1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic pwmlib implementation 4 * 5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de> 6 * Copyright (C) 2011-2012 Avionic Design GmbH 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/module.h> 11 #include <linux/pwm.h> 12 #include <linux/radix-tree.h> 13 #include <linux/list.h> 14 #include <linux/mutex.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/debugfs.h> 19 #include <linux/seq_file.h> 20 21 #include <dt-bindings/pwm/pwm.h> 22 23 #define CREATE_TRACE_POINTS 24 #include <trace/events/pwm.h> 25 26 #define MAX_PWMS 1024 27 28 static DEFINE_MUTEX(pwm_lookup_lock); 29 static LIST_HEAD(pwm_lookup_list); 30 static DEFINE_MUTEX(pwm_lock); 31 static LIST_HEAD(pwm_chips); 32 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS); 33 static RADIX_TREE(pwm_tree, GFP_KERNEL); 34 35 static struct pwm_device *pwm_to_device(unsigned int pwm) 36 { 37 return radix_tree_lookup(&pwm_tree, pwm); 38 } 39 40 static int alloc_pwms(unsigned int count) 41 { 42 unsigned int start; 43 44 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0, 45 count, 0); 46 47 if (start + count > MAX_PWMS) 48 return -ENOSPC; 49 50 return start; 51 } 52 53 static void free_pwms(struct pwm_chip *chip) 54 { 55 unsigned int i; 56 57 for (i = 0; i < chip->npwm; i++) { 58 struct pwm_device *pwm = &chip->pwms[i]; 59 60 radix_tree_delete(&pwm_tree, pwm->pwm); 61 } 62 63 bitmap_clear(allocated_pwms, chip->base, chip->npwm); 64 65 kfree(chip->pwms); 66 chip->pwms = NULL; 67 } 68 69 static struct pwm_chip *pwmchip_find_by_name(const char *name) 70 { 71 struct pwm_chip *chip; 72 73 if (!name) 74 return NULL; 75 76 mutex_lock(&pwm_lock); 77 78 list_for_each_entry(chip, &pwm_chips, list) { 79 const char *chip_name = dev_name(chip->dev); 80 81 if (chip_name && strcmp(chip_name, name) == 0) { 82 mutex_unlock(&pwm_lock); 83 return chip; 84 } 85 } 86 87 mutex_unlock(&pwm_lock); 88 89 return NULL; 90 } 91 92 static int pwm_device_request(struct pwm_device *pwm, const char *label) 93 { 94 int err; 95 96 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 97 return -EBUSY; 98 99 if (!try_module_get(pwm->chip->ops->owner)) 100 return -ENODEV; 101 102 if (pwm->chip->ops->request) { 103 err = pwm->chip->ops->request(pwm->chip, pwm); 104 if (err) { 105 module_put(pwm->chip->ops->owner); 106 return err; 107 } 108 } 109 110 if (pwm->chip->ops->get_state) { 111 pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state); 112 trace_pwm_get(pwm, &pwm->state); 113 114 if (IS_ENABLED(CONFIG_PWM_DEBUG)) 115 pwm->last = pwm->state; 116 } 117 118 set_bit(PWMF_REQUESTED, &pwm->flags); 119 pwm->label = label; 120 121 return 0; 122 } 123 124 struct pwm_device * 125 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args) 126 { 127 struct pwm_device *pwm; 128 129 if (pc->of_pwm_n_cells < 2) 130 return ERR_PTR(-EINVAL); 131 132 /* flags in the third cell are optional */ 133 if (args->args_count < 2) 134 return ERR_PTR(-EINVAL); 135 136 if (args->args[0] >= pc->npwm) 137 return ERR_PTR(-EINVAL); 138 139 pwm = pwm_request_from_chip(pc, args->args[0], NULL); 140 if (IS_ERR(pwm)) 141 return pwm; 142 143 pwm->args.period = args->args[1]; 144 pwm->args.polarity = PWM_POLARITY_NORMAL; 145 146 if (pc->of_pwm_n_cells >= 3) { 147 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED) 148 pwm->args.polarity = PWM_POLARITY_INVERSED; 149 } 150 151 return pwm; 152 } 153 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags); 154 155 struct pwm_device * 156 of_pwm_single_xlate(struct pwm_chip *pc, const struct of_phandle_args *args) 157 { 158 struct pwm_device *pwm; 159 160 if (pc->of_pwm_n_cells < 1) 161 return ERR_PTR(-EINVAL); 162 163 /* validate that one cell is specified, optionally with flags */ 164 if (args->args_count != 1 && args->args_count != 2) 165 return ERR_PTR(-EINVAL); 166 167 pwm = pwm_request_from_chip(pc, 0, NULL); 168 if (IS_ERR(pwm)) 169 return pwm; 170 171 pwm->args.period = args->args[0]; 172 pwm->args.polarity = PWM_POLARITY_NORMAL; 173 174 if (args->args_count == 2 && args->args[2] & PWM_POLARITY_INVERTED) 175 pwm->args.polarity = PWM_POLARITY_INVERSED; 176 177 return pwm; 178 } 179 EXPORT_SYMBOL_GPL(of_pwm_single_xlate); 180 181 static void of_pwmchip_add(struct pwm_chip *chip) 182 { 183 if (!chip->dev || !chip->dev->of_node) 184 return; 185 186 if (!chip->of_xlate) { 187 u32 pwm_cells; 188 189 if (of_property_read_u32(chip->dev->of_node, "#pwm-cells", 190 &pwm_cells)) 191 pwm_cells = 2; 192 193 chip->of_xlate = of_pwm_xlate_with_flags; 194 chip->of_pwm_n_cells = pwm_cells; 195 } 196 197 of_node_get(chip->dev->of_node); 198 } 199 200 static void of_pwmchip_remove(struct pwm_chip *chip) 201 { 202 if (chip->dev) 203 of_node_put(chip->dev->of_node); 204 } 205 206 /** 207 * pwm_set_chip_data() - set private chip data for a PWM 208 * @pwm: PWM device 209 * @data: pointer to chip-specific data 210 * 211 * Returns: 0 on success or a negative error code on failure. 212 */ 213 int pwm_set_chip_data(struct pwm_device *pwm, void *data) 214 { 215 if (!pwm) 216 return -EINVAL; 217 218 pwm->chip_data = data; 219 220 return 0; 221 } 222 EXPORT_SYMBOL_GPL(pwm_set_chip_data); 223 224 /** 225 * pwm_get_chip_data() - get private chip data for a PWM 226 * @pwm: PWM device 227 * 228 * Returns: A pointer to the chip-private data for the PWM device. 229 */ 230 void *pwm_get_chip_data(struct pwm_device *pwm) 231 { 232 return pwm ? pwm->chip_data : NULL; 233 } 234 EXPORT_SYMBOL_GPL(pwm_get_chip_data); 235 236 static bool pwm_ops_check(const struct pwm_chip *chip) 237 { 238 const struct pwm_ops *ops = chip->ops; 239 240 if (!ops->apply) 241 return false; 242 243 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state) 244 dev_warn(chip->dev, 245 "Please implement the .get_state() callback\n"); 246 247 return true; 248 } 249 250 /** 251 * pwmchip_add() - register a new PWM chip 252 * @chip: the PWM chip to add 253 * 254 * Register a new PWM chip. 255 * 256 * Returns: 0 on success or a negative error code on failure. 257 */ 258 int pwmchip_add(struct pwm_chip *chip) 259 { 260 struct pwm_device *pwm; 261 unsigned int i; 262 int ret; 263 264 if (!chip || !chip->dev || !chip->ops || !chip->npwm) 265 return -EINVAL; 266 267 if (!pwm_ops_check(chip)) 268 return -EINVAL; 269 270 mutex_lock(&pwm_lock); 271 272 ret = alloc_pwms(chip->npwm); 273 if (ret < 0) 274 goto out; 275 276 chip->base = ret; 277 278 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL); 279 if (!chip->pwms) { 280 ret = -ENOMEM; 281 goto out; 282 } 283 284 for (i = 0; i < chip->npwm; i++) { 285 pwm = &chip->pwms[i]; 286 287 pwm->chip = chip; 288 pwm->pwm = chip->base + i; 289 pwm->hwpwm = i; 290 291 radix_tree_insert(&pwm_tree, pwm->pwm, pwm); 292 } 293 294 bitmap_set(allocated_pwms, chip->base, chip->npwm); 295 296 INIT_LIST_HEAD(&chip->list); 297 list_add(&chip->list, &pwm_chips); 298 299 ret = 0; 300 301 if (IS_ENABLED(CONFIG_OF)) 302 of_pwmchip_add(chip); 303 304 out: 305 mutex_unlock(&pwm_lock); 306 307 if (!ret) 308 pwmchip_sysfs_export(chip); 309 310 return ret; 311 } 312 EXPORT_SYMBOL_GPL(pwmchip_add); 313 314 /** 315 * pwmchip_remove() - remove a PWM chip 316 * @chip: the PWM chip to remove 317 * 318 * Removes a PWM chip. This function may return busy if the PWM chip provides 319 * a PWM device that is still requested. 320 * 321 * Returns: 0 on success or a negative error code on failure. 322 */ 323 void pwmchip_remove(struct pwm_chip *chip) 324 { 325 pwmchip_sysfs_unexport(chip); 326 327 mutex_lock(&pwm_lock); 328 329 list_del_init(&chip->list); 330 331 if (IS_ENABLED(CONFIG_OF)) 332 of_pwmchip_remove(chip); 333 334 free_pwms(chip); 335 336 mutex_unlock(&pwm_lock); 337 } 338 EXPORT_SYMBOL_GPL(pwmchip_remove); 339 340 static void devm_pwmchip_remove(void *data) 341 { 342 struct pwm_chip *chip = data; 343 344 pwmchip_remove(chip); 345 } 346 347 int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip) 348 { 349 int ret; 350 351 ret = pwmchip_add(chip); 352 if (ret) 353 return ret; 354 355 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip); 356 } 357 EXPORT_SYMBOL_GPL(devm_pwmchip_add); 358 359 /** 360 * pwm_request() - request a PWM device 361 * @pwm: global PWM device index 362 * @label: PWM device label 363 * 364 * This function is deprecated, use pwm_get() instead. 365 * 366 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on 367 * failure. 368 */ 369 struct pwm_device *pwm_request(int pwm, const char *label) 370 { 371 struct pwm_device *dev; 372 int err; 373 374 if (pwm < 0 || pwm >= MAX_PWMS) 375 return ERR_PTR(-EINVAL); 376 377 mutex_lock(&pwm_lock); 378 379 dev = pwm_to_device(pwm); 380 if (!dev) { 381 dev = ERR_PTR(-EPROBE_DEFER); 382 goto out; 383 } 384 385 err = pwm_device_request(dev, label); 386 if (err < 0) 387 dev = ERR_PTR(err); 388 389 out: 390 mutex_unlock(&pwm_lock); 391 392 return dev; 393 } 394 EXPORT_SYMBOL_GPL(pwm_request); 395 396 /** 397 * pwm_request_from_chip() - request a PWM device relative to a PWM chip 398 * @chip: PWM chip 399 * @index: per-chip index of the PWM to request 400 * @label: a literal description string of this PWM 401 * 402 * Returns: A pointer to the PWM device at the given index of the given PWM 403 * chip. A negative error code is returned if the index is not valid for the 404 * specified PWM chip or if the PWM device cannot be requested. 405 */ 406 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, 407 unsigned int index, 408 const char *label) 409 { 410 struct pwm_device *pwm; 411 int err; 412 413 if (!chip || index >= chip->npwm) 414 return ERR_PTR(-EINVAL); 415 416 mutex_lock(&pwm_lock); 417 pwm = &chip->pwms[index]; 418 419 err = pwm_device_request(pwm, label); 420 if (err < 0) 421 pwm = ERR_PTR(err); 422 423 mutex_unlock(&pwm_lock); 424 return pwm; 425 } 426 EXPORT_SYMBOL_GPL(pwm_request_from_chip); 427 428 /** 429 * pwm_free() - free a PWM device 430 * @pwm: PWM device 431 * 432 * This function is deprecated, use pwm_put() instead. 433 */ 434 void pwm_free(struct pwm_device *pwm) 435 { 436 pwm_put(pwm); 437 } 438 EXPORT_SYMBOL_GPL(pwm_free); 439 440 static void pwm_apply_state_debug(struct pwm_device *pwm, 441 const struct pwm_state *state) 442 { 443 struct pwm_state *last = &pwm->last; 444 struct pwm_chip *chip = pwm->chip; 445 struct pwm_state s1, s2; 446 int err; 447 448 if (!IS_ENABLED(CONFIG_PWM_DEBUG)) 449 return; 450 451 /* No reasonable diagnosis possible without .get_state() */ 452 if (!chip->ops->get_state) 453 return; 454 455 /* 456 * *state was just applied. Read out the hardware state and do some 457 * checks. 458 */ 459 460 chip->ops->get_state(chip, pwm, &s1); 461 trace_pwm_get(pwm, &s1); 462 463 /* 464 * The lowlevel driver either ignored .polarity (which is a bug) or as 465 * best effort inverted .polarity and fixed .duty_cycle respectively. 466 * Undo this inversion and fixup for further tests. 467 */ 468 if (s1.enabled && s1.polarity != state->polarity) { 469 s2.polarity = state->polarity; 470 s2.duty_cycle = s1.period - s1.duty_cycle; 471 s2.period = s1.period; 472 s2.enabled = s1.enabled; 473 } else { 474 s2 = s1; 475 } 476 477 if (s2.polarity != state->polarity && 478 state->duty_cycle < state->period) 479 dev_warn(chip->dev, ".apply ignored .polarity\n"); 480 481 if (state->enabled && 482 last->polarity == state->polarity && 483 last->period > s2.period && 484 last->period <= state->period) 485 dev_warn(chip->dev, 486 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n", 487 state->period, s2.period, last->period); 488 489 if (state->enabled && state->period < s2.period) 490 dev_warn(chip->dev, 491 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n", 492 state->period, s2.period); 493 494 if (state->enabled && 495 last->polarity == state->polarity && 496 last->period == s2.period && 497 last->duty_cycle > s2.duty_cycle && 498 last->duty_cycle <= state->duty_cycle) 499 dev_warn(chip->dev, 500 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n", 501 state->duty_cycle, state->period, 502 s2.duty_cycle, s2.period, 503 last->duty_cycle, last->period); 504 505 if (state->enabled && state->duty_cycle < s2.duty_cycle) 506 dev_warn(chip->dev, 507 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n", 508 state->duty_cycle, state->period, 509 s2.duty_cycle, s2.period); 510 511 if (!state->enabled && s2.enabled && s2.duty_cycle > 0) 512 dev_warn(chip->dev, 513 "requested disabled, but yielded enabled with duty > 0\n"); 514 515 /* reapply the state that the driver reported being configured. */ 516 err = chip->ops->apply(chip, pwm, &s1); 517 if (err) { 518 *last = s1; 519 dev_err(chip->dev, "failed to reapply current setting\n"); 520 return; 521 } 522 523 trace_pwm_apply(pwm, &s1); 524 525 chip->ops->get_state(chip, pwm, last); 526 trace_pwm_get(pwm, last); 527 528 /* reapplication of the current state should give an exact match */ 529 if (s1.enabled != last->enabled || 530 s1.polarity != last->polarity || 531 (s1.enabled && s1.period != last->period) || 532 (s1.enabled && s1.duty_cycle != last->duty_cycle)) { 533 dev_err(chip->dev, 534 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n", 535 s1.enabled, s1.polarity, s1.duty_cycle, s1.period, 536 last->enabled, last->polarity, last->duty_cycle, 537 last->period); 538 } 539 } 540 541 /** 542 * pwm_apply_state() - atomically apply a new state to a PWM device 543 * @pwm: PWM device 544 * @state: new state to apply 545 */ 546 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state) 547 { 548 struct pwm_chip *chip; 549 int err; 550 551 /* 552 * Some lowlevel driver's implementations of .apply() make use of 553 * mutexes, also with some drivers only returning when the new 554 * configuration is active calling pwm_apply_state() from atomic context 555 * is a bad idea. So make it explicit that calling this function might 556 * sleep. 557 */ 558 might_sleep(); 559 560 if (!pwm || !state || !state->period || 561 state->duty_cycle > state->period) 562 return -EINVAL; 563 564 chip = pwm->chip; 565 566 if (state->period == pwm->state.period && 567 state->duty_cycle == pwm->state.duty_cycle && 568 state->polarity == pwm->state.polarity && 569 state->enabled == pwm->state.enabled && 570 state->usage_power == pwm->state.usage_power) 571 return 0; 572 573 err = chip->ops->apply(chip, pwm, state); 574 if (err) 575 return err; 576 577 trace_pwm_apply(pwm, state); 578 579 pwm->state = *state; 580 581 /* 582 * only do this after pwm->state was applied as some 583 * implementations of .get_state depend on this 584 */ 585 pwm_apply_state_debug(pwm, state); 586 587 return 0; 588 } 589 EXPORT_SYMBOL_GPL(pwm_apply_state); 590 591 /** 592 * pwm_capture() - capture and report a PWM signal 593 * @pwm: PWM device 594 * @result: structure to fill with capture result 595 * @timeout: time to wait, in milliseconds, before giving up on capture 596 * 597 * Returns: 0 on success or a negative error code on failure. 598 */ 599 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result, 600 unsigned long timeout) 601 { 602 int err; 603 604 if (!pwm || !pwm->chip->ops) 605 return -EINVAL; 606 607 if (!pwm->chip->ops->capture) 608 return -ENOSYS; 609 610 mutex_lock(&pwm_lock); 611 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout); 612 mutex_unlock(&pwm_lock); 613 614 return err; 615 } 616 EXPORT_SYMBOL_GPL(pwm_capture); 617 618 /** 619 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments 620 * @pwm: PWM device 621 * 622 * This function will adjust the PWM config to the PWM arguments provided 623 * by the DT or PWM lookup table. This is particularly useful to adapt 624 * the bootloader config to the Linux one. 625 */ 626 int pwm_adjust_config(struct pwm_device *pwm) 627 { 628 struct pwm_state state; 629 struct pwm_args pargs; 630 631 pwm_get_args(pwm, &pargs); 632 pwm_get_state(pwm, &state); 633 634 /* 635 * If the current period is zero it means that either the PWM driver 636 * does not support initial state retrieval or the PWM has not yet 637 * been configured. 638 * 639 * In either case, we setup the new period and polarity, and assign a 640 * duty cycle of 0. 641 */ 642 if (!state.period) { 643 state.duty_cycle = 0; 644 state.period = pargs.period; 645 state.polarity = pargs.polarity; 646 647 return pwm_apply_state(pwm, &state); 648 } 649 650 /* 651 * Adjust the PWM duty cycle/period based on the period value provided 652 * in PWM args. 653 */ 654 if (pargs.period != state.period) { 655 u64 dutycycle = (u64)state.duty_cycle * pargs.period; 656 657 do_div(dutycycle, state.period); 658 state.duty_cycle = dutycycle; 659 state.period = pargs.period; 660 } 661 662 /* 663 * If the polarity changed, we should also change the duty cycle. 664 */ 665 if (pargs.polarity != state.polarity) { 666 state.polarity = pargs.polarity; 667 state.duty_cycle = state.period - state.duty_cycle; 668 } 669 670 return pwm_apply_state(pwm, &state); 671 } 672 EXPORT_SYMBOL_GPL(pwm_adjust_config); 673 674 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode) 675 { 676 struct pwm_chip *chip; 677 678 mutex_lock(&pwm_lock); 679 680 list_for_each_entry(chip, &pwm_chips, list) 681 if (chip->dev && dev_fwnode(chip->dev) == fwnode) { 682 mutex_unlock(&pwm_lock); 683 return chip; 684 } 685 686 mutex_unlock(&pwm_lock); 687 688 return ERR_PTR(-EPROBE_DEFER); 689 } 690 691 static struct device_link *pwm_device_link_add(struct device *dev, 692 struct pwm_device *pwm) 693 { 694 struct device_link *dl; 695 696 if (!dev) { 697 /* 698 * No device for the PWM consumer has been provided. It may 699 * impact the PM sequence ordering: the PWM supplier may get 700 * suspended before the consumer. 701 */ 702 dev_warn(pwm->chip->dev, 703 "No consumer device specified to create a link to\n"); 704 return NULL; 705 } 706 707 dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER); 708 if (!dl) { 709 dev_err(dev, "failed to create device link to %s\n", 710 dev_name(pwm->chip->dev)); 711 return ERR_PTR(-EINVAL); 712 } 713 714 return dl; 715 } 716 717 /** 718 * of_pwm_get() - request a PWM via the PWM framework 719 * @dev: device for PWM consumer 720 * @np: device node to get the PWM from 721 * @con_id: consumer name 722 * 723 * Returns the PWM device parsed from the phandle and index specified in the 724 * "pwms" property of a device tree node or a negative error-code on failure. 725 * Values parsed from the device tree are stored in the returned PWM device 726 * object. 727 * 728 * If con_id is NULL, the first PWM device listed in the "pwms" property will 729 * be requested. Otherwise the "pwm-names" property is used to do a reverse 730 * lookup of the PWM index. This also means that the "pwm-names" property 731 * becomes mandatory for devices that look up the PWM device via the con_id 732 * parameter. 733 * 734 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 735 * error code on failure. 736 */ 737 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np, 738 const char *con_id) 739 { 740 struct pwm_device *pwm = NULL; 741 struct of_phandle_args args; 742 struct device_link *dl; 743 struct pwm_chip *pc; 744 int index = 0; 745 int err; 746 747 if (con_id) { 748 index = of_property_match_string(np, "pwm-names", con_id); 749 if (index < 0) 750 return ERR_PTR(index); 751 } 752 753 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index, 754 &args); 755 if (err) { 756 pr_err("%s(): can't parse \"pwms\" property\n", __func__); 757 return ERR_PTR(err); 758 } 759 760 pc = fwnode_to_pwmchip(of_fwnode_handle(args.np)); 761 if (IS_ERR(pc)) { 762 if (PTR_ERR(pc) != -EPROBE_DEFER) 763 pr_err("%s(): PWM chip not found\n", __func__); 764 765 pwm = ERR_CAST(pc); 766 goto put; 767 } 768 769 pwm = pc->of_xlate(pc, &args); 770 if (IS_ERR(pwm)) 771 goto put; 772 773 dl = pwm_device_link_add(dev, pwm); 774 if (IS_ERR(dl)) { 775 /* of_xlate ended up calling pwm_request_from_chip() */ 776 pwm_free(pwm); 777 pwm = ERR_CAST(dl); 778 goto put; 779 } 780 781 /* 782 * If a consumer name was not given, try to look it up from the 783 * "pwm-names" property if it exists. Otherwise use the name of 784 * the user device node. 785 */ 786 if (!con_id) { 787 err = of_property_read_string_index(np, "pwm-names", index, 788 &con_id); 789 if (err < 0) 790 con_id = np->name; 791 } 792 793 pwm->label = con_id; 794 795 put: 796 of_node_put(args.np); 797 798 return pwm; 799 } 800 EXPORT_SYMBOL_GPL(of_pwm_get); 801 802 /** 803 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI 804 * @fwnode: firmware node to get the "pwms" property from 805 * 806 * Returns the PWM device parsed from the fwnode and index specified in the 807 * "pwms" property or a negative error-code on failure. 808 * Values parsed from the device tree are stored in the returned PWM device 809 * object. 810 * 811 * This is analogous to of_pwm_get() except con_id is not yet supported. 812 * ACPI entries must look like 813 * Package () {"pwms", Package () 814 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}} 815 * 816 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 817 * error code on failure. 818 */ 819 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode) 820 { 821 struct pwm_device *pwm; 822 struct fwnode_reference_args args; 823 struct pwm_chip *chip; 824 int ret; 825 826 memset(&args, 0, sizeof(args)); 827 828 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args); 829 if (ret < 0) 830 return ERR_PTR(ret); 831 832 if (args.nargs < 2) 833 return ERR_PTR(-EPROTO); 834 835 chip = fwnode_to_pwmchip(args.fwnode); 836 if (IS_ERR(chip)) 837 return ERR_CAST(chip); 838 839 pwm = pwm_request_from_chip(chip, args.args[0], NULL); 840 if (IS_ERR(pwm)) 841 return pwm; 842 843 pwm->args.period = args.args[1]; 844 pwm->args.polarity = PWM_POLARITY_NORMAL; 845 846 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED) 847 pwm->args.polarity = PWM_POLARITY_INVERSED; 848 849 return pwm; 850 } 851 852 /** 853 * pwm_add_table() - register PWM device consumers 854 * @table: array of consumers to register 855 * @num: number of consumers in table 856 */ 857 void pwm_add_table(struct pwm_lookup *table, size_t num) 858 { 859 mutex_lock(&pwm_lookup_lock); 860 861 while (num--) { 862 list_add_tail(&table->list, &pwm_lookup_list); 863 table++; 864 } 865 866 mutex_unlock(&pwm_lookup_lock); 867 } 868 869 /** 870 * pwm_remove_table() - unregister PWM device consumers 871 * @table: array of consumers to unregister 872 * @num: number of consumers in table 873 */ 874 void pwm_remove_table(struct pwm_lookup *table, size_t num) 875 { 876 mutex_lock(&pwm_lookup_lock); 877 878 while (num--) { 879 list_del(&table->list); 880 table++; 881 } 882 883 mutex_unlock(&pwm_lookup_lock); 884 } 885 886 /** 887 * pwm_get() - look up and request a PWM device 888 * @dev: device for PWM consumer 889 * @con_id: consumer name 890 * 891 * Lookup is first attempted using DT. If the device was not instantiated from 892 * a device tree, a PWM chip and a relative index is looked up via a table 893 * supplied by board setup code (see pwm_add_table()). 894 * 895 * Once a PWM chip has been found the specified PWM device will be requested 896 * and is ready to be used. 897 * 898 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 899 * error code on failure. 900 */ 901 struct pwm_device *pwm_get(struct device *dev, const char *con_id) 902 { 903 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 904 const char *dev_id = dev ? dev_name(dev) : NULL; 905 struct pwm_device *pwm; 906 struct pwm_chip *chip; 907 struct device_link *dl; 908 unsigned int best = 0; 909 struct pwm_lookup *p, *chosen = NULL; 910 unsigned int match; 911 int err; 912 913 /* look up via DT first */ 914 if (is_of_node(fwnode)) 915 return of_pwm_get(dev, to_of_node(fwnode), con_id); 916 917 /* then lookup via ACPI */ 918 if (is_acpi_node(fwnode)) { 919 pwm = acpi_pwm_get(fwnode); 920 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT) 921 return pwm; 922 } 923 924 /* 925 * We look up the provider in the static table typically provided by 926 * board setup code. We first try to lookup the consumer device by 927 * name. If the consumer device was passed in as NULL or if no match 928 * was found, we try to find the consumer by directly looking it up 929 * by name. 930 * 931 * If a match is found, the provider PWM chip is looked up by name 932 * and a PWM device is requested using the PWM device per-chip index. 933 * 934 * The lookup algorithm was shamelessly taken from the clock 935 * framework: 936 * 937 * We do slightly fuzzy matching here: 938 * An entry with a NULL ID is assumed to be a wildcard. 939 * If an entry has a device ID, it must match 940 * If an entry has a connection ID, it must match 941 * Then we take the most specific entry - with the following order 942 * of precedence: dev+con > dev only > con only. 943 */ 944 mutex_lock(&pwm_lookup_lock); 945 946 list_for_each_entry(p, &pwm_lookup_list, list) { 947 match = 0; 948 949 if (p->dev_id) { 950 if (!dev_id || strcmp(p->dev_id, dev_id)) 951 continue; 952 953 match += 2; 954 } 955 956 if (p->con_id) { 957 if (!con_id || strcmp(p->con_id, con_id)) 958 continue; 959 960 match += 1; 961 } 962 963 if (match > best) { 964 chosen = p; 965 966 if (match != 3) 967 best = match; 968 else 969 break; 970 } 971 } 972 973 mutex_unlock(&pwm_lookup_lock); 974 975 if (!chosen) 976 return ERR_PTR(-ENODEV); 977 978 chip = pwmchip_find_by_name(chosen->provider); 979 980 /* 981 * If the lookup entry specifies a module, load the module and retry 982 * the PWM chip lookup. This can be used to work around driver load 983 * ordering issues if driver's can't be made to properly support the 984 * deferred probe mechanism. 985 */ 986 if (!chip && chosen->module) { 987 err = request_module(chosen->module); 988 if (err == 0) 989 chip = pwmchip_find_by_name(chosen->provider); 990 } 991 992 if (!chip) 993 return ERR_PTR(-EPROBE_DEFER); 994 995 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id); 996 if (IS_ERR(pwm)) 997 return pwm; 998 999 dl = pwm_device_link_add(dev, pwm); 1000 if (IS_ERR(dl)) { 1001 pwm_free(pwm); 1002 return ERR_CAST(dl); 1003 } 1004 1005 pwm->args.period = chosen->period; 1006 pwm->args.polarity = chosen->polarity; 1007 1008 return pwm; 1009 } 1010 EXPORT_SYMBOL_GPL(pwm_get); 1011 1012 /** 1013 * pwm_put() - release a PWM device 1014 * @pwm: PWM device 1015 */ 1016 void pwm_put(struct pwm_device *pwm) 1017 { 1018 if (!pwm) 1019 return; 1020 1021 mutex_lock(&pwm_lock); 1022 1023 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 1024 pr_warn("PWM device already freed\n"); 1025 goto out; 1026 } 1027 1028 if (pwm->chip->ops->free) 1029 pwm->chip->ops->free(pwm->chip, pwm); 1030 1031 pwm_set_chip_data(pwm, NULL); 1032 pwm->label = NULL; 1033 1034 module_put(pwm->chip->ops->owner); 1035 out: 1036 mutex_unlock(&pwm_lock); 1037 } 1038 EXPORT_SYMBOL_GPL(pwm_put); 1039 1040 static void devm_pwm_release(void *pwm) 1041 { 1042 pwm_put(pwm); 1043 } 1044 1045 /** 1046 * devm_pwm_get() - resource managed pwm_get() 1047 * @dev: device for PWM consumer 1048 * @con_id: consumer name 1049 * 1050 * This function performs like pwm_get() but the acquired PWM device will 1051 * automatically be released on driver detach. 1052 * 1053 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1054 * error code on failure. 1055 */ 1056 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id) 1057 { 1058 struct pwm_device *pwm; 1059 int ret; 1060 1061 pwm = pwm_get(dev, con_id); 1062 if (IS_ERR(pwm)) 1063 return pwm; 1064 1065 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 1066 if (ret) 1067 return ERR_PTR(ret); 1068 1069 return pwm; 1070 } 1071 EXPORT_SYMBOL_GPL(devm_pwm_get); 1072 1073 /** 1074 * devm_of_pwm_get() - resource managed of_pwm_get() 1075 * @dev: device for PWM consumer 1076 * @np: device node to get the PWM from 1077 * @con_id: consumer name 1078 * 1079 * This function performs like of_pwm_get() but the acquired PWM device will 1080 * automatically be released on driver detach. 1081 * 1082 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1083 * error code on failure. 1084 */ 1085 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np, 1086 const char *con_id) 1087 { 1088 struct pwm_device *pwm; 1089 int ret; 1090 1091 pwm = of_pwm_get(dev, np, con_id); 1092 if (IS_ERR(pwm)) 1093 return pwm; 1094 1095 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 1096 if (ret) 1097 return ERR_PTR(ret); 1098 1099 return pwm; 1100 } 1101 EXPORT_SYMBOL_GPL(devm_of_pwm_get); 1102 1103 /** 1104 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node 1105 * @dev: device for PWM consumer 1106 * @fwnode: firmware node to get the PWM from 1107 * @con_id: consumer name 1108 * 1109 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and 1110 * acpi_pwm_get() for a detailed description. 1111 * 1112 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1113 * error code on failure. 1114 */ 1115 struct pwm_device *devm_fwnode_pwm_get(struct device *dev, 1116 struct fwnode_handle *fwnode, 1117 const char *con_id) 1118 { 1119 struct pwm_device *pwm = ERR_PTR(-ENODEV); 1120 int ret; 1121 1122 if (is_of_node(fwnode)) 1123 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id); 1124 else if (is_acpi_node(fwnode)) 1125 pwm = acpi_pwm_get(fwnode); 1126 if (IS_ERR(pwm)) 1127 return pwm; 1128 1129 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 1130 if (ret) 1131 return ERR_PTR(ret); 1132 1133 return pwm; 1134 } 1135 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get); 1136 1137 #ifdef CONFIG_DEBUG_FS 1138 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s) 1139 { 1140 unsigned int i; 1141 1142 for (i = 0; i < chip->npwm; i++) { 1143 struct pwm_device *pwm = &chip->pwms[i]; 1144 struct pwm_state state; 1145 1146 pwm_get_state(pwm, &state); 1147 1148 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label); 1149 1150 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 1151 seq_puts(s, " requested"); 1152 1153 if (state.enabled) 1154 seq_puts(s, " enabled"); 1155 1156 seq_printf(s, " period: %llu ns", state.period); 1157 seq_printf(s, " duty: %llu ns", state.duty_cycle); 1158 seq_printf(s, " polarity: %s", 1159 state.polarity ? "inverse" : "normal"); 1160 1161 if (state.usage_power) 1162 seq_puts(s, " usage_power"); 1163 1164 seq_puts(s, "\n"); 1165 } 1166 } 1167 1168 static void *pwm_seq_start(struct seq_file *s, loff_t *pos) 1169 { 1170 mutex_lock(&pwm_lock); 1171 s->private = ""; 1172 1173 return seq_list_start(&pwm_chips, *pos); 1174 } 1175 1176 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos) 1177 { 1178 s->private = "\n"; 1179 1180 return seq_list_next(v, &pwm_chips, pos); 1181 } 1182 1183 static void pwm_seq_stop(struct seq_file *s, void *v) 1184 { 1185 mutex_unlock(&pwm_lock); 1186 } 1187 1188 static int pwm_seq_show(struct seq_file *s, void *v) 1189 { 1190 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list); 1191 1192 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private, 1193 chip->dev->bus ? chip->dev->bus->name : "no-bus", 1194 dev_name(chip->dev), chip->npwm, 1195 (chip->npwm != 1) ? "s" : ""); 1196 1197 pwm_dbg_show(chip, s); 1198 1199 return 0; 1200 } 1201 1202 static const struct seq_operations pwm_debugfs_sops = { 1203 .start = pwm_seq_start, 1204 .next = pwm_seq_next, 1205 .stop = pwm_seq_stop, 1206 .show = pwm_seq_show, 1207 }; 1208 1209 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs); 1210 1211 static int __init pwm_debugfs_init(void) 1212 { 1213 debugfs_create_file("pwm", S_IFREG | 0444, NULL, NULL, 1214 &pwm_debugfs_fops); 1215 1216 return 0; 1217 } 1218 subsys_initcall(pwm_debugfs_init); 1219 #endif /* CONFIG_DEBUG_FS */ 1220