xref: /openbmc/linux/drivers/pwm/core.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * Generic pwmlib implementation
3  *
4  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
5  * Copyright (C) 2011-2012 Avionic Design GmbH
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2, or (at your option)
10  *  any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; see the file COPYING.  If not, write to
19  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/module.h>
23 #include <linux/pwm.h>
24 #include <linux/radix-tree.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/err.h>
28 #include <linux/slab.h>
29 #include <linux/device.h>
30 #include <linux/debugfs.h>
31 #include <linux/seq_file.h>
32 
33 #include <dt-bindings/pwm/pwm.h>
34 
35 #define MAX_PWMS 1024
36 
37 static DEFINE_MUTEX(pwm_lookup_lock);
38 static LIST_HEAD(pwm_lookup_list);
39 static DEFINE_MUTEX(pwm_lock);
40 static LIST_HEAD(pwm_chips);
41 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
42 static RADIX_TREE(pwm_tree, GFP_KERNEL);
43 
44 static struct pwm_device *pwm_to_device(unsigned int pwm)
45 {
46 	return radix_tree_lookup(&pwm_tree, pwm);
47 }
48 
49 static int alloc_pwms(int pwm, unsigned int count)
50 {
51 	unsigned int from = 0;
52 	unsigned int start;
53 
54 	if (pwm >= MAX_PWMS)
55 		return -EINVAL;
56 
57 	if (pwm >= 0)
58 		from = pwm;
59 
60 	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
61 					   count, 0);
62 
63 	if (pwm >= 0 && start != pwm)
64 		return -EEXIST;
65 
66 	if (start + count > MAX_PWMS)
67 		return -ENOSPC;
68 
69 	return start;
70 }
71 
72 static void free_pwms(struct pwm_chip *chip)
73 {
74 	unsigned int i;
75 
76 	for (i = 0; i < chip->npwm; i++) {
77 		struct pwm_device *pwm = &chip->pwms[i];
78 
79 		radix_tree_delete(&pwm_tree, pwm->pwm);
80 	}
81 
82 	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
83 
84 	kfree(chip->pwms);
85 	chip->pwms = NULL;
86 }
87 
88 static struct pwm_chip *pwmchip_find_by_name(const char *name)
89 {
90 	struct pwm_chip *chip;
91 
92 	if (!name)
93 		return NULL;
94 
95 	mutex_lock(&pwm_lock);
96 
97 	list_for_each_entry(chip, &pwm_chips, list) {
98 		const char *chip_name = dev_name(chip->dev);
99 
100 		if (chip_name && strcmp(chip_name, name) == 0) {
101 			mutex_unlock(&pwm_lock);
102 			return chip;
103 		}
104 	}
105 
106 	mutex_unlock(&pwm_lock);
107 
108 	return NULL;
109 }
110 
111 static int pwm_device_request(struct pwm_device *pwm, const char *label)
112 {
113 	int err;
114 
115 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
116 		return -EBUSY;
117 
118 	if (!try_module_get(pwm->chip->ops->owner))
119 		return -ENODEV;
120 
121 	if (pwm->chip->ops->request) {
122 		err = pwm->chip->ops->request(pwm->chip, pwm);
123 		if (err) {
124 			module_put(pwm->chip->ops->owner);
125 			return err;
126 		}
127 	}
128 
129 	set_bit(PWMF_REQUESTED, &pwm->flags);
130 	pwm->label = label;
131 
132 	return 0;
133 }
134 
135 struct pwm_device *
136 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
137 {
138 	struct pwm_device *pwm;
139 
140 	/* check, whether the driver supports a third cell for flags */
141 	if (pc->of_pwm_n_cells < 3)
142 		return ERR_PTR(-EINVAL);
143 
144 	/* flags in the third cell are optional */
145 	if (args->args_count < 2)
146 		return ERR_PTR(-EINVAL);
147 
148 	if (args->args[0] >= pc->npwm)
149 		return ERR_PTR(-EINVAL);
150 
151 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
152 	if (IS_ERR(pwm))
153 		return pwm;
154 
155 	pwm->args.period = args->args[1];
156 	pwm->args.polarity = PWM_POLARITY_NORMAL;
157 
158 	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
159 		pwm->args.polarity = PWM_POLARITY_INVERSED;
160 
161 	return pwm;
162 }
163 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
164 
165 static struct pwm_device *
166 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
167 {
168 	struct pwm_device *pwm;
169 
170 	/* sanity check driver support */
171 	if (pc->of_pwm_n_cells < 2)
172 		return ERR_PTR(-EINVAL);
173 
174 	/* all cells are required */
175 	if (args->args_count != pc->of_pwm_n_cells)
176 		return ERR_PTR(-EINVAL);
177 
178 	if (args->args[0] >= pc->npwm)
179 		return ERR_PTR(-EINVAL);
180 
181 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
182 	if (IS_ERR(pwm))
183 		return pwm;
184 
185 	pwm->args.period = args->args[1];
186 
187 	return pwm;
188 }
189 
190 static void of_pwmchip_add(struct pwm_chip *chip)
191 {
192 	if (!chip->dev || !chip->dev->of_node)
193 		return;
194 
195 	if (!chip->of_xlate) {
196 		chip->of_xlate = of_pwm_simple_xlate;
197 		chip->of_pwm_n_cells = 2;
198 	}
199 
200 	of_node_get(chip->dev->of_node);
201 }
202 
203 static void of_pwmchip_remove(struct pwm_chip *chip)
204 {
205 	if (chip->dev)
206 		of_node_put(chip->dev->of_node);
207 }
208 
209 /**
210  * pwm_set_chip_data() - set private chip data for a PWM
211  * @pwm: PWM device
212  * @data: pointer to chip-specific data
213  *
214  * Returns: 0 on success or a negative error code on failure.
215  */
216 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
217 {
218 	if (!pwm)
219 		return -EINVAL;
220 
221 	pwm->chip_data = data;
222 
223 	return 0;
224 }
225 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
226 
227 /**
228  * pwm_get_chip_data() - get private chip data for a PWM
229  * @pwm: PWM device
230  *
231  * Returns: A pointer to the chip-private data for the PWM device.
232  */
233 void *pwm_get_chip_data(struct pwm_device *pwm)
234 {
235 	return pwm ? pwm->chip_data : NULL;
236 }
237 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
238 
239 static bool pwm_ops_check(const struct pwm_ops *ops)
240 {
241 	/* driver supports legacy, non-atomic operation */
242 	if (ops->config && ops->enable && ops->disable)
243 		return true;
244 
245 	/* driver supports atomic operation */
246 	if (ops->apply)
247 		return true;
248 
249 	return false;
250 }
251 
252 /**
253  * pwmchip_add_with_polarity() - register a new PWM chip
254  * @chip: the PWM chip to add
255  * @polarity: initial polarity of PWM channels
256  *
257  * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
258  * will be used. The initial polarity for all channels is specified by the
259  * @polarity parameter.
260  *
261  * Returns: 0 on success or a negative error code on failure.
262  */
263 int pwmchip_add_with_polarity(struct pwm_chip *chip,
264 			      enum pwm_polarity polarity)
265 {
266 	struct pwm_device *pwm;
267 	unsigned int i;
268 	int ret;
269 
270 	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
271 		return -EINVAL;
272 
273 	if (!pwm_ops_check(chip->ops))
274 		return -EINVAL;
275 
276 	mutex_lock(&pwm_lock);
277 
278 	ret = alloc_pwms(chip->base, chip->npwm);
279 	if (ret < 0)
280 		goto out;
281 
282 	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
283 	if (!chip->pwms) {
284 		ret = -ENOMEM;
285 		goto out;
286 	}
287 
288 	chip->base = ret;
289 
290 	for (i = 0; i < chip->npwm; i++) {
291 		pwm = &chip->pwms[i];
292 
293 		pwm->chip = chip;
294 		pwm->pwm = chip->base + i;
295 		pwm->hwpwm = i;
296 		pwm->state.polarity = polarity;
297 
298 		if (chip->ops->get_state)
299 			chip->ops->get_state(chip, pwm, &pwm->state);
300 
301 		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
302 	}
303 
304 	bitmap_set(allocated_pwms, chip->base, chip->npwm);
305 
306 	INIT_LIST_HEAD(&chip->list);
307 	list_add(&chip->list, &pwm_chips);
308 
309 	ret = 0;
310 
311 	if (IS_ENABLED(CONFIG_OF))
312 		of_pwmchip_add(chip);
313 
314 	pwmchip_sysfs_export(chip);
315 
316 out:
317 	mutex_unlock(&pwm_lock);
318 	return ret;
319 }
320 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
321 
322 /**
323  * pwmchip_add() - register a new PWM chip
324  * @chip: the PWM chip to add
325  *
326  * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
327  * will be used. The initial polarity for all channels is normal.
328  *
329  * Returns: 0 on success or a negative error code on failure.
330  */
331 int pwmchip_add(struct pwm_chip *chip)
332 {
333 	return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
334 }
335 EXPORT_SYMBOL_GPL(pwmchip_add);
336 
337 /**
338  * pwmchip_remove() - remove a PWM chip
339  * @chip: the PWM chip to remove
340  *
341  * Removes a PWM chip. This function may return busy if the PWM chip provides
342  * a PWM device that is still requested.
343  *
344  * Returns: 0 on success or a negative error code on failure.
345  */
346 int pwmchip_remove(struct pwm_chip *chip)
347 {
348 	unsigned int i;
349 	int ret = 0;
350 
351 	pwmchip_sysfs_unexport_children(chip);
352 
353 	mutex_lock(&pwm_lock);
354 
355 	for (i = 0; i < chip->npwm; i++) {
356 		struct pwm_device *pwm = &chip->pwms[i];
357 
358 		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
359 			ret = -EBUSY;
360 			goto out;
361 		}
362 	}
363 
364 	list_del_init(&chip->list);
365 
366 	if (IS_ENABLED(CONFIG_OF))
367 		of_pwmchip_remove(chip);
368 
369 	free_pwms(chip);
370 
371 	pwmchip_sysfs_unexport(chip);
372 
373 out:
374 	mutex_unlock(&pwm_lock);
375 	return ret;
376 }
377 EXPORT_SYMBOL_GPL(pwmchip_remove);
378 
379 /**
380  * pwm_request() - request a PWM device
381  * @pwm: global PWM device index
382  * @label: PWM device label
383  *
384  * This function is deprecated, use pwm_get() instead.
385  *
386  * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
387  * failure.
388  */
389 struct pwm_device *pwm_request(int pwm, const char *label)
390 {
391 	struct pwm_device *dev;
392 	int err;
393 
394 	if (pwm < 0 || pwm >= MAX_PWMS)
395 		return ERR_PTR(-EINVAL);
396 
397 	mutex_lock(&pwm_lock);
398 
399 	dev = pwm_to_device(pwm);
400 	if (!dev) {
401 		dev = ERR_PTR(-EPROBE_DEFER);
402 		goto out;
403 	}
404 
405 	err = pwm_device_request(dev, label);
406 	if (err < 0)
407 		dev = ERR_PTR(err);
408 
409 out:
410 	mutex_unlock(&pwm_lock);
411 
412 	return dev;
413 }
414 EXPORT_SYMBOL_GPL(pwm_request);
415 
416 /**
417  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
418  * @chip: PWM chip
419  * @index: per-chip index of the PWM to request
420  * @label: a literal description string of this PWM
421  *
422  * Returns: A pointer to the PWM device at the given index of the given PWM
423  * chip. A negative error code is returned if the index is not valid for the
424  * specified PWM chip or if the PWM device cannot be requested.
425  */
426 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
427 					 unsigned int index,
428 					 const char *label)
429 {
430 	struct pwm_device *pwm;
431 	int err;
432 
433 	if (!chip || index >= chip->npwm)
434 		return ERR_PTR(-EINVAL);
435 
436 	mutex_lock(&pwm_lock);
437 	pwm = &chip->pwms[index];
438 
439 	err = pwm_device_request(pwm, label);
440 	if (err < 0)
441 		pwm = ERR_PTR(err);
442 
443 	mutex_unlock(&pwm_lock);
444 	return pwm;
445 }
446 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
447 
448 /**
449  * pwm_free() - free a PWM device
450  * @pwm: PWM device
451  *
452  * This function is deprecated, use pwm_put() instead.
453  */
454 void pwm_free(struct pwm_device *pwm)
455 {
456 	pwm_put(pwm);
457 }
458 EXPORT_SYMBOL_GPL(pwm_free);
459 
460 /**
461  * pwm_apply_state() - atomically apply a new state to a PWM device
462  * @pwm: PWM device
463  * @state: new state to apply. This can be adjusted by the PWM driver
464  *	   if the requested config is not achievable, for example,
465  *	   ->duty_cycle and ->period might be approximated.
466  */
467 int pwm_apply_state(struct pwm_device *pwm, struct pwm_state *state)
468 {
469 	int err;
470 
471 	if (!pwm || !state || !state->period ||
472 	    state->duty_cycle > state->period)
473 		return -EINVAL;
474 
475 	if (!memcmp(state, &pwm->state, sizeof(*state)))
476 		return 0;
477 
478 	if (pwm->chip->ops->apply) {
479 		err = pwm->chip->ops->apply(pwm->chip, pwm, state);
480 		if (err)
481 			return err;
482 
483 		pwm->state = *state;
484 	} else {
485 		/*
486 		 * FIXME: restore the initial state in case of error.
487 		 */
488 		if (state->polarity != pwm->state.polarity) {
489 			if (!pwm->chip->ops->set_polarity)
490 				return -ENOTSUPP;
491 
492 			/*
493 			 * Changing the polarity of a running PWM is
494 			 * only allowed when the PWM driver implements
495 			 * ->apply().
496 			 */
497 			if (pwm->state.enabled) {
498 				pwm->chip->ops->disable(pwm->chip, pwm);
499 				pwm->state.enabled = false;
500 			}
501 
502 			err = pwm->chip->ops->set_polarity(pwm->chip, pwm,
503 							   state->polarity);
504 			if (err)
505 				return err;
506 
507 			pwm->state.polarity = state->polarity;
508 		}
509 
510 		if (state->period != pwm->state.period ||
511 		    state->duty_cycle != pwm->state.duty_cycle) {
512 			err = pwm->chip->ops->config(pwm->chip, pwm,
513 						     state->duty_cycle,
514 						     state->period);
515 			if (err)
516 				return err;
517 
518 			pwm->state.duty_cycle = state->duty_cycle;
519 			pwm->state.period = state->period;
520 		}
521 
522 		if (state->enabled != pwm->state.enabled) {
523 			if (state->enabled) {
524 				err = pwm->chip->ops->enable(pwm->chip, pwm);
525 				if (err)
526 					return err;
527 			} else {
528 				pwm->chip->ops->disable(pwm->chip, pwm);
529 			}
530 
531 			pwm->state.enabled = state->enabled;
532 		}
533 	}
534 
535 	return 0;
536 }
537 EXPORT_SYMBOL_GPL(pwm_apply_state);
538 
539 /**
540  * pwm_capture() - capture and report a PWM signal
541  * @pwm: PWM device
542  * @result: structure to fill with capture result
543  * @timeout: time to wait, in milliseconds, before giving up on capture
544  *
545  * Returns: 0 on success or a negative error code on failure.
546  */
547 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
548 		unsigned long timeout)
549 {
550 	int err;
551 
552 	if (!pwm || !pwm->chip->ops)
553 		return -EINVAL;
554 
555 	if (!pwm->chip->ops->capture)
556 		return -ENOSYS;
557 
558 	mutex_lock(&pwm_lock);
559 	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
560 	mutex_unlock(&pwm_lock);
561 
562 	return err;
563 }
564 EXPORT_SYMBOL_GPL(pwm_capture);
565 
566 /**
567  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
568  * @pwm: PWM device
569  *
570  * This function will adjust the PWM config to the PWM arguments provided
571  * by the DT or PWM lookup table. This is particularly useful to adapt
572  * the bootloader config to the Linux one.
573  */
574 int pwm_adjust_config(struct pwm_device *pwm)
575 {
576 	struct pwm_state state;
577 	struct pwm_args pargs;
578 
579 	pwm_get_args(pwm, &pargs);
580 	pwm_get_state(pwm, &state);
581 
582 	/*
583 	 * If the current period is zero it means that either the PWM driver
584 	 * does not support initial state retrieval or the PWM has not yet
585 	 * been configured.
586 	 *
587 	 * In either case, we setup the new period and polarity, and assign a
588 	 * duty cycle of 0.
589 	 */
590 	if (!state.period) {
591 		state.duty_cycle = 0;
592 		state.period = pargs.period;
593 		state.polarity = pargs.polarity;
594 
595 		return pwm_apply_state(pwm, &state);
596 	}
597 
598 	/*
599 	 * Adjust the PWM duty cycle/period based on the period value provided
600 	 * in PWM args.
601 	 */
602 	if (pargs.period != state.period) {
603 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
604 
605 		do_div(dutycycle, state.period);
606 		state.duty_cycle = dutycycle;
607 		state.period = pargs.period;
608 	}
609 
610 	/*
611 	 * If the polarity changed, we should also change the duty cycle.
612 	 */
613 	if (pargs.polarity != state.polarity) {
614 		state.polarity = pargs.polarity;
615 		state.duty_cycle = state.period - state.duty_cycle;
616 	}
617 
618 	return pwm_apply_state(pwm, &state);
619 }
620 EXPORT_SYMBOL_GPL(pwm_adjust_config);
621 
622 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
623 {
624 	struct pwm_chip *chip;
625 
626 	mutex_lock(&pwm_lock);
627 
628 	list_for_each_entry(chip, &pwm_chips, list)
629 		if (chip->dev && chip->dev->of_node == np) {
630 			mutex_unlock(&pwm_lock);
631 			return chip;
632 		}
633 
634 	mutex_unlock(&pwm_lock);
635 
636 	return ERR_PTR(-EPROBE_DEFER);
637 }
638 
639 /**
640  * of_pwm_get() - request a PWM via the PWM framework
641  * @np: device node to get the PWM from
642  * @con_id: consumer name
643  *
644  * Returns the PWM device parsed from the phandle and index specified in the
645  * "pwms" property of a device tree node or a negative error-code on failure.
646  * Values parsed from the device tree are stored in the returned PWM device
647  * object.
648  *
649  * If con_id is NULL, the first PWM device listed in the "pwms" property will
650  * be requested. Otherwise the "pwm-names" property is used to do a reverse
651  * lookup of the PWM index. This also means that the "pwm-names" property
652  * becomes mandatory for devices that look up the PWM device via the con_id
653  * parameter.
654  *
655  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
656  * error code on failure.
657  */
658 struct pwm_device *of_pwm_get(struct device_node *np, const char *con_id)
659 {
660 	struct pwm_device *pwm = NULL;
661 	struct of_phandle_args args;
662 	struct pwm_chip *pc;
663 	int index = 0;
664 	int err;
665 
666 	if (con_id) {
667 		index = of_property_match_string(np, "pwm-names", con_id);
668 		if (index < 0)
669 			return ERR_PTR(index);
670 	}
671 
672 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
673 					 &args);
674 	if (err) {
675 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
676 		return ERR_PTR(err);
677 	}
678 
679 	pc = of_node_to_pwmchip(args.np);
680 	if (IS_ERR(pc)) {
681 		if (PTR_ERR(pc) != -EPROBE_DEFER)
682 			pr_err("%s(): PWM chip not found\n", __func__);
683 
684 		pwm = ERR_CAST(pc);
685 		goto put;
686 	}
687 
688 	pwm = pc->of_xlate(pc, &args);
689 	if (IS_ERR(pwm))
690 		goto put;
691 
692 	/*
693 	 * If a consumer name was not given, try to look it up from the
694 	 * "pwm-names" property if it exists. Otherwise use the name of
695 	 * the user device node.
696 	 */
697 	if (!con_id) {
698 		err = of_property_read_string_index(np, "pwm-names", index,
699 						    &con_id);
700 		if (err < 0)
701 			con_id = np->name;
702 	}
703 
704 	pwm->label = con_id;
705 
706 put:
707 	of_node_put(args.np);
708 
709 	return pwm;
710 }
711 EXPORT_SYMBOL_GPL(of_pwm_get);
712 
713 /**
714  * pwm_add_table() - register PWM device consumers
715  * @table: array of consumers to register
716  * @num: number of consumers in table
717  */
718 void pwm_add_table(struct pwm_lookup *table, size_t num)
719 {
720 	mutex_lock(&pwm_lookup_lock);
721 
722 	while (num--) {
723 		list_add_tail(&table->list, &pwm_lookup_list);
724 		table++;
725 	}
726 
727 	mutex_unlock(&pwm_lookup_lock);
728 }
729 
730 /**
731  * pwm_remove_table() - unregister PWM device consumers
732  * @table: array of consumers to unregister
733  * @num: number of consumers in table
734  */
735 void pwm_remove_table(struct pwm_lookup *table, size_t num)
736 {
737 	mutex_lock(&pwm_lookup_lock);
738 
739 	while (num--) {
740 		list_del(&table->list);
741 		table++;
742 	}
743 
744 	mutex_unlock(&pwm_lookup_lock);
745 }
746 
747 /**
748  * pwm_get() - look up and request a PWM device
749  * @dev: device for PWM consumer
750  * @con_id: consumer name
751  *
752  * Lookup is first attempted using DT. If the device was not instantiated from
753  * a device tree, a PWM chip and a relative index is looked up via a table
754  * supplied by board setup code (see pwm_add_table()).
755  *
756  * Once a PWM chip has been found the specified PWM device will be requested
757  * and is ready to be used.
758  *
759  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
760  * error code on failure.
761  */
762 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
763 {
764 	const char *dev_id = dev ? dev_name(dev) : NULL;
765 	struct pwm_device *pwm;
766 	struct pwm_chip *chip;
767 	unsigned int best = 0;
768 	struct pwm_lookup *p, *chosen = NULL;
769 	unsigned int match;
770 	int err;
771 
772 	/* look up via DT first */
773 	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
774 		return of_pwm_get(dev->of_node, con_id);
775 
776 	/*
777 	 * We look up the provider in the static table typically provided by
778 	 * board setup code. We first try to lookup the consumer device by
779 	 * name. If the consumer device was passed in as NULL or if no match
780 	 * was found, we try to find the consumer by directly looking it up
781 	 * by name.
782 	 *
783 	 * If a match is found, the provider PWM chip is looked up by name
784 	 * and a PWM device is requested using the PWM device per-chip index.
785 	 *
786 	 * The lookup algorithm was shamelessly taken from the clock
787 	 * framework:
788 	 *
789 	 * We do slightly fuzzy matching here:
790 	 *  An entry with a NULL ID is assumed to be a wildcard.
791 	 *  If an entry has a device ID, it must match
792 	 *  If an entry has a connection ID, it must match
793 	 * Then we take the most specific entry - with the following order
794 	 * of precedence: dev+con > dev only > con only.
795 	 */
796 	mutex_lock(&pwm_lookup_lock);
797 
798 	list_for_each_entry(p, &pwm_lookup_list, list) {
799 		match = 0;
800 
801 		if (p->dev_id) {
802 			if (!dev_id || strcmp(p->dev_id, dev_id))
803 				continue;
804 
805 			match += 2;
806 		}
807 
808 		if (p->con_id) {
809 			if (!con_id || strcmp(p->con_id, con_id))
810 				continue;
811 
812 			match += 1;
813 		}
814 
815 		if (match > best) {
816 			chosen = p;
817 
818 			if (match != 3)
819 				best = match;
820 			else
821 				break;
822 		}
823 	}
824 
825 	mutex_unlock(&pwm_lookup_lock);
826 
827 	if (!chosen)
828 		return ERR_PTR(-ENODEV);
829 
830 	chip = pwmchip_find_by_name(chosen->provider);
831 
832 	/*
833 	 * If the lookup entry specifies a module, load the module and retry
834 	 * the PWM chip lookup. This can be used to work around driver load
835 	 * ordering issues if driver's can't be made to properly support the
836 	 * deferred probe mechanism.
837 	 */
838 	if (!chip && chosen->module) {
839 		err = request_module(chosen->module);
840 		if (err == 0)
841 			chip = pwmchip_find_by_name(chosen->provider);
842 	}
843 
844 	if (!chip)
845 		return ERR_PTR(-EPROBE_DEFER);
846 
847 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
848 	if (IS_ERR(pwm))
849 		return pwm;
850 
851 	pwm->args.period = chosen->period;
852 	pwm->args.polarity = chosen->polarity;
853 
854 	return pwm;
855 }
856 EXPORT_SYMBOL_GPL(pwm_get);
857 
858 /**
859  * pwm_put() - release a PWM device
860  * @pwm: PWM device
861  */
862 void pwm_put(struct pwm_device *pwm)
863 {
864 	if (!pwm)
865 		return;
866 
867 	mutex_lock(&pwm_lock);
868 
869 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
870 		pr_warn("PWM device already freed\n");
871 		goto out;
872 	}
873 
874 	if (pwm->chip->ops->free)
875 		pwm->chip->ops->free(pwm->chip, pwm);
876 
877 	pwm->label = NULL;
878 
879 	module_put(pwm->chip->ops->owner);
880 out:
881 	mutex_unlock(&pwm_lock);
882 }
883 EXPORT_SYMBOL_GPL(pwm_put);
884 
885 static void devm_pwm_release(struct device *dev, void *res)
886 {
887 	pwm_put(*(struct pwm_device **)res);
888 }
889 
890 /**
891  * devm_pwm_get() - resource managed pwm_get()
892  * @dev: device for PWM consumer
893  * @con_id: consumer name
894  *
895  * This function performs like pwm_get() but the acquired PWM device will
896  * automatically be released on driver detach.
897  *
898  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
899  * error code on failure.
900  */
901 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
902 {
903 	struct pwm_device **ptr, *pwm;
904 
905 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
906 	if (!ptr)
907 		return ERR_PTR(-ENOMEM);
908 
909 	pwm = pwm_get(dev, con_id);
910 	if (!IS_ERR(pwm)) {
911 		*ptr = pwm;
912 		devres_add(dev, ptr);
913 	} else {
914 		devres_free(ptr);
915 	}
916 
917 	return pwm;
918 }
919 EXPORT_SYMBOL_GPL(devm_pwm_get);
920 
921 /**
922  * devm_of_pwm_get() - resource managed of_pwm_get()
923  * @dev: device for PWM consumer
924  * @np: device node to get the PWM from
925  * @con_id: consumer name
926  *
927  * This function performs like of_pwm_get() but the acquired PWM device will
928  * automatically be released on driver detach.
929  *
930  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
931  * error code on failure.
932  */
933 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
934 				   const char *con_id)
935 {
936 	struct pwm_device **ptr, *pwm;
937 
938 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
939 	if (!ptr)
940 		return ERR_PTR(-ENOMEM);
941 
942 	pwm = of_pwm_get(np, con_id);
943 	if (!IS_ERR(pwm)) {
944 		*ptr = pwm;
945 		devres_add(dev, ptr);
946 	} else {
947 		devres_free(ptr);
948 	}
949 
950 	return pwm;
951 }
952 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
953 
954 static int devm_pwm_match(struct device *dev, void *res, void *data)
955 {
956 	struct pwm_device **p = res;
957 
958 	if (WARN_ON(!p || !*p))
959 		return 0;
960 
961 	return *p == data;
962 }
963 
964 /**
965  * devm_pwm_put() - resource managed pwm_put()
966  * @dev: device for PWM consumer
967  * @pwm: PWM device
968  *
969  * Release a PWM previously allocated using devm_pwm_get(). Calling this
970  * function is usually not needed because devm-allocated resources are
971  * automatically released on driver detach.
972  */
973 void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
974 {
975 	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
976 }
977 EXPORT_SYMBOL_GPL(devm_pwm_put);
978 
979 #ifdef CONFIG_DEBUG_FS
980 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
981 {
982 	unsigned int i;
983 
984 	for (i = 0; i < chip->npwm; i++) {
985 		struct pwm_device *pwm = &chip->pwms[i];
986 		struct pwm_state state;
987 
988 		pwm_get_state(pwm, &state);
989 
990 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
991 
992 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
993 			seq_puts(s, " requested");
994 
995 		if (state.enabled)
996 			seq_puts(s, " enabled");
997 
998 		seq_printf(s, " period: %u ns", state.period);
999 		seq_printf(s, " duty: %u ns", state.duty_cycle);
1000 		seq_printf(s, " polarity: %s",
1001 			   state.polarity ? "inverse" : "normal");
1002 
1003 		seq_puts(s, "\n");
1004 	}
1005 }
1006 
1007 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1008 {
1009 	mutex_lock(&pwm_lock);
1010 	s->private = "";
1011 
1012 	return seq_list_start(&pwm_chips, *pos);
1013 }
1014 
1015 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1016 {
1017 	s->private = "\n";
1018 
1019 	return seq_list_next(v, &pwm_chips, pos);
1020 }
1021 
1022 static void pwm_seq_stop(struct seq_file *s, void *v)
1023 {
1024 	mutex_unlock(&pwm_lock);
1025 }
1026 
1027 static int pwm_seq_show(struct seq_file *s, void *v)
1028 {
1029 	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1030 
1031 	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1032 		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1033 		   dev_name(chip->dev), chip->npwm,
1034 		   (chip->npwm != 1) ? "s" : "");
1035 
1036 	if (chip->ops->dbg_show)
1037 		chip->ops->dbg_show(chip, s);
1038 	else
1039 		pwm_dbg_show(chip, s);
1040 
1041 	return 0;
1042 }
1043 
1044 static const struct seq_operations pwm_seq_ops = {
1045 	.start = pwm_seq_start,
1046 	.next = pwm_seq_next,
1047 	.stop = pwm_seq_stop,
1048 	.show = pwm_seq_show,
1049 };
1050 
1051 static int pwm_seq_open(struct inode *inode, struct file *file)
1052 {
1053 	return seq_open(file, &pwm_seq_ops);
1054 }
1055 
1056 static const struct file_operations pwm_debugfs_ops = {
1057 	.owner = THIS_MODULE,
1058 	.open = pwm_seq_open,
1059 	.read = seq_read,
1060 	.llseek = seq_lseek,
1061 	.release = seq_release,
1062 };
1063 
1064 static int __init pwm_debugfs_init(void)
1065 {
1066 	debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1067 			    &pwm_debugfs_ops);
1068 
1069 	return 0;
1070 }
1071 subsys_initcall(pwm_debugfs_init);
1072 #endif /* CONFIG_DEBUG_FS */
1073