1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic pwmlib implementation 4 * 5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de> 6 * Copyright (C) 2011-2012 Avionic Design GmbH 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/module.h> 11 #include <linux/pwm.h> 12 #include <linux/radix-tree.h> 13 #include <linux/list.h> 14 #include <linux/mutex.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/debugfs.h> 19 #include <linux/seq_file.h> 20 21 #include <dt-bindings/pwm/pwm.h> 22 23 #define MAX_PWMS 1024 24 25 static DEFINE_MUTEX(pwm_lookup_lock); 26 static LIST_HEAD(pwm_lookup_list); 27 static DEFINE_MUTEX(pwm_lock); 28 static LIST_HEAD(pwm_chips); 29 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS); 30 static RADIX_TREE(pwm_tree, GFP_KERNEL); 31 32 static struct pwm_device *pwm_to_device(unsigned int pwm) 33 { 34 return radix_tree_lookup(&pwm_tree, pwm); 35 } 36 37 static int alloc_pwms(int pwm, unsigned int count) 38 { 39 unsigned int from = 0; 40 unsigned int start; 41 42 if (pwm >= MAX_PWMS) 43 return -EINVAL; 44 45 if (pwm >= 0) 46 from = pwm; 47 48 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from, 49 count, 0); 50 51 if (pwm >= 0 && start != pwm) 52 return -EEXIST; 53 54 if (start + count > MAX_PWMS) 55 return -ENOSPC; 56 57 return start; 58 } 59 60 static void free_pwms(struct pwm_chip *chip) 61 { 62 unsigned int i; 63 64 for (i = 0; i < chip->npwm; i++) { 65 struct pwm_device *pwm = &chip->pwms[i]; 66 67 radix_tree_delete(&pwm_tree, pwm->pwm); 68 } 69 70 bitmap_clear(allocated_pwms, chip->base, chip->npwm); 71 72 kfree(chip->pwms); 73 chip->pwms = NULL; 74 } 75 76 static struct pwm_chip *pwmchip_find_by_name(const char *name) 77 { 78 struct pwm_chip *chip; 79 80 if (!name) 81 return NULL; 82 83 mutex_lock(&pwm_lock); 84 85 list_for_each_entry(chip, &pwm_chips, list) { 86 const char *chip_name = dev_name(chip->dev); 87 88 if (chip_name && strcmp(chip_name, name) == 0) { 89 mutex_unlock(&pwm_lock); 90 return chip; 91 } 92 } 93 94 mutex_unlock(&pwm_lock); 95 96 return NULL; 97 } 98 99 static int pwm_device_request(struct pwm_device *pwm, const char *label) 100 { 101 int err; 102 103 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 104 return -EBUSY; 105 106 if (!try_module_get(pwm->chip->ops->owner)) 107 return -ENODEV; 108 109 if (pwm->chip->ops->request) { 110 err = pwm->chip->ops->request(pwm->chip, pwm); 111 if (err) { 112 module_put(pwm->chip->ops->owner); 113 return err; 114 } 115 } 116 117 set_bit(PWMF_REQUESTED, &pwm->flags); 118 pwm->label = label; 119 120 return 0; 121 } 122 123 struct pwm_device * 124 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args) 125 { 126 struct pwm_device *pwm; 127 128 /* check, whether the driver supports a third cell for flags */ 129 if (pc->of_pwm_n_cells < 3) 130 return ERR_PTR(-EINVAL); 131 132 /* flags in the third cell are optional */ 133 if (args->args_count < 2) 134 return ERR_PTR(-EINVAL); 135 136 if (args->args[0] >= pc->npwm) 137 return ERR_PTR(-EINVAL); 138 139 pwm = pwm_request_from_chip(pc, args->args[0], NULL); 140 if (IS_ERR(pwm)) 141 return pwm; 142 143 pwm->args.period = args->args[1]; 144 pwm->args.polarity = PWM_POLARITY_NORMAL; 145 146 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED) 147 pwm->args.polarity = PWM_POLARITY_INVERSED; 148 149 return pwm; 150 } 151 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags); 152 153 static struct pwm_device * 154 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args) 155 { 156 struct pwm_device *pwm; 157 158 /* sanity check driver support */ 159 if (pc->of_pwm_n_cells < 2) 160 return ERR_PTR(-EINVAL); 161 162 /* all cells are required */ 163 if (args->args_count != pc->of_pwm_n_cells) 164 return ERR_PTR(-EINVAL); 165 166 if (args->args[0] >= pc->npwm) 167 return ERR_PTR(-EINVAL); 168 169 pwm = pwm_request_from_chip(pc, args->args[0], NULL); 170 if (IS_ERR(pwm)) 171 return pwm; 172 173 pwm->args.period = args->args[1]; 174 175 return pwm; 176 } 177 178 static void of_pwmchip_add(struct pwm_chip *chip) 179 { 180 if (!chip->dev || !chip->dev->of_node) 181 return; 182 183 if (!chip->of_xlate) { 184 chip->of_xlate = of_pwm_simple_xlate; 185 chip->of_pwm_n_cells = 2; 186 } 187 188 of_node_get(chip->dev->of_node); 189 } 190 191 static void of_pwmchip_remove(struct pwm_chip *chip) 192 { 193 if (chip->dev) 194 of_node_put(chip->dev->of_node); 195 } 196 197 /** 198 * pwm_set_chip_data() - set private chip data for a PWM 199 * @pwm: PWM device 200 * @data: pointer to chip-specific data 201 * 202 * Returns: 0 on success or a negative error code on failure. 203 */ 204 int pwm_set_chip_data(struct pwm_device *pwm, void *data) 205 { 206 if (!pwm) 207 return -EINVAL; 208 209 pwm->chip_data = data; 210 211 return 0; 212 } 213 EXPORT_SYMBOL_GPL(pwm_set_chip_data); 214 215 /** 216 * pwm_get_chip_data() - get private chip data for a PWM 217 * @pwm: PWM device 218 * 219 * Returns: A pointer to the chip-private data for the PWM device. 220 */ 221 void *pwm_get_chip_data(struct pwm_device *pwm) 222 { 223 return pwm ? pwm->chip_data : NULL; 224 } 225 EXPORT_SYMBOL_GPL(pwm_get_chip_data); 226 227 static bool pwm_ops_check(const struct pwm_ops *ops) 228 { 229 /* driver supports legacy, non-atomic operation */ 230 if (ops->config && ops->enable && ops->disable) 231 return true; 232 233 /* driver supports atomic operation */ 234 if (ops->apply) 235 return true; 236 237 return false; 238 } 239 240 /** 241 * pwmchip_add_with_polarity() - register a new PWM chip 242 * @chip: the PWM chip to add 243 * @polarity: initial polarity of PWM channels 244 * 245 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base 246 * will be used. The initial polarity for all channels is specified by the 247 * @polarity parameter. 248 * 249 * Returns: 0 on success or a negative error code on failure. 250 */ 251 int pwmchip_add_with_polarity(struct pwm_chip *chip, 252 enum pwm_polarity polarity) 253 { 254 struct pwm_device *pwm; 255 unsigned int i; 256 int ret; 257 258 if (!chip || !chip->dev || !chip->ops || !chip->npwm) 259 return -EINVAL; 260 261 if (!pwm_ops_check(chip->ops)) 262 return -EINVAL; 263 264 mutex_lock(&pwm_lock); 265 266 ret = alloc_pwms(chip->base, chip->npwm); 267 if (ret < 0) 268 goto out; 269 270 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL); 271 if (!chip->pwms) { 272 ret = -ENOMEM; 273 goto out; 274 } 275 276 chip->base = ret; 277 278 for (i = 0; i < chip->npwm; i++) { 279 pwm = &chip->pwms[i]; 280 281 pwm->chip = chip; 282 pwm->pwm = chip->base + i; 283 pwm->hwpwm = i; 284 pwm->state.polarity = polarity; 285 286 if (chip->ops->get_state) 287 chip->ops->get_state(chip, pwm, &pwm->state); 288 289 radix_tree_insert(&pwm_tree, pwm->pwm, pwm); 290 } 291 292 bitmap_set(allocated_pwms, chip->base, chip->npwm); 293 294 INIT_LIST_HEAD(&chip->list); 295 list_add(&chip->list, &pwm_chips); 296 297 ret = 0; 298 299 if (IS_ENABLED(CONFIG_OF)) 300 of_pwmchip_add(chip); 301 302 out: 303 mutex_unlock(&pwm_lock); 304 305 if (!ret) 306 pwmchip_sysfs_export(chip); 307 308 return ret; 309 } 310 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity); 311 312 /** 313 * pwmchip_add() - register a new PWM chip 314 * @chip: the PWM chip to add 315 * 316 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base 317 * will be used. The initial polarity for all channels is normal. 318 * 319 * Returns: 0 on success or a negative error code on failure. 320 */ 321 int pwmchip_add(struct pwm_chip *chip) 322 { 323 return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL); 324 } 325 EXPORT_SYMBOL_GPL(pwmchip_add); 326 327 /** 328 * pwmchip_remove() - remove a PWM chip 329 * @chip: the PWM chip to remove 330 * 331 * Removes a PWM chip. This function may return busy if the PWM chip provides 332 * a PWM device that is still requested. 333 * 334 * Returns: 0 on success or a negative error code on failure. 335 */ 336 int pwmchip_remove(struct pwm_chip *chip) 337 { 338 unsigned int i; 339 int ret = 0; 340 341 pwmchip_sysfs_unexport(chip); 342 343 mutex_lock(&pwm_lock); 344 345 for (i = 0; i < chip->npwm; i++) { 346 struct pwm_device *pwm = &chip->pwms[i]; 347 348 if (test_bit(PWMF_REQUESTED, &pwm->flags)) { 349 ret = -EBUSY; 350 goto out; 351 } 352 } 353 354 list_del_init(&chip->list); 355 356 if (IS_ENABLED(CONFIG_OF)) 357 of_pwmchip_remove(chip); 358 359 free_pwms(chip); 360 361 out: 362 mutex_unlock(&pwm_lock); 363 return ret; 364 } 365 EXPORT_SYMBOL_GPL(pwmchip_remove); 366 367 /** 368 * pwm_request() - request a PWM device 369 * @pwm: global PWM device index 370 * @label: PWM device label 371 * 372 * This function is deprecated, use pwm_get() instead. 373 * 374 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on 375 * failure. 376 */ 377 struct pwm_device *pwm_request(int pwm, const char *label) 378 { 379 struct pwm_device *dev; 380 int err; 381 382 if (pwm < 0 || pwm >= MAX_PWMS) 383 return ERR_PTR(-EINVAL); 384 385 mutex_lock(&pwm_lock); 386 387 dev = pwm_to_device(pwm); 388 if (!dev) { 389 dev = ERR_PTR(-EPROBE_DEFER); 390 goto out; 391 } 392 393 err = pwm_device_request(dev, label); 394 if (err < 0) 395 dev = ERR_PTR(err); 396 397 out: 398 mutex_unlock(&pwm_lock); 399 400 return dev; 401 } 402 EXPORT_SYMBOL_GPL(pwm_request); 403 404 /** 405 * pwm_request_from_chip() - request a PWM device relative to a PWM chip 406 * @chip: PWM chip 407 * @index: per-chip index of the PWM to request 408 * @label: a literal description string of this PWM 409 * 410 * Returns: A pointer to the PWM device at the given index of the given PWM 411 * chip. A negative error code is returned if the index is not valid for the 412 * specified PWM chip or if the PWM device cannot be requested. 413 */ 414 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, 415 unsigned int index, 416 const char *label) 417 { 418 struct pwm_device *pwm; 419 int err; 420 421 if (!chip || index >= chip->npwm) 422 return ERR_PTR(-EINVAL); 423 424 mutex_lock(&pwm_lock); 425 pwm = &chip->pwms[index]; 426 427 err = pwm_device_request(pwm, label); 428 if (err < 0) 429 pwm = ERR_PTR(err); 430 431 mutex_unlock(&pwm_lock); 432 return pwm; 433 } 434 EXPORT_SYMBOL_GPL(pwm_request_from_chip); 435 436 /** 437 * pwm_free() - free a PWM device 438 * @pwm: PWM device 439 * 440 * This function is deprecated, use pwm_put() instead. 441 */ 442 void pwm_free(struct pwm_device *pwm) 443 { 444 pwm_put(pwm); 445 } 446 EXPORT_SYMBOL_GPL(pwm_free); 447 448 /** 449 * pwm_apply_state() - atomically apply a new state to a PWM device 450 * @pwm: PWM device 451 * @state: new state to apply 452 */ 453 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state) 454 { 455 struct pwm_chip *chip; 456 int err; 457 458 if (!pwm || !state || !state->period || 459 state->duty_cycle > state->period) 460 return -EINVAL; 461 462 chip = pwm->chip; 463 464 if (state->period == pwm->state.period && 465 state->duty_cycle == pwm->state.duty_cycle && 466 state->polarity == pwm->state.polarity && 467 state->enabled == pwm->state.enabled) 468 return 0; 469 470 if (chip->ops->apply) { 471 err = chip->ops->apply(chip, pwm, state); 472 if (err) 473 return err; 474 475 pwm->state = *state; 476 } else { 477 /* 478 * FIXME: restore the initial state in case of error. 479 */ 480 if (state->polarity != pwm->state.polarity) { 481 if (!chip->ops->set_polarity) 482 return -ENOTSUPP; 483 484 /* 485 * Changing the polarity of a running PWM is 486 * only allowed when the PWM driver implements 487 * ->apply(). 488 */ 489 if (pwm->state.enabled) { 490 chip->ops->disable(chip, pwm); 491 pwm->state.enabled = false; 492 } 493 494 err = chip->ops->set_polarity(chip, pwm, 495 state->polarity); 496 if (err) 497 return err; 498 499 pwm->state.polarity = state->polarity; 500 } 501 502 if (state->period != pwm->state.period || 503 state->duty_cycle != pwm->state.duty_cycle) { 504 err = chip->ops->config(pwm->chip, pwm, 505 state->duty_cycle, 506 state->period); 507 if (err) 508 return err; 509 510 pwm->state.duty_cycle = state->duty_cycle; 511 pwm->state.period = state->period; 512 } 513 514 if (state->enabled != pwm->state.enabled) { 515 if (state->enabled) { 516 err = chip->ops->enable(chip, pwm); 517 if (err) 518 return err; 519 } else { 520 chip->ops->disable(chip, pwm); 521 } 522 523 pwm->state.enabled = state->enabled; 524 } 525 } 526 527 return 0; 528 } 529 EXPORT_SYMBOL_GPL(pwm_apply_state); 530 531 /** 532 * pwm_capture() - capture and report a PWM signal 533 * @pwm: PWM device 534 * @result: structure to fill with capture result 535 * @timeout: time to wait, in milliseconds, before giving up on capture 536 * 537 * Returns: 0 on success or a negative error code on failure. 538 */ 539 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result, 540 unsigned long timeout) 541 { 542 int err; 543 544 if (!pwm || !pwm->chip->ops) 545 return -EINVAL; 546 547 if (!pwm->chip->ops->capture) 548 return -ENOSYS; 549 550 mutex_lock(&pwm_lock); 551 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout); 552 mutex_unlock(&pwm_lock); 553 554 return err; 555 } 556 EXPORT_SYMBOL_GPL(pwm_capture); 557 558 /** 559 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments 560 * @pwm: PWM device 561 * 562 * This function will adjust the PWM config to the PWM arguments provided 563 * by the DT or PWM lookup table. This is particularly useful to adapt 564 * the bootloader config to the Linux one. 565 */ 566 int pwm_adjust_config(struct pwm_device *pwm) 567 { 568 struct pwm_state state; 569 struct pwm_args pargs; 570 571 pwm_get_args(pwm, &pargs); 572 pwm_get_state(pwm, &state); 573 574 /* 575 * If the current period is zero it means that either the PWM driver 576 * does not support initial state retrieval or the PWM has not yet 577 * been configured. 578 * 579 * In either case, we setup the new period and polarity, and assign a 580 * duty cycle of 0. 581 */ 582 if (!state.period) { 583 state.duty_cycle = 0; 584 state.period = pargs.period; 585 state.polarity = pargs.polarity; 586 587 return pwm_apply_state(pwm, &state); 588 } 589 590 /* 591 * Adjust the PWM duty cycle/period based on the period value provided 592 * in PWM args. 593 */ 594 if (pargs.period != state.period) { 595 u64 dutycycle = (u64)state.duty_cycle * pargs.period; 596 597 do_div(dutycycle, state.period); 598 state.duty_cycle = dutycycle; 599 state.period = pargs.period; 600 } 601 602 /* 603 * If the polarity changed, we should also change the duty cycle. 604 */ 605 if (pargs.polarity != state.polarity) { 606 state.polarity = pargs.polarity; 607 state.duty_cycle = state.period - state.duty_cycle; 608 } 609 610 return pwm_apply_state(pwm, &state); 611 } 612 EXPORT_SYMBOL_GPL(pwm_adjust_config); 613 614 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np) 615 { 616 struct pwm_chip *chip; 617 618 mutex_lock(&pwm_lock); 619 620 list_for_each_entry(chip, &pwm_chips, list) 621 if (chip->dev && chip->dev->of_node == np) { 622 mutex_unlock(&pwm_lock); 623 return chip; 624 } 625 626 mutex_unlock(&pwm_lock); 627 628 return ERR_PTR(-EPROBE_DEFER); 629 } 630 631 static struct device_link *pwm_device_link_add(struct device *dev, 632 struct pwm_device *pwm) 633 { 634 struct device_link *dl; 635 636 if (!dev) { 637 /* 638 * No device for the PWM consumer has been provided. It may 639 * impact the PM sequence ordering: the PWM supplier may get 640 * suspended before the consumer. 641 */ 642 dev_warn(pwm->chip->dev, 643 "No consumer device specified to create a link to\n"); 644 return NULL; 645 } 646 647 dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER); 648 if (!dl) { 649 dev_err(dev, "failed to create device link to %s\n", 650 dev_name(pwm->chip->dev)); 651 return ERR_PTR(-EINVAL); 652 } 653 654 return dl; 655 } 656 657 /** 658 * of_pwm_get() - request a PWM via the PWM framework 659 * @dev: device for PWM consumer 660 * @np: device node to get the PWM from 661 * @con_id: consumer name 662 * 663 * Returns the PWM device parsed from the phandle and index specified in the 664 * "pwms" property of a device tree node or a negative error-code on failure. 665 * Values parsed from the device tree are stored in the returned PWM device 666 * object. 667 * 668 * If con_id is NULL, the first PWM device listed in the "pwms" property will 669 * be requested. Otherwise the "pwm-names" property is used to do a reverse 670 * lookup of the PWM index. This also means that the "pwm-names" property 671 * becomes mandatory for devices that look up the PWM device via the con_id 672 * parameter. 673 * 674 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 675 * error code on failure. 676 */ 677 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np, 678 const char *con_id) 679 { 680 struct pwm_device *pwm = NULL; 681 struct of_phandle_args args; 682 struct device_link *dl; 683 struct pwm_chip *pc; 684 int index = 0; 685 int err; 686 687 if (con_id) { 688 index = of_property_match_string(np, "pwm-names", con_id); 689 if (index < 0) 690 return ERR_PTR(index); 691 } 692 693 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index, 694 &args); 695 if (err) { 696 pr_err("%s(): can't parse \"pwms\" property\n", __func__); 697 return ERR_PTR(err); 698 } 699 700 pc = of_node_to_pwmchip(args.np); 701 if (IS_ERR(pc)) { 702 if (PTR_ERR(pc) != -EPROBE_DEFER) 703 pr_err("%s(): PWM chip not found\n", __func__); 704 705 pwm = ERR_CAST(pc); 706 goto put; 707 } 708 709 pwm = pc->of_xlate(pc, &args); 710 if (IS_ERR(pwm)) 711 goto put; 712 713 dl = pwm_device_link_add(dev, pwm); 714 if (IS_ERR(dl)) { 715 /* of_xlate ended up calling pwm_request_from_chip() */ 716 pwm_free(pwm); 717 pwm = ERR_CAST(dl); 718 goto put; 719 } 720 721 /* 722 * If a consumer name was not given, try to look it up from the 723 * "pwm-names" property if it exists. Otherwise use the name of 724 * the user device node. 725 */ 726 if (!con_id) { 727 err = of_property_read_string_index(np, "pwm-names", index, 728 &con_id); 729 if (err < 0) 730 con_id = np->name; 731 } 732 733 pwm->label = con_id; 734 735 put: 736 of_node_put(args.np); 737 738 return pwm; 739 } 740 EXPORT_SYMBOL_GPL(of_pwm_get); 741 742 #if IS_ENABLED(CONFIG_ACPI) 743 static struct pwm_chip *device_to_pwmchip(struct device *dev) 744 { 745 struct pwm_chip *chip; 746 747 mutex_lock(&pwm_lock); 748 749 list_for_each_entry(chip, &pwm_chips, list) { 750 struct acpi_device *adev = ACPI_COMPANION(chip->dev); 751 752 if ((chip->dev == dev) || (adev && &adev->dev == dev)) { 753 mutex_unlock(&pwm_lock); 754 return chip; 755 } 756 } 757 758 mutex_unlock(&pwm_lock); 759 760 return ERR_PTR(-EPROBE_DEFER); 761 } 762 #endif 763 764 /** 765 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI 766 * @fwnode: firmware node to get the "pwm" property from 767 * 768 * Returns the PWM device parsed from the fwnode and index specified in the 769 * "pwms" property or a negative error-code on failure. 770 * Values parsed from the device tree are stored in the returned PWM device 771 * object. 772 * 773 * This is analogous to of_pwm_get() except con_id is not yet supported. 774 * ACPI entries must look like 775 * Package () {"pwms", Package () 776 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}} 777 * 778 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 779 * error code on failure. 780 */ 781 static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode) 782 { 783 struct pwm_device *pwm = ERR_PTR(-ENODEV); 784 #if IS_ENABLED(CONFIG_ACPI) 785 struct fwnode_reference_args args; 786 struct acpi_device *acpi; 787 struct pwm_chip *chip; 788 int ret; 789 790 memset(&args, 0, sizeof(args)); 791 792 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args); 793 if (ret < 0) 794 return ERR_PTR(ret); 795 796 acpi = to_acpi_device_node(args.fwnode); 797 if (!acpi) 798 return ERR_PTR(-EINVAL); 799 800 if (args.nargs < 2) 801 return ERR_PTR(-EPROTO); 802 803 chip = device_to_pwmchip(&acpi->dev); 804 if (IS_ERR(chip)) 805 return ERR_CAST(chip); 806 807 pwm = pwm_request_from_chip(chip, args.args[0], NULL); 808 if (IS_ERR(pwm)) 809 return pwm; 810 811 pwm->args.period = args.args[1]; 812 pwm->args.polarity = PWM_POLARITY_NORMAL; 813 814 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED) 815 pwm->args.polarity = PWM_POLARITY_INVERSED; 816 #endif 817 818 return pwm; 819 } 820 821 /** 822 * pwm_add_table() - register PWM device consumers 823 * @table: array of consumers to register 824 * @num: number of consumers in table 825 */ 826 void pwm_add_table(struct pwm_lookup *table, size_t num) 827 { 828 mutex_lock(&pwm_lookup_lock); 829 830 while (num--) { 831 list_add_tail(&table->list, &pwm_lookup_list); 832 table++; 833 } 834 835 mutex_unlock(&pwm_lookup_lock); 836 } 837 838 /** 839 * pwm_remove_table() - unregister PWM device consumers 840 * @table: array of consumers to unregister 841 * @num: number of consumers in table 842 */ 843 void pwm_remove_table(struct pwm_lookup *table, size_t num) 844 { 845 mutex_lock(&pwm_lookup_lock); 846 847 while (num--) { 848 list_del(&table->list); 849 table++; 850 } 851 852 mutex_unlock(&pwm_lookup_lock); 853 } 854 855 /** 856 * pwm_get() - look up and request a PWM device 857 * @dev: device for PWM consumer 858 * @con_id: consumer name 859 * 860 * Lookup is first attempted using DT. If the device was not instantiated from 861 * a device tree, a PWM chip and a relative index is looked up via a table 862 * supplied by board setup code (see pwm_add_table()). 863 * 864 * Once a PWM chip has been found the specified PWM device will be requested 865 * and is ready to be used. 866 * 867 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 868 * error code on failure. 869 */ 870 struct pwm_device *pwm_get(struct device *dev, const char *con_id) 871 { 872 const char *dev_id = dev ? dev_name(dev) : NULL; 873 struct pwm_device *pwm; 874 struct pwm_chip *chip; 875 struct device_link *dl; 876 unsigned int best = 0; 877 struct pwm_lookup *p, *chosen = NULL; 878 unsigned int match; 879 int err; 880 881 /* look up via DT first */ 882 if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node) 883 return of_pwm_get(dev, dev->of_node, con_id); 884 885 /* then lookup via ACPI */ 886 if (dev && is_acpi_node(dev->fwnode)) { 887 pwm = acpi_pwm_get(dev->fwnode); 888 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT) 889 return pwm; 890 } 891 892 /* 893 * We look up the provider in the static table typically provided by 894 * board setup code. We first try to lookup the consumer device by 895 * name. If the consumer device was passed in as NULL or if no match 896 * was found, we try to find the consumer by directly looking it up 897 * by name. 898 * 899 * If a match is found, the provider PWM chip is looked up by name 900 * and a PWM device is requested using the PWM device per-chip index. 901 * 902 * The lookup algorithm was shamelessly taken from the clock 903 * framework: 904 * 905 * We do slightly fuzzy matching here: 906 * An entry with a NULL ID is assumed to be a wildcard. 907 * If an entry has a device ID, it must match 908 * If an entry has a connection ID, it must match 909 * Then we take the most specific entry - with the following order 910 * of precedence: dev+con > dev only > con only. 911 */ 912 mutex_lock(&pwm_lookup_lock); 913 914 list_for_each_entry(p, &pwm_lookup_list, list) { 915 match = 0; 916 917 if (p->dev_id) { 918 if (!dev_id || strcmp(p->dev_id, dev_id)) 919 continue; 920 921 match += 2; 922 } 923 924 if (p->con_id) { 925 if (!con_id || strcmp(p->con_id, con_id)) 926 continue; 927 928 match += 1; 929 } 930 931 if (match > best) { 932 chosen = p; 933 934 if (match != 3) 935 best = match; 936 else 937 break; 938 } 939 } 940 941 mutex_unlock(&pwm_lookup_lock); 942 943 if (!chosen) 944 return ERR_PTR(-ENODEV); 945 946 chip = pwmchip_find_by_name(chosen->provider); 947 948 /* 949 * If the lookup entry specifies a module, load the module and retry 950 * the PWM chip lookup. This can be used to work around driver load 951 * ordering issues if driver's can't be made to properly support the 952 * deferred probe mechanism. 953 */ 954 if (!chip && chosen->module) { 955 err = request_module(chosen->module); 956 if (err == 0) 957 chip = pwmchip_find_by_name(chosen->provider); 958 } 959 960 if (!chip) 961 return ERR_PTR(-EPROBE_DEFER); 962 963 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id); 964 if (IS_ERR(pwm)) 965 return pwm; 966 967 dl = pwm_device_link_add(dev, pwm); 968 if (IS_ERR(dl)) { 969 pwm_free(pwm); 970 return ERR_CAST(dl); 971 } 972 973 pwm->args.period = chosen->period; 974 pwm->args.polarity = chosen->polarity; 975 976 return pwm; 977 } 978 EXPORT_SYMBOL_GPL(pwm_get); 979 980 /** 981 * pwm_put() - release a PWM device 982 * @pwm: PWM device 983 */ 984 void pwm_put(struct pwm_device *pwm) 985 { 986 if (!pwm) 987 return; 988 989 mutex_lock(&pwm_lock); 990 991 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 992 pr_warn("PWM device already freed\n"); 993 goto out; 994 } 995 996 if (pwm->chip->ops->free) 997 pwm->chip->ops->free(pwm->chip, pwm); 998 999 pwm_set_chip_data(pwm, NULL); 1000 pwm->label = NULL; 1001 1002 module_put(pwm->chip->ops->owner); 1003 out: 1004 mutex_unlock(&pwm_lock); 1005 } 1006 EXPORT_SYMBOL_GPL(pwm_put); 1007 1008 static void devm_pwm_release(struct device *dev, void *res) 1009 { 1010 pwm_put(*(struct pwm_device **)res); 1011 } 1012 1013 /** 1014 * devm_pwm_get() - resource managed pwm_get() 1015 * @dev: device for PWM consumer 1016 * @con_id: consumer name 1017 * 1018 * This function performs like pwm_get() but the acquired PWM device will 1019 * automatically be released on driver detach. 1020 * 1021 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1022 * error code on failure. 1023 */ 1024 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id) 1025 { 1026 struct pwm_device **ptr, *pwm; 1027 1028 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL); 1029 if (!ptr) 1030 return ERR_PTR(-ENOMEM); 1031 1032 pwm = pwm_get(dev, con_id); 1033 if (!IS_ERR(pwm)) { 1034 *ptr = pwm; 1035 devres_add(dev, ptr); 1036 } else { 1037 devres_free(ptr); 1038 } 1039 1040 return pwm; 1041 } 1042 EXPORT_SYMBOL_GPL(devm_pwm_get); 1043 1044 /** 1045 * devm_of_pwm_get() - resource managed of_pwm_get() 1046 * @dev: device for PWM consumer 1047 * @np: device node to get the PWM from 1048 * @con_id: consumer name 1049 * 1050 * This function performs like of_pwm_get() but the acquired PWM device will 1051 * automatically be released on driver detach. 1052 * 1053 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1054 * error code on failure. 1055 */ 1056 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np, 1057 const char *con_id) 1058 { 1059 struct pwm_device **ptr, *pwm; 1060 1061 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL); 1062 if (!ptr) 1063 return ERR_PTR(-ENOMEM); 1064 1065 pwm = of_pwm_get(dev, np, con_id); 1066 if (!IS_ERR(pwm)) { 1067 *ptr = pwm; 1068 devres_add(dev, ptr); 1069 } else { 1070 devres_free(ptr); 1071 } 1072 1073 return pwm; 1074 } 1075 EXPORT_SYMBOL_GPL(devm_of_pwm_get); 1076 1077 /** 1078 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node 1079 * @dev: device for PWM consumer 1080 * @fwnode: firmware node to get the PWM from 1081 * @con_id: consumer name 1082 * 1083 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and 1084 * acpi_pwm_get() for a detailed description. 1085 * 1086 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1087 * error code on failure. 1088 */ 1089 struct pwm_device *devm_fwnode_pwm_get(struct device *dev, 1090 struct fwnode_handle *fwnode, 1091 const char *con_id) 1092 { 1093 struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV); 1094 1095 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL); 1096 if (!ptr) 1097 return ERR_PTR(-ENOMEM); 1098 1099 if (is_of_node(fwnode)) 1100 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id); 1101 else if (is_acpi_node(fwnode)) 1102 pwm = acpi_pwm_get(fwnode); 1103 1104 if (!IS_ERR(pwm)) { 1105 *ptr = pwm; 1106 devres_add(dev, ptr); 1107 } else { 1108 devres_free(ptr); 1109 } 1110 1111 return pwm; 1112 } 1113 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get); 1114 1115 static int devm_pwm_match(struct device *dev, void *res, void *data) 1116 { 1117 struct pwm_device **p = res; 1118 1119 if (WARN_ON(!p || !*p)) 1120 return 0; 1121 1122 return *p == data; 1123 } 1124 1125 /** 1126 * devm_pwm_put() - resource managed pwm_put() 1127 * @dev: device for PWM consumer 1128 * @pwm: PWM device 1129 * 1130 * Release a PWM previously allocated using devm_pwm_get(). Calling this 1131 * function is usually not needed because devm-allocated resources are 1132 * automatically released on driver detach. 1133 */ 1134 void devm_pwm_put(struct device *dev, struct pwm_device *pwm) 1135 { 1136 WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm)); 1137 } 1138 EXPORT_SYMBOL_GPL(devm_pwm_put); 1139 1140 #ifdef CONFIG_DEBUG_FS 1141 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s) 1142 { 1143 unsigned int i; 1144 1145 for (i = 0; i < chip->npwm; i++) { 1146 struct pwm_device *pwm = &chip->pwms[i]; 1147 struct pwm_state state; 1148 1149 pwm_get_state(pwm, &state); 1150 1151 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label); 1152 1153 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 1154 seq_puts(s, " requested"); 1155 1156 if (state.enabled) 1157 seq_puts(s, " enabled"); 1158 1159 seq_printf(s, " period: %u ns", state.period); 1160 seq_printf(s, " duty: %u ns", state.duty_cycle); 1161 seq_printf(s, " polarity: %s", 1162 state.polarity ? "inverse" : "normal"); 1163 1164 seq_puts(s, "\n"); 1165 } 1166 } 1167 1168 static void *pwm_seq_start(struct seq_file *s, loff_t *pos) 1169 { 1170 mutex_lock(&pwm_lock); 1171 s->private = ""; 1172 1173 return seq_list_start(&pwm_chips, *pos); 1174 } 1175 1176 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos) 1177 { 1178 s->private = "\n"; 1179 1180 return seq_list_next(v, &pwm_chips, pos); 1181 } 1182 1183 static void pwm_seq_stop(struct seq_file *s, void *v) 1184 { 1185 mutex_unlock(&pwm_lock); 1186 } 1187 1188 static int pwm_seq_show(struct seq_file *s, void *v) 1189 { 1190 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list); 1191 1192 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private, 1193 chip->dev->bus ? chip->dev->bus->name : "no-bus", 1194 dev_name(chip->dev), chip->npwm, 1195 (chip->npwm != 1) ? "s" : ""); 1196 1197 pwm_dbg_show(chip, s); 1198 1199 return 0; 1200 } 1201 1202 static const struct seq_operations pwm_seq_ops = { 1203 .start = pwm_seq_start, 1204 .next = pwm_seq_next, 1205 .stop = pwm_seq_stop, 1206 .show = pwm_seq_show, 1207 }; 1208 1209 static int pwm_seq_open(struct inode *inode, struct file *file) 1210 { 1211 return seq_open(file, &pwm_seq_ops); 1212 } 1213 1214 static const struct file_operations pwm_debugfs_ops = { 1215 .owner = THIS_MODULE, 1216 .open = pwm_seq_open, 1217 .read = seq_read, 1218 .llseek = seq_lseek, 1219 .release = seq_release, 1220 }; 1221 1222 static int __init pwm_debugfs_init(void) 1223 { 1224 debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL, 1225 &pwm_debugfs_ops); 1226 1227 return 0; 1228 } 1229 subsys_initcall(pwm_debugfs_init); 1230 #endif /* CONFIG_DEBUG_FS */ 1231