905 	 * We do slightly fuzzy matching here:
906 	 *  An entry with a NULL ID is assumed to be a wildcard.
907 	 *  If an entry has a device ID, it must match
908 	 *  If an entry has a connection ID, it must match
909 	 * Then we take the most specific entry - with the following order
910 	 * of precedence: dev+con > dev only > con only.
911 	 */
912 	mutex_lock(&pwm_lookup_lock);
913 
914 	list_for_each_entry(p, &pwm_lookup_list, list) {
915 		match = 0;
916 
917 		if (p->dev_id) {
918 			if (!dev_id || strcmp(p->dev_id, dev_id))
919 				continue;
920 
921 			match += 2;
922 		}
923 
924 		if (p->con_id) {
925 			if (!con_id || strcmp(p->con_id, con_id))
926 				continue;
927 
928 			match += 1;
929 		}
930 
931 		if (match > best) {
932 			chosen = p;
933 
934 			if (match != 3)
935 				best = match;
936 			else
937 				break;
938 		}
939 	}
940 
941 	mutex_unlock(&pwm_lookup_lock);
942 
943 	if (!chosen)
944 		return ERR_PTR(-ENODEV);
945 
946 	chip = pwmchip_find_by_name(chosen->provider);
947 
948 	/*
949 	 * If the lookup entry specifies a module, load the module and retry
950 	 * the PWM chip lookup. This can be used to work around driver load
951 	 * ordering issues if driver's can't be made to properly support the
952 	 * deferred probe mechanism.
953 	 */
954 	if (!chip && chosen->module) {
955 		err = request_module(chosen->module);
956 		if (err == 0)
957 			chip = pwmchip_find_by_name(chosen->provider);
958 	}
959 
960 	if (!chip)
961 		return ERR_PTR(-EPROBE_DEFER);
962 
963 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
964 	if (IS_ERR(pwm))
965 		return pwm;
966 
967 	dl = pwm_device_link_add(dev, pwm);
968 	if (IS_ERR(dl)) {
969 		pwm_free(pwm);
970 		return ERR_CAST(dl);
971 	}
972 
973 	pwm->args.period = chosen->period;
974 	pwm->args.polarity = chosen->polarity;
975 
976 	return pwm;
977 }
978 EXPORT_SYMBOL_GPL(pwm_get);
979 
980 /**
981  * pwm_put() - release a PWM device
982  * @pwm: PWM device
983  */
984 void pwm_put(struct pwm_device *pwm)
985 {
986 	if (!pwm)
987 		return;
988 
989 	mutex_lock(&pwm_lock);
990 
991 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
992 		pr_warn("PWM device already freed\n");
993 		goto out;
994 	}
995 
996 	if (pwm->chip->ops->free)
997 		pwm->chip->ops->free(pwm->chip, pwm);
998 
999 	pwm_set_chip_data(pwm, NULL);
1000 	pwm->label = NULL;
1001 
1002 	module_put(pwm->chip->ops->owner);
1003 out:
1004 	mutex_unlock(&pwm_lock);
1005 }
1006 EXPORT_SYMBOL_GPL(pwm_put);
1007 
1008 static void devm_pwm_release(struct device *dev, void *res)
1009 {
1010 	pwm_put(*(struct pwm_device **)res);
1011 }
1012 
1013 /**
1014  * devm_pwm_get() - resource managed pwm_get()
1015  * @dev: device for PWM consumer
1016  * @con_id: consumer name
1017  *
1018  * This function performs like pwm_get() but the acquired PWM device will
1019  * automatically be released on driver detach.
1020  *
1021  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1022  * error code on failure.
1023  */
1024 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1025 {
1026 	struct pwm_device **ptr, *pwm;
1027 
1028 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1029 	if (!ptr)
1030 		return ERR_PTR(-ENOMEM);
1031 
1032 	pwm = pwm_get(dev, con_id);
1033 	if (!IS_ERR(pwm)) {
1034 		*ptr = pwm;
1035 		devres_add(dev, ptr);
1036 	} else {
1037 		devres_free(ptr);
1038 	}
1039 
1040 	return pwm;
1041 }
1042 EXPORT_SYMBOL_GPL(devm_pwm_get);
1043 
1044 /**
1045  * devm_of_pwm_get() - resource managed of_pwm_get()
1046  * @dev: device for PWM consumer
1047  * @np: device node to get the PWM from
1048  * @con_id: consumer name
1049  *
1050  * This function performs like of_pwm_get() but the acquired PWM device will
1051  * automatically be released on driver detach.
1052  *
1053  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1054  * error code on failure.
1055  */
1056 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1057 				   const char *con_id)
1058 {
1059 	struct pwm_device **ptr, *pwm;
1060 
1061 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1062 	if (!ptr)
1063 		return ERR_PTR(-ENOMEM);
1064 
1065 	pwm = of_pwm_get(dev, np, con_id);
1066 	if (!IS_ERR(pwm)) {
1067 		*ptr = pwm;
1068 		devres_add(dev, ptr);
1069 	} else {
1070 		devres_free(ptr);
1071 	}
1072 
1073 	return pwm;
1074 }
1075 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1076 
1077 /**
1078  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1079  * @dev: device for PWM consumer
1080  * @fwnode: firmware node to get the PWM from
1081  * @con_id: consumer name
1082  *
1083  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1084  * acpi_pwm_get() for a detailed description.
1085  *
1086  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1087  * error code on failure.
1088  */
1089 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1090 				       struct fwnode_handle *fwnode,
1091 				       const char *con_id)
1092 {
1093 	struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV);
1094 
1095 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1096 	if (!ptr)
1097 		return ERR_PTR(-ENOMEM);
1098 
1099 	if (is_of_node(fwnode))
1100 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1101 	else if (is_acpi_node(fwnode))
1102 		pwm = acpi_pwm_get(fwnode);
1103 
1104 	if (!IS_ERR(pwm)) {
1105 		*ptr = pwm;
1106 		devres_add(dev, ptr);
1107 	} else {
1108 		devres_free(ptr);
1109 	}
1110 
1111 	return pwm;
1112 }
1113 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1114 
1115 static int devm_pwm_match(struct device *dev, void *res, void *data)
1116 {
1117 	struct pwm_device **p = res;
1118 
1119 	if (WARN_ON(!p || !*p))
1120 		return 0;
1121 
1122 	return *p == data;
1123 }
1124 
1125 /**
1126  * devm_pwm_put() - resource managed pwm_put()
1127  * @dev: device for PWM consumer
1128  * @pwm: PWM device
1129  *
1130  * Release a PWM previously allocated using devm_pwm_get(). Calling this
1131  * function is usually not needed because devm-allocated resources are
1132  * automatically released on driver detach.
1133  */
1134 void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
1135 {
1136 	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
1137 }
1138 EXPORT_SYMBOL_GPL(devm_pwm_put);
1139 
1140 #ifdef CONFIG_DEBUG_FS
1141 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1142 {
1143 	unsigned int i;
1144 
1145 	for (i = 0; i < chip->npwm; i++) {
1146 		struct pwm_device *pwm = &chip->pwms[i];
1147 		struct pwm_state state;
1148 
1149 		pwm_get_state(pwm, &state);
1150 
1151 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1152 
1153 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1154 			seq_puts(s, " requested");
1155 
1156 		if (state.enabled)
1157 			seq_puts(s, " enabled");
1158 
1159 		seq_printf(s, " period: %u ns", state.period);
1160 		seq_printf(s, " duty: %u ns", state.duty_cycle);
1161 		seq_printf(s, " polarity: %s",
1162 			   state.polarity ? "inverse" : "normal");
1163 
1164 		seq_puts(s, "\n");
1165 	}
1166 }
1167 
1168 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1169 {
1170 	mutex_lock(&pwm_lock);
1171 	s->private = "";
1172 
1173 	return seq_list_start(&pwm_chips, *pos);
1174 }
1175 
1176 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1177 {
1178 	s->private = "\n";
1179 
1180 	return seq_list_next(v, &pwm_chips, pos);
1181 }
1182 
1183 static void pwm_seq_stop(struct seq_file *s, void *v)
1184 {
1185 	mutex_unlock(&pwm_lock);
1186 }
1187 
1188 static int pwm_seq_show(struct seq_file *s, void *v)
1189 {
1190 	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1191 
1192 	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1193 		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1194 		   dev_name(chip->dev), chip->npwm,
1195 		   (chip->npwm != 1) ? "s" : "");
1196 
1197 	pwm_dbg_show(chip, s);
1198 
1199 	return 0;
1200 }
1201 
1202 static const struct seq_operations pwm_seq_ops = {
1203 	.start = pwm_seq_start,
1204 	.next = pwm_seq_next,
1205 	.stop = pwm_seq_stop,
1206 	.show = pwm_seq_show,
1207 };
1208 
1209 static int pwm_seq_open(struct inode *inode, struct file *file)
1210 {
1211 	return seq_open(file, &pwm_seq_ops);
1212 }
1213 
1214 static const struct file_operations pwm_debugfs_ops = {
1215 	.owner = THIS_MODULE,
1216 	.open = pwm_seq_open,
1217 	.read = seq_read,
1218 	.llseek = seq_lseek,
1219 	.release = seq_release,
1220 };
1221 
1222 static int __init pwm_debugfs_init(void)
1223 {
1224 	debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1225 			    &pwm_debugfs_ops);
1226 
1227 	return 0;
1228 }
1229 subsys_initcall(pwm_debugfs_init);
1230 #endif /* CONFIG_DEBUG_FS */
1231