1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic pwmlib implementation 4 * 5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de> 6 * Copyright (C) 2011-2012 Avionic Design GmbH 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/module.h> 11 #include <linux/pwm.h> 12 #include <linux/radix-tree.h> 13 #include <linux/list.h> 14 #include <linux/mutex.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/debugfs.h> 19 #include <linux/seq_file.h> 20 21 #include <dt-bindings/pwm/pwm.h> 22 23 #define CREATE_TRACE_POINTS 24 #include <trace/events/pwm.h> 25 26 #define MAX_PWMS 1024 27 28 static DEFINE_MUTEX(pwm_lookup_lock); 29 static LIST_HEAD(pwm_lookup_list); 30 31 /* protects access to pwm_chips and allocated_pwms */ 32 static DEFINE_MUTEX(pwm_lock); 33 34 static LIST_HEAD(pwm_chips); 35 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS); 36 37 /* Called with pwm_lock held */ 38 static int alloc_pwms(unsigned int count) 39 { 40 unsigned int start; 41 42 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0, 43 count, 0); 44 45 if (start + count > MAX_PWMS) 46 return -ENOSPC; 47 48 bitmap_set(allocated_pwms, start, count); 49 50 return start; 51 } 52 53 /* Called with pwm_lock held */ 54 static void free_pwms(struct pwm_chip *chip) 55 { 56 bitmap_clear(allocated_pwms, chip->base, chip->npwm); 57 58 kfree(chip->pwms); 59 chip->pwms = NULL; 60 } 61 62 static struct pwm_chip *pwmchip_find_by_name(const char *name) 63 { 64 struct pwm_chip *chip; 65 66 if (!name) 67 return NULL; 68 69 mutex_lock(&pwm_lock); 70 71 list_for_each_entry(chip, &pwm_chips, list) { 72 const char *chip_name = dev_name(chip->dev); 73 74 if (chip_name && strcmp(chip_name, name) == 0) { 75 mutex_unlock(&pwm_lock); 76 return chip; 77 } 78 } 79 80 mutex_unlock(&pwm_lock); 81 82 return NULL; 83 } 84 85 static int pwm_device_request(struct pwm_device *pwm, const char *label) 86 { 87 int err; 88 89 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 90 return -EBUSY; 91 92 if (!try_module_get(pwm->chip->ops->owner)) 93 return -ENODEV; 94 95 if (pwm->chip->ops->request) { 96 err = pwm->chip->ops->request(pwm->chip, pwm); 97 if (err) { 98 module_put(pwm->chip->ops->owner); 99 return err; 100 } 101 } 102 103 if (pwm->chip->ops->get_state) { 104 /* 105 * Zero-initialize state because most drivers are unaware of 106 * .usage_power. The other members of state are supposed to be 107 * set by lowlevel drivers. We still initialize the whole 108 * structure for simplicity even though this might paper over 109 * faulty implementations of .get_state(). 110 */ 111 struct pwm_state state = { 0, }; 112 113 err = pwm->chip->ops->get_state(pwm->chip, pwm, &state); 114 trace_pwm_get(pwm, &state, err); 115 116 if (!err) 117 pwm->state = state; 118 119 if (IS_ENABLED(CONFIG_PWM_DEBUG)) 120 pwm->last = pwm->state; 121 } 122 123 set_bit(PWMF_REQUESTED, &pwm->flags); 124 pwm->label = label; 125 126 return 0; 127 } 128 129 struct pwm_device * 130 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args) 131 { 132 struct pwm_device *pwm; 133 134 if (pc->of_pwm_n_cells < 2) 135 return ERR_PTR(-EINVAL); 136 137 /* flags in the third cell are optional */ 138 if (args->args_count < 2) 139 return ERR_PTR(-EINVAL); 140 141 if (args->args[0] >= pc->npwm) 142 return ERR_PTR(-EINVAL); 143 144 pwm = pwm_request_from_chip(pc, args->args[0], NULL); 145 if (IS_ERR(pwm)) 146 return pwm; 147 148 pwm->args.period = args->args[1]; 149 pwm->args.polarity = PWM_POLARITY_NORMAL; 150 151 if (pc->of_pwm_n_cells >= 3) { 152 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED) 153 pwm->args.polarity = PWM_POLARITY_INVERSED; 154 } 155 156 return pwm; 157 } 158 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags); 159 160 struct pwm_device * 161 of_pwm_single_xlate(struct pwm_chip *pc, const struct of_phandle_args *args) 162 { 163 struct pwm_device *pwm; 164 165 if (pc->of_pwm_n_cells < 1) 166 return ERR_PTR(-EINVAL); 167 168 /* validate that one cell is specified, optionally with flags */ 169 if (args->args_count != 1 && args->args_count != 2) 170 return ERR_PTR(-EINVAL); 171 172 pwm = pwm_request_from_chip(pc, 0, NULL); 173 if (IS_ERR(pwm)) 174 return pwm; 175 176 pwm->args.period = args->args[0]; 177 pwm->args.polarity = PWM_POLARITY_NORMAL; 178 179 if (args->args_count == 2 && args->args[2] & PWM_POLARITY_INVERTED) 180 pwm->args.polarity = PWM_POLARITY_INVERSED; 181 182 return pwm; 183 } 184 EXPORT_SYMBOL_GPL(of_pwm_single_xlate); 185 186 static void of_pwmchip_add(struct pwm_chip *chip) 187 { 188 if (!chip->dev || !chip->dev->of_node) 189 return; 190 191 if (!chip->of_xlate) { 192 u32 pwm_cells; 193 194 if (of_property_read_u32(chip->dev->of_node, "#pwm-cells", 195 &pwm_cells)) 196 pwm_cells = 2; 197 198 chip->of_xlate = of_pwm_xlate_with_flags; 199 chip->of_pwm_n_cells = pwm_cells; 200 } 201 202 of_node_get(chip->dev->of_node); 203 } 204 205 static void of_pwmchip_remove(struct pwm_chip *chip) 206 { 207 if (chip->dev) 208 of_node_put(chip->dev->of_node); 209 } 210 211 /** 212 * pwm_set_chip_data() - set private chip data for a PWM 213 * @pwm: PWM device 214 * @data: pointer to chip-specific data 215 * 216 * Returns: 0 on success or a negative error code on failure. 217 */ 218 int pwm_set_chip_data(struct pwm_device *pwm, void *data) 219 { 220 if (!pwm) 221 return -EINVAL; 222 223 pwm->chip_data = data; 224 225 return 0; 226 } 227 EXPORT_SYMBOL_GPL(pwm_set_chip_data); 228 229 /** 230 * pwm_get_chip_data() - get private chip data for a PWM 231 * @pwm: PWM device 232 * 233 * Returns: A pointer to the chip-private data for the PWM device. 234 */ 235 void *pwm_get_chip_data(struct pwm_device *pwm) 236 { 237 return pwm ? pwm->chip_data : NULL; 238 } 239 EXPORT_SYMBOL_GPL(pwm_get_chip_data); 240 241 static bool pwm_ops_check(const struct pwm_chip *chip) 242 { 243 const struct pwm_ops *ops = chip->ops; 244 245 if (!ops->apply) 246 return false; 247 248 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state) 249 dev_warn(chip->dev, 250 "Please implement the .get_state() callback\n"); 251 252 return true; 253 } 254 255 /** 256 * pwmchip_add() - register a new PWM chip 257 * @chip: the PWM chip to add 258 * 259 * Register a new PWM chip. 260 * 261 * Returns: 0 on success or a negative error code on failure. 262 */ 263 int pwmchip_add(struct pwm_chip *chip) 264 { 265 struct pwm_device *pwm; 266 unsigned int i; 267 int ret; 268 269 if (!chip || !chip->dev || !chip->ops || !chip->npwm) 270 return -EINVAL; 271 272 if (!pwm_ops_check(chip)) 273 return -EINVAL; 274 275 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL); 276 if (!chip->pwms) 277 return -ENOMEM; 278 279 mutex_lock(&pwm_lock); 280 281 ret = alloc_pwms(chip->npwm); 282 if (ret < 0) { 283 mutex_unlock(&pwm_lock); 284 kfree(chip->pwms); 285 return ret; 286 } 287 288 chip->base = ret; 289 290 for (i = 0; i < chip->npwm; i++) { 291 pwm = &chip->pwms[i]; 292 293 pwm->chip = chip; 294 pwm->pwm = chip->base + i; 295 pwm->hwpwm = i; 296 } 297 298 list_add(&chip->list, &pwm_chips); 299 300 mutex_unlock(&pwm_lock); 301 302 if (IS_ENABLED(CONFIG_OF)) 303 of_pwmchip_add(chip); 304 305 pwmchip_sysfs_export(chip); 306 307 return 0; 308 } 309 EXPORT_SYMBOL_GPL(pwmchip_add); 310 311 /** 312 * pwmchip_remove() - remove a PWM chip 313 * @chip: the PWM chip to remove 314 * 315 * Removes a PWM chip. This function may return busy if the PWM chip provides 316 * a PWM device that is still requested. 317 * 318 * Returns: 0 on success or a negative error code on failure. 319 */ 320 void pwmchip_remove(struct pwm_chip *chip) 321 { 322 pwmchip_sysfs_unexport(chip); 323 324 mutex_lock(&pwm_lock); 325 326 list_del_init(&chip->list); 327 328 if (IS_ENABLED(CONFIG_OF)) 329 of_pwmchip_remove(chip); 330 331 free_pwms(chip); 332 333 mutex_unlock(&pwm_lock); 334 } 335 EXPORT_SYMBOL_GPL(pwmchip_remove); 336 337 static void devm_pwmchip_remove(void *data) 338 { 339 struct pwm_chip *chip = data; 340 341 pwmchip_remove(chip); 342 } 343 344 int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip) 345 { 346 int ret; 347 348 ret = pwmchip_add(chip); 349 if (ret) 350 return ret; 351 352 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip); 353 } 354 EXPORT_SYMBOL_GPL(devm_pwmchip_add); 355 356 /** 357 * pwm_request_from_chip() - request a PWM device relative to a PWM chip 358 * @chip: PWM chip 359 * @index: per-chip index of the PWM to request 360 * @label: a literal description string of this PWM 361 * 362 * Returns: A pointer to the PWM device at the given index of the given PWM 363 * chip. A negative error code is returned if the index is not valid for the 364 * specified PWM chip or if the PWM device cannot be requested. 365 */ 366 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, 367 unsigned int index, 368 const char *label) 369 { 370 struct pwm_device *pwm; 371 int err; 372 373 if (!chip || index >= chip->npwm) 374 return ERR_PTR(-EINVAL); 375 376 mutex_lock(&pwm_lock); 377 pwm = &chip->pwms[index]; 378 379 err = pwm_device_request(pwm, label); 380 if (err < 0) 381 pwm = ERR_PTR(err); 382 383 mutex_unlock(&pwm_lock); 384 return pwm; 385 } 386 EXPORT_SYMBOL_GPL(pwm_request_from_chip); 387 388 static void pwm_apply_state_debug(struct pwm_device *pwm, 389 const struct pwm_state *state) 390 { 391 struct pwm_state *last = &pwm->last; 392 struct pwm_chip *chip = pwm->chip; 393 struct pwm_state s1 = { 0 }, s2 = { 0 }; 394 int err; 395 396 if (!IS_ENABLED(CONFIG_PWM_DEBUG)) 397 return; 398 399 /* No reasonable diagnosis possible without .get_state() */ 400 if (!chip->ops->get_state) 401 return; 402 403 /* 404 * *state was just applied. Read out the hardware state and do some 405 * checks. 406 */ 407 408 err = chip->ops->get_state(chip, pwm, &s1); 409 trace_pwm_get(pwm, &s1, err); 410 if (err) 411 /* If that failed there isn't much to debug */ 412 return; 413 414 /* 415 * The lowlevel driver either ignored .polarity (which is a bug) or as 416 * best effort inverted .polarity and fixed .duty_cycle respectively. 417 * Undo this inversion and fixup for further tests. 418 */ 419 if (s1.enabled && s1.polarity != state->polarity) { 420 s2.polarity = state->polarity; 421 s2.duty_cycle = s1.period - s1.duty_cycle; 422 s2.period = s1.period; 423 s2.enabled = s1.enabled; 424 } else { 425 s2 = s1; 426 } 427 428 if (s2.polarity != state->polarity && 429 state->duty_cycle < state->period) 430 dev_warn(chip->dev, ".apply ignored .polarity\n"); 431 432 if (state->enabled && 433 last->polarity == state->polarity && 434 last->period > s2.period && 435 last->period <= state->period) 436 dev_warn(chip->dev, 437 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n", 438 state->period, s2.period, last->period); 439 440 if (state->enabled && state->period < s2.period) 441 dev_warn(chip->dev, 442 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n", 443 state->period, s2.period); 444 445 if (state->enabled && 446 last->polarity == state->polarity && 447 last->period == s2.period && 448 last->duty_cycle > s2.duty_cycle && 449 last->duty_cycle <= state->duty_cycle) 450 dev_warn(chip->dev, 451 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n", 452 state->duty_cycle, state->period, 453 s2.duty_cycle, s2.period, 454 last->duty_cycle, last->period); 455 456 if (state->enabled && state->duty_cycle < s2.duty_cycle) 457 dev_warn(chip->dev, 458 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n", 459 state->duty_cycle, state->period, 460 s2.duty_cycle, s2.period); 461 462 if (!state->enabled && s2.enabled && s2.duty_cycle > 0) 463 dev_warn(chip->dev, 464 "requested disabled, but yielded enabled with duty > 0\n"); 465 466 /* reapply the state that the driver reported being configured. */ 467 err = chip->ops->apply(chip, pwm, &s1); 468 trace_pwm_apply(pwm, &s1, err); 469 if (err) { 470 *last = s1; 471 dev_err(chip->dev, "failed to reapply current setting\n"); 472 return; 473 } 474 475 *last = (struct pwm_state){ 0 }; 476 err = chip->ops->get_state(chip, pwm, last); 477 trace_pwm_get(pwm, last, err); 478 if (err) 479 return; 480 481 /* reapplication of the current state should give an exact match */ 482 if (s1.enabled != last->enabled || 483 s1.polarity != last->polarity || 484 (s1.enabled && s1.period != last->period) || 485 (s1.enabled && s1.duty_cycle != last->duty_cycle)) { 486 dev_err(chip->dev, 487 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n", 488 s1.enabled, s1.polarity, s1.duty_cycle, s1.period, 489 last->enabled, last->polarity, last->duty_cycle, 490 last->period); 491 } 492 } 493 494 /** 495 * pwm_apply_state() - atomically apply a new state to a PWM device 496 * @pwm: PWM device 497 * @state: new state to apply 498 */ 499 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state) 500 { 501 struct pwm_chip *chip; 502 int err; 503 504 /* 505 * Some lowlevel driver's implementations of .apply() make use of 506 * mutexes, also with some drivers only returning when the new 507 * configuration is active calling pwm_apply_state() from atomic context 508 * is a bad idea. So make it explicit that calling this function might 509 * sleep. 510 */ 511 might_sleep(); 512 513 if (!pwm || !state || !state->period || 514 state->duty_cycle > state->period) 515 return -EINVAL; 516 517 chip = pwm->chip; 518 519 if (state->period == pwm->state.period && 520 state->duty_cycle == pwm->state.duty_cycle && 521 state->polarity == pwm->state.polarity && 522 state->enabled == pwm->state.enabled && 523 state->usage_power == pwm->state.usage_power) 524 return 0; 525 526 err = chip->ops->apply(chip, pwm, state); 527 trace_pwm_apply(pwm, state, err); 528 if (err) 529 return err; 530 531 pwm->state = *state; 532 533 /* 534 * only do this after pwm->state was applied as some 535 * implementations of .get_state depend on this 536 */ 537 pwm_apply_state_debug(pwm, state); 538 539 return 0; 540 } 541 EXPORT_SYMBOL_GPL(pwm_apply_state); 542 543 /** 544 * pwm_capture() - capture and report a PWM signal 545 * @pwm: PWM device 546 * @result: structure to fill with capture result 547 * @timeout: time to wait, in milliseconds, before giving up on capture 548 * 549 * Returns: 0 on success or a negative error code on failure. 550 */ 551 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result, 552 unsigned long timeout) 553 { 554 int err; 555 556 if (!pwm || !pwm->chip->ops) 557 return -EINVAL; 558 559 if (!pwm->chip->ops->capture) 560 return -ENOSYS; 561 562 mutex_lock(&pwm_lock); 563 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout); 564 mutex_unlock(&pwm_lock); 565 566 return err; 567 } 568 EXPORT_SYMBOL_GPL(pwm_capture); 569 570 /** 571 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments 572 * @pwm: PWM device 573 * 574 * This function will adjust the PWM config to the PWM arguments provided 575 * by the DT or PWM lookup table. This is particularly useful to adapt 576 * the bootloader config to the Linux one. 577 */ 578 int pwm_adjust_config(struct pwm_device *pwm) 579 { 580 struct pwm_state state; 581 struct pwm_args pargs; 582 583 pwm_get_args(pwm, &pargs); 584 pwm_get_state(pwm, &state); 585 586 /* 587 * If the current period is zero it means that either the PWM driver 588 * does not support initial state retrieval or the PWM has not yet 589 * been configured. 590 * 591 * In either case, we setup the new period and polarity, and assign a 592 * duty cycle of 0. 593 */ 594 if (!state.period) { 595 state.duty_cycle = 0; 596 state.period = pargs.period; 597 state.polarity = pargs.polarity; 598 599 return pwm_apply_state(pwm, &state); 600 } 601 602 /* 603 * Adjust the PWM duty cycle/period based on the period value provided 604 * in PWM args. 605 */ 606 if (pargs.period != state.period) { 607 u64 dutycycle = (u64)state.duty_cycle * pargs.period; 608 609 do_div(dutycycle, state.period); 610 state.duty_cycle = dutycycle; 611 state.period = pargs.period; 612 } 613 614 /* 615 * If the polarity changed, we should also change the duty cycle. 616 */ 617 if (pargs.polarity != state.polarity) { 618 state.polarity = pargs.polarity; 619 state.duty_cycle = state.period - state.duty_cycle; 620 } 621 622 return pwm_apply_state(pwm, &state); 623 } 624 EXPORT_SYMBOL_GPL(pwm_adjust_config); 625 626 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode) 627 { 628 struct pwm_chip *chip; 629 630 mutex_lock(&pwm_lock); 631 632 list_for_each_entry(chip, &pwm_chips, list) 633 if (chip->dev && device_match_fwnode(chip->dev, fwnode)) { 634 mutex_unlock(&pwm_lock); 635 return chip; 636 } 637 638 mutex_unlock(&pwm_lock); 639 640 return ERR_PTR(-EPROBE_DEFER); 641 } 642 643 static struct device_link *pwm_device_link_add(struct device *dev, 644 struct pwm_device *pwm) 645 { 646 struct device_link *dl; 647 648 if (!dev) { 649 /* 650 * No device for the PWM consumer has been provided. It may 651 * impact the PM sequence ordering: the PWM supplier may get 652 * suspended before the consumer. 653 */ 654 dev_warn(pwm->chip->dev, 655 "No consumer device specified to create a link to\n"); 656 return NULL; 657 } 658 659 dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER); 660 if (!dl) { 661 dev_err(dev, "failed to create device link to %s\n", 662 dev_name(pwm->chip->dev)); 663 return ERR_PTR(-EINVAL); 664 } 665 666 return dl; 667 } 668 669 /** 670 * of_pwm_get() - request a PWM via the PWM framework 671 * @dev: device for PWM consumer 672 * @np: device node to get the PWM from 673 * @con_id: consumer name 674 * 675 * Returns the PWM device parsed from the phandle and index specified in the 676 * "pwms" property of a device tree node or a negative error-code on failure. 677 * Values parsed from the device tree are stored in the returned PWM device 678 * object. 679 * 680 * If con_id is NULL, the first PWM device listed in the "pwms" property will 681 * be requested. Otherwise the "pwm-names" property is used to do a reverse 682 * lookup of the PWM index. This also means that the "pwm-names" property 683 * becomes mandatory for devices that look up the PWM device via the con_id 684 * parameter. 685 * 686 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 687 * error code on failure. 688 */ 689 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np, 690 const char *con_id) 691 { 692 struct pwm_device *pwm = NULL; 693 struct of_phandle_args args; 694 struct device_link *dl; 695 struct pwm_chip *pc; 696 int index = 0; 697 int err; 698 699 if (con_id) { 700 index = of_property_match_string(np, "pwm-names", con_id); 701 if (index < 0) 702 return ERR_PTR(index); 703 } 704 705 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index, 706 &args); 707 if (err) { 708 pr_err("%s(): can't parse \"pwms\" property\n", __func__); 709 return ERR_PTR(err); 710 } 711 712 pc = fwnode_to_pwmchip(of_fwnode_handle(args.np)); 713 if (IS_ERR(pc)) { 714 if (PTR_ERR(pc) != -EPROBE_DEFER) 715 pr_err("%s(): PWM chip not found\n", __func__); 716 717 pwm = ERR_CAST(pc); 718 goto put; 719 } 720 721 pwm = pc->of_xlate(pc, &args); 722 if (IS_ERR(pwm)) 723 goto put; 724 725 dl = pwm_device_link_add(dev, pwm); 726 if (IS_ERR(dl)) { 727 /* of_xlate ended up calling pwm_request_from_chip() */ 728 pwm_put(pwm); 729 pwm = ERR_CAST(dl); 730 goto put; 731 } 732 733 /* 734 * If a consumer name was not given, try to look it up from the 735 * "pwm-names" property if it exists. Otherwise use the name of 736 * the user device node. 737 */ 738 if (!con_id) { 739 err = of_property_read_string_index(np, "pwm-names", index, 740 &con_id); 741 if (err < 0) 742 con_id = np->name; 743 } 744 745 pwm->label = con_id; 746 747 put: 748 of_node_put(args.np); 749 750 return pwm; 751 } 752 753 /** 754 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI 755 * @fwnode: firmware node to get the "pwms" property from 756 * 757 * Returns the PWM device parsed from the fwnode and index specified in the 758 * "pwms" property or a negative error-code on failure. 759 * Values parsed from the device tree are stored in the returned PWM device 760 * object. 761 * 762 * This is analogous to of_pwm_get() except con_id is not yet supported. 763 * ACPI entries must look like 764 * Package () {"pwms", Package () 765 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}} 766 * 767 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 768 * error code on failure. 769 */ 770 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode) 771 { 772 struct pwm_device *pwm; 773 struct fwnode_reference_args args; 774 struct pwm_chip *chip; 775 int ret; 776 777 memset(&args, 0, sizeof(args)); 778 779 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args); 780 if (ret < 0) 781 return ERR_PTR(ret); 782 783 if (args.nargs < 2) 784 return ERR_PTR(-EPROTO); 785 786 chip = fwnode_to_pwmchip(args.fwnode); 787 if (IS_ERR(chip)) 788 return ERR_CAST(chip); 789 790 pwm = pwm_request_from_chip(chip, args.args[0], NULL); 791 if (IS_ERR(pwm)) 792 return pwm; 793 794 pwm->args.period = args.args[1]; 795 pwm->args.polarity = PWM_POLARITY_NORMAL; 796 797 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED) 798 pwm->args.polarity = PWM_POLARITY_INVERSED; 799 800 return pwm; 801 } 802 803 /** 804 * pwm_add_table() - register PWM device consumers 805 * @table: array of consumers to register 806 * @num: number of consumers in table 807 */ 808 void pwm_add_table(struct pwm_lookup *table, size_t num) 809 { 810 mutex_lock(&pwm_lookup_lock); 811 812 while (num--) { 813 list_add_tail(&table->list, &pwm_lookup_list); 814 table++; 815 } 816 817 mutex_unlock(&pwm_lookup_lock); 818 } 819 820 /** 821 * pwm_remove_table() - unregister PWM device consumers 822 * @table: array of consumers to unregister 823 * @num: number of consumers in table 824 */ 825 void pwm_remove_table(struct pwm_lookup *table, size_t num) 826 { 827 mutex_lock(&pwm_lookup_lock); 828 829 while (num--) { 830 list_del(&table->list); 831 table++; 832 } 833 834 mutex_unlock(&pwm_lookup_lock); 835 } 836 837 /** 838 * pwm_get() - look up and request a PWM device 839 * @dev: device for PWM consumer 840 * @con_id: consumer name 841 * 842 * Lookup is first attempted using DT. If the device was not instantiated from 843 * a device tree, a PWM chip and a relative index is looked up via a table 844 * supplied by board setup code (see pwm_add_table()). 845 * 846 * Once a PWM chip has been found the specified PWM device will be requested 847 * and is ready to be used. 848 * 849 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 850 * error code on failure. 851 */ 852 struct pwm_device *pwm_get(struct device *dev, const char *con_id) 853 { 854 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 855 const char *dev_id = dev ? dev_name(dev) : NULL; 856 struct pwm_device *pwm; 857 struct pwm_chip *chip; 858 struct device_link *dl; 859 unsigned int best = 0; 860 struct pwm_lookup *p, *chosen = NULL; 861 unsigned int match; 862 int err; 863 864 /* look up via DT first */ 865 if (is_of_node(fwnode)) 866 return of_pwm_get(dev, to_of_node(fwnode), con_id); 867 868 /* then lookup via ACPI */ 869 if (is_acpi_node(fwnode)) { 870 pwm = acpi_pwm_get(fwnode); 871 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT) 872 return pwm; 873 } 874 875 /* 876 * We look up the provider in the static table typically provided by 877 * board setup code. We first try to lookup the consumer device by 878 * name. If the consumer device was passed in as NULL or if no match 879 * was found, we try to find the consumer by directly looking it up 880 * by name. 881 * 882 * If a match is found, the provider PWM chip is looked up by name 883 * and a PWM device is requested using the PWM device per-chip index. 884 * 885 * The lookup algorithm was shamelessly taken from the clock 886 * framework: 887 * 888 * We do slightly fuzzy matching here: 889 * An entry with a NULL ID is assumed to be a wildcard. 890 * If an entry has a device ID, it must match 891 * If an entry has a connection ID, it must match 892 * Then we take the most specific entry - with the following order 893 * of precedence: dev+con > dev only > con only. 894 */ 895 mutex_lock(&pwm_lookup_lock); 896 897 list_for_each_entry(p, &pwm_lookup_list, list) { 898 match = 0; 899 900 if (p->dev_id) { 901 if (!dev_id || strcmp(p->dev_id, dev_id)) 902 continue; 903 904 match += 2; 905 } 906 907 if (p->con_id) { 908 if (!con_id || strcmp(p->con_id, con_id)) 909 continue; 910 911 match += 1; 912 } 913 914 if (match > best) { 915 chosen = p; 916 917 if (match != 3) 918 best = match; 919 else 920 break; 921 } 922 } 923 924 mutex_unlock(&pwm_lookup_lock); 925 926 if (!chosen) 927 return ERR_PTR(-ENODEV); 928 929 chip = pwmchip_find_by_name(chosen->provider); 930 931 /* 932 * If the lookup entry specifies a module, load the module and retry 933 * the PWM chip lookup. This can be used to work around driver load 934 * ordering issues if driver's can't be made to properly support the 935 * deferred probe mechanism. 936 */ 937 if (!chip && chosen->module) { 938 err = request_module(chosen->module); 939 if (err == 0) 940 chip = pwmchip_find_by_name(chosen->provider); 941 } 942 943 if (!chip) 944 return ERR_PTR(-EPROBE_DEFER); 945 946 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id); 947 if (IS_ERR(pwm)) 948 return pwm; 949 950 dl = pwm_device_link_add(dev, pwm); 951 if (IS_ERR(dl)) { 952 pwm_put(pwm); 953 return ERR_CAST(dl); 954 } 955 956 pwm->args.period = chosen->period; 957 pwm->args.polarity = chosen->polarity; 958 959 return pwm; 960 } 961 EXPORT_SYMBOL_GPL(pwm_get); 962 963 /** 964 * pwm_put() - release a PWM device 965 * @pwm: PWM device 966 */ 967 void pwm_put(struct pwm_device *pwm) 968 { 969 if (!pwm) 970 return; 971 972 mutex_lock(&pwm_lock); 973 974 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 975 pr_warn("PWM device already freed\n"); 976 goto out; 977 } 978 979 if (pwm->chip->ops->free) 980 pwm->chip->ops->free(pwm->chip, pwm); 981 982 pwm_set_chip_data(pwm, NULL); 983 pwm->label = NULL; 984 985 module_put(pwm->chip->ops->owner); 986 out: 987 mutex_unlock(&pwm_lock); 988 } 989 EXPORT_SYMBOL_GPL(pwm_put); 990 991 static void devm_pwm_release(void *pwm) 992 { 993 pwm_put(pwm); 994 } 995 996 /** 997 * devm_pwm_get() - resource managed pwm_get() 998 * @dev: device for PWM consumer 999 * @con_id: consumer name 1000 * 1001 * This function performs like pwm_get() but the acquired PWM device will 1002 * automatically be released on driver detach. 1003 * 1004 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1005 * error code on failure. 1006 */ 1007 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id) 1008 { 1009 struct pwm_device *pwm; 1010 int ret; 1011 1012 pwm = pwm_get(dev, con_id); 1013 if (IS_ERR(pwm)) 1014 return pwm; 1015 1016 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 1017 if (ret) 1018 return ERR_PTR(ret); 1019 1020 return pwm; 1021 } 1022 EXPORT_SYMBOL_GPL(devm_pwm_get); 1023 1024 /** 1025 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node 1026 * @dev: device for PWM consumer 1027 * @fwnode: firmware node to get the PWM from 1028 * @con_id: consumer name 1029 * 1030 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and 1031 * acpi_pwm_get() for a detailed description. 1032 * 1033 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1034 * error code on failure. 1035 */ 1036 struct pwm_device *devm_fwnode_pwm_get(struct device *dev, 1037 struct fwnode_handle *fwnode, 1038 const char *con_id) 1039 { 1040 struct pwm_device *pwm = ERR_PTR(-ENODEV); 1041 int ret; 1042 1043 if (is_of_node(fwnode)) 1044 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id); 1045 else if (is_acpi_node(fwnode)) 1046 pwm = acpi_pwm_get(fwnode); 1047 if (IS_ERR(pwm)) 1048 return pwm; 1049 1050 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 1051 if (ret) 1052 return ERR_PTR(ret); 1053 1054 return pwm; 1055 } 1056 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get); 1057 1058 #ifdef CONFIG_DEBUG_FS 1059 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s) 1060 { 1061 unsigned int i; 1062 1063 for (i = 0; i < chip->npwm; i++) { 1064 struct pwm_device *pwm = &chip->pwms[i]; 1065 struct pwm_state state; 1066 1067 pwm_get_state(pwm, &state); 1068 1069 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label); 1070 1071 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 1072 seq_puts(s, " requested"); 1073 1074 if (state.enabled) 1075 seq_puts(s, " enabled"); 1076 1077 seq_printf(s, " period: %llu ns", state.period); 1078 seq_printf(s, " duty: %llu ns", state.duty_cycle); 1079 seq_printf(s, " polarity: %s", 1080 state.polarity ? "inverse" : "normal"); 1081 1082 if (state.usage_power) 1083 seq_puts(s, " usage_power"); 1084 1085 seq_puts(s, "\n"); 1086 } 1087 } 1088 1089 static void *pwm_seq_start(struct seq_file *s, loff_t *pos) 1090 { 1091 mutex_lock(&pwm_lock); 1092 s->private = ""; 1093 1094 return seq_list_start(&pwm_chips, *pos); 1095 } 1096 1097 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos) 1098 { 1099 s->private = "\n"; 1100 1101 return seq_list_next(v, &pwm_chips, pos); 1102 } 1103 1104 static void pwm_seq_stop(struct seq_file *s, void *v) 1105 { 1106 mutex_unlock(&pwm_lock); 1107 } 1108 1109 static int pwm_seq_show(struct seq_file *s, void *v) 1110 { 1111 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list); 1112 1113 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private, 1114 chip->dev->bus ? chip->dev->bus->name : "no-bus", 1115 dev_name(chip->dev), chip->npwm, 1116 (chip->npwm != 1) ? "s" : ""); 1117 1118 pwm_dbg_show(chip, s); 1119 1120 return 0; 1121 } 1122 1123 static const struct seq_operations pwm_debugfs_sops = { 1124 .start = pwm_seq_start, 1125 .next = pwm_seq_next, 1126 .stop = pwm_seq_stop, 1127 .show = pwm_seq_show, 1128 }; 1129 1130 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs); 1131 1132 static int __init pwm_debugfs_init(void) 1133 { 1134 debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops); 1135 1136 return 0; 1137 } 1138 subsys_initcall(pwm_debugfs_init); 1139 #endif /* CONFIG_DEBUG_FS */ 1140