1 /* 2 * Generic pwmlib implementation 3 * 4 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de> 5 * Copyright (C) 2011-2012 Avionic Design GmbH 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2, or (at your option) 10 * any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; see the file COPYING. If not, write to 19 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 #include <linux/module.h> 23 #include <linux/pwm.h> 24 #include <linux/radix-tree.h> 25 #include <linux/list.h> 26 #include <linux/mutex.h> 27 #include <linux/err.h> 28 #include <linux/slab.h> 29 #include <linux/device.h> 30 #include <linux/debugfs.h> 31 #include <linux/seq_file.h> 32 33 #include <dt-bindings/pwm/pwm.h> 34 35 #define MAX_PWMS 1024 36 37 static DEFINE_MUTEX(pwm_lookup_lock); 38 static LIST_HEAD(pwm_lookup_list); 39 static DEFINE_MUTEX(pwm_lock); 40 static LIST_HEAD(pwm_chips); 41 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS); 42 static RADIX_TREE(pwm_tree, GFP_KERNEL); 43 44 static struct pwm_device *pwm_to_device(unsigned int pwm) 45 { 46 return radix_tree_lookup(&pwm_tree, pwm); 47 } 48 49 static int alloc_pwms(int pwm, unsigned int count) 50 { 51 unsigned int from = 0; 52 unsigned int start; 53 54 if (pwm >= MAX_PWMS) 55 return -EINVAL; 56 57 if (pwm >= 0) 58 from = pwm; 59 60 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from, 61 count, 0); 62 63 if (pwm >= 0 && start != pwm) 64 return -EEXIST; 65 66 if (start + count > MAX_PWMS) 67 return -ENOSPC; 68 69 return start; 70 } 71 72 static void free_pwms(struct pwm_chip *chip) 73 { 74 unsigned int i; 75 76 for (i = 0; i < chip->npwm; i++) { 77 struct pwm_device *pwm = &chip->pwms[i]; 78 79 radix_tree_delete(&pwm_tree, pwm->pwm); 80 } 81 82 bitmap_clear(allocated_pwms, chip->base, chip->npwm); 83 84 kfree(chip->pwms); 85 chip->pwms = NULL; 86 } 87 88 static struct pwm_chip *pwmchip_find_by_name(const char *name) 89 { 90 struct pwm_chip *chip; 91 92 if (!name) 93 return NULL; 94 95 mutex_lock(&pwm_lock); 96 97 list_for_each_entry(chip, &pwm_chips, list) { 98 const char *chip_name = dev_name(chip->dev); 99 100 if (chip_name && strcmp(chip_name, name) == 0) { 101 mutex_unlock(&pwm_lock); 102 return chip; 103 } 104 } 105 106 mutex_unlock(&pwm_lock); 107 108 return NULL; 109 } 110 111 static int pwm_device_request(struct pwm_device *pwm, const char *label) 112 { 113 int err; 114 115 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 116 return -EBUSY; 117 118 if (!try_module_get(pwm->chip->ops->owner)) 119 return -ENODEV; 120 121 if (pwm->chip->ops->request) { 122 err = pwm->chip->ops->request(pwm->chip, pwm); 123 if (err) { 124 module_put(pwm->chip->ops->owner); 125 return err; 126 } 127 } 128 129 set_bit(PWMF_REQUESTED, &pwm->flags); 130 pwm->label = label; 131 132 return 0; 133 } 134 135 struct pwm_device * 136 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args) 137 { 138 struct pwm_device *pwm; 139 140 if (pc->of_pwm_n_cells < 3) 141 return ERR_PTR(-EINVAL); 142 143 if (args->args[0] >= pc->npwm) 144 return ERR_PTR(-EINVAL); 145 146 pwm = pwm_request_from_chip(pc, args->args[0], NULL); 147 if (IS_ERR(pwm)) 148 return pwm; 149 150 pwm->args.period = args->args[1]; 151 152 if (args->args[2] & PWM_POLARITY_INVERTED) 153 pwm->args.polarity = PWM_POLARITY_INVERSED; 154 else 155 pwm->args.polarity = PWM_POLARITY_NORMAL; 156 157 return pwm; 158 } 159 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags); 160 161 static struct pwm_device * 162 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args) 163 { 164 struct pwm_device *pwm; 165 166 if (pc->of_pwm_n_cells < 2) 167 return ERR_PTR(-EINVAL); 168 169 if (args->args[0] >= pc->npwm) 170 return ERR_PTR(-EINVAL); 171 172 pwm = pwm_request_from_chip(pc, args->args[0], NULL); 173 if (IS_ERR(pwm)) 174 return pwm; 175 176 pwm->args.period = args->args[1]; 177 178 return pwm; 179 } 180 181 static void of_pwmchip_add(struct pwm_chip *chip) 182 { 183 if (!chip->dev || !chip->dev->of_node) 184 return; 185 186 if (!chip->of_xlate) { 187 chip->of_xlate = of_pwm_simple_xlate; 188 chip->of_pwm_n_cells = 2; 189 } 190 191 of_node_get(chip->dev->of_node); 192 } 193 194 static void of_pwmchip_remove(struct pwm_chip *chip) 195 { 196 if (chip->dev) 197 of_node_put(chip->dev->of_node); 198 } 199 200 /** 201 * pwm_set_chip_data() - set private chip data for a PWM 202 * @pwm: PWM device 203 * @data: pointer to chip-specific data 204 * 205 * Returns: 0 on success or a negative error code on failure. 206 */ 207 int pwm_set_chip_data(struct pwm_device *pwm, void *data) 208 { 209 if (!pwm) 210 return -EINVAL; 211 212 pwm->chip_data = data; 213 214 return 0; 215 } 216 EXPORT_SYMBOL_GPL(pwm_set_chip_data); 217 218 /** 219 * pwm_get_chip_data() - get private chip data for a PWM 220 * @pwm: PWM device 221 * 222 * Returns: A pointer to the chip-private data for the PWM device. 223 */ 224 void *pwm_get_chip_data(struct pwm_device *pwm) 225 { 226 return pwm ? pwm->chip_data : NULL; 227 } 228 EXPORT_SYMBOL_GPL(pwm_get_chip_data); 229 230 static bool pwm_ops_check(const struct pwm_ops *ops) 231 { 232 /* driver supports legacy, non-atomic operation */ 233 if (ops->config && ops->enable && ops->disable) 234 return true; 235 236 /* driver supports atomic operation */ 237 if (ops->apply) 238 return true; 239 240 return false; 241 } 242 243 /** 244 * pwmchip_add_with_polarity() - register a new PWM chip 245 * @chip: the PWM chip to add 246 * @polarity: initial polarity of PWM channels 247 * 248 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base 249 * will be used. The initial polarity for all channels is specified by the 250 * @polarity parameter. 251 * 252 * Returns: 0 on success or a negative error code on failure. 253 */ 254 int pwmchip_add_with_polarity(struct pwm_chip *chip, 255 enum pwm_polarity polarity) 256 { 257 struct pwm_device *pwm; 258 unsigned int i; 259 int ret; 260 261 if (!chip || !chip->dev || !chip->ops || !chip->npwm) 262 return -EINVAL; 263 264 if (!pwm_ops_check(chip->ops)) 265 return -EINVAL; 266 267 mutex_lock(&pwm_lock); 268 269 ret = alloc_pwms(chip->base, chip->npwm); 270 if (ret < 0) 271 goto out; 272 273 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL); 274 if (!chip->pwms) { 275 ret = -ENOMEM; 276 goto out; 277 } 278 279 chip->base = ret; 280 281 for (i = 0; i < chip->npwm; i++) { 282 pwm = &chip->pwms[i]; 283 284 pwm->chip = chip; 285 pwm->pwm = chip->base + i; 286 pwm->hwpwm = i; 287 pwm->state.polarity = polarity; 288 289 if (chip->ops->get_state) 290 chip->ops->get_state(chip, pwm, &pwm->state); 291 292 radix_tree_insert(&pwm_tree, pwm->pwm, pwm); 293 } 294 295 bitmap_set(allocated_pwms, chip->base, chip->npwm); 296 297 INIT_LIST_HEAD(&chip->list); 298 list_add(&chip->list, &pwm_chips); 299 300 ret = 0; 301 302 if (IS_ENABLED(CONFIG_OF)) 303 of_pwmchip_add(chip); 304 305 pwmchip_sysfs_export(chip); 306 307 out: 308 mutex_unlock(&pwm_lock); 309 return ret; 310 } 311 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity); 312 313 /** 314 * pwmchip_add() - register a new PWM chip 315 * @chip: the PWM chip to add 316 * 317 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base 318 * will be used. The initial polarity for all channels is normal. 319 * 320 * Returns: 0 on success or a negative error code on failure. 321 */ 322 int pwmchip_add(struct pwm_chip *chip) 323 { 324 return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL); 325 } 326 EXPORT_SYMBOL_GPL(pwmchip_add); 327 328 /** 329 * pwmchip_remove() - remove a PWM chip 330 * @chip: the PWM chip to remove 331 * 332 * Removes a PWM chip. This function may return busy if the PWM chip provides 333 * a PWM device that is still requested. 334 * 335 * Returns: 0 on success or a negative error code on failure. 336 */ 337 int pwmchip_remove(struct pwm_chip *chip) 338 { 339 unsigned int i; 340 int ret = 0; 341 342 pwmchip_sysfs_unexport_children(chip); 343 344 mutex_lock(&pwm_lock); 345 346 for (i = 0; i < chip->npwm; i++) { 347 struct pwm_device *pwm = &chip->pwms[i]; 348 349 if (test_bit(PWMF_REQUESTED, &pwm->flags)) { 350 ret = -EBUSY; 351 goto out; 352 } 353 } 354 355 list_del_init(&chip->list); 356 357 if (IS_ENABLED(CONFIG_OF)) 358 of_pwmchip_remove(chip); 359 360 free_pwms(chip); 361 362 pwmchip_sysfs_unexport(chip); 363 364 out: 365 mutex_unlock(&pwm_lock); 366 return ret; 367 } 368 EXPORT_SYMBOL_GPL(pwmchip_remove); 369 370 /** 371 * pwm_request() - request a PWM device 372 * @pwm: global PWM device index 373 * @label: PWM device label 374 * 375 * This function is deprecated, use pwm_get() instead. 376 * 377 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on 378 * failure. 379 */ 380 struct pwm_device *pwm_request(int pwm, const char *label) 381 { 382 struct pwm_device *dev; 383 int err; 384 385 if (pwm < 0 || pwm >= MAX_PWMS) 386 return ERR_PTR(-EINVAL); 387 388 mutex_lock(&pwm_lock); 389 390 dev = pwm_to_device(pwm); 391 if (!dev) { 392 dev = ERR_PTR(-EPROBE_DEFER); 393 goto out; 394 } 395 396 err = pwm_device_request(dev, label); 397 if (err < 0) 398 dev = ERR_PTR(err); 399 400 out: 401 mutex_unlock(&pwm_lock); 402 403 return dev; 404 } 405 EXPORT_SYMBOL_GPL(pwm_request); 406 407 /** 408 * pwm_request_from_chip() - request a PWM device relative to a PWM chip 409 * @chip: PWM chip 410 * @index: per-chip index of the PWM to request 411 * @label: a literal description string of this PWM 412 * 413 * Returns: A pointer to the PWM device at the given index of the given PWM 414 * chip. A negative error code is returned if the index is not valid for the 415 * specified PWM chip or if the PWM device cannot be requested. 416 */ 417 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, 418 unsigned int index, 419 const char *label) 420 { 421 struct pwm_device *pwm; 422 int err; 423 424 if (!chip || index >= chip->npwm) 425 return ERR_PTR(-EINVAL); 426 427 mutex_lock(&pwm_lock); 428 pwm = &chip->pwms[index]; 429 430 err = pwm_device_request(pwm, label); 431 if (err < 0) 432 pwm = ERR_PTR(err); 433 434 mutex_unlock(&pwm_lock); 435 return pwm; 436 } 437 EXPORT_SYMBOL_GPL(pwm_request_from_chip); 438 439 /** 440 * pwm_free() - free a PWM device 441 * @pwm: PWM device 442 * 443 * This function is deprecated, use pwm_put() instead. 444 */ 445 void pwm_free(struct pwm_device *pwm) 446 { 447 pwm_put(pwm); 448 } 449 EXPORT_SYMBOL_GPL(pwm_free); 450 451 /** 452 * pwm_apply_state() - atomically apply a new state to a PWM device 453 * @pwm: PWM device 454 * @state: new state to apply. This can be adjusted by the PWM driver 455 * if the requested config is not achievable, for example, 456 * ->duty_cycle and ->period might be approximated. 457 */ 458 int pwm_apply_state(struct pwm_device *pwm, struct pwm_state *state) 459 { 460 int err; 461 462 if (!pwm || !state || !state->period || 463 state->duty_cycle > state->period) 464 return -EINVAL; 465 466 if (!memcmp(state, &pwm->state, sizeof(*state))) 467 return 0; 468 469 if (pwm->chip->ops->apply) { 470 err = pwm->chip->ops->apply(pwm->chip, pwm, state); 471 if (err) 472 return err; 473 474 pwm->state = *state; 475 } else { 476 /* 477 * FIXME: restore the initial state in case of error. 478 */ 479 if (state->polarity != pwm->state.polarity) { 480 if (!pwm->chip->ops->set_polarity) 481 return -ENOTSUPP; 482 483 /* 484 * Changing the polarity of a running PWM is 485 * only allowed when the PWM driver implements 486 * ->apply(). 487 */ 488 if (pwm->state.enabled) { 489 pwm->chip->ops->disable(pwm->chip, pwm); 490 pwm->state.enabled = false; 491 } 492 493 err = pwm->chip->ops->set_polarity(pwm->chip, pwm, 494 state->polarity); 495 if (err) 496 return err; 497 498 pwm->state.polarity = state->polarity; 499 } 500 501 if (state->period != pwm->state.period || 502 state->duty_cycle != pwm->state.duty_cycle) { 503 err = pwm->chip->ops->config(pwm->chip, pwm, 504 state->duty_cycle, 505 state->period); 506 if (err) 507 return err; 508 509 pwm->state.duty_cycle = state->duty_cycle; 510 pwm->state.period = state->period; 511 } 512 513 if (state->enabled != pwm->state.enabled) { 514 if (state->enabled) { 515 err = pwm->chip->ops->enable(pwm->chip, pwm); 516 if (err) 517 return err; 518 } else { 519 pwm->chip->ops->disable(pwm->chip, pwm); 520 } 521 522 pwm->state.enabled = state->enabled; 523 } 524 } 525 526 return 0; 527 } 528 EXPORT_SYMBOL_GPL(pwm_apply_state); 529 530 /** 531 * pwm_capture() - capture and report a PWM signal 532 * @pwm: PWM device 533 * @result: structure to fill with capture result 534 * @timeout: time to wait, in milliseconds, before giving up on capture 535 * 536 * Returns: 0 on success or a negative error code on failure. 537 */ 538 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result, 539 unsigned long timeout) 540 { 541 int err; 542 543 if (!pwm || !pwm->chip->ops) 544 return -EINVAL; 545 546 if (!pwm->chip->ops->capture) 547 return -ENOSYS; 548 549 mutex_lock(&pwm_lock); 550 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout); 551 mutex_unlock(&pwm_lock); 552 553 return err; 554 } 555 EXPORT_SYMBOL_GPL(pwm_capture); 556 557 /** 558 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments 559 * @pwm: PWM device 560 * 561 * This function will adjust the PWM config to the PWM arguments provided 562 * by the DT or PWM lookup table. This is particularly useful to adapt 563 * the bootloader config to the Linux one. 564 */ 565 int pwm_adjust_config(struct pwm_device *pwm) 566 { 567 struct pwm_state state; 568 struct pwm_args pargs; 569 570 pwm_get_args(pwm, &pargs); 571 pwm_get_state(pwm, &state); 572 573 /* 574 * If the current period is zero it means that either the PWM driver 575 * does not support initial state retrieval or the PWM has not yet 576 * been configured. 577 * 578 * In either case, we setup the new period and polarity, and assign a 579 * duty cycle of 0. 580 */ 581 if (!state.period) { 582 state.duty_cycle = 0; 583 state.period = pargs.period; 584 state.polarity = pargs.polarity; 585 586 return pwm_apply_state(pwm, &state); 587 } 588 589 /* 590 * Adjust the PWM duty cycle/period based on the period value provided 591 * in PWM args. 592 */ 593 if (pargs.period != state.period) { 594 u64 dutycycle = (u64)state.duty_cycle * pargs.period; 595 596 do_div(dutycycle, state.period); 597 state.duty_cycle = dutycycle; 598 state.period = pargs.period; 599 } 600 601 /* 602 * If the polarity changed, we should also change the duty cycle. 603 */ 604 if (pargs.polarity != state.polarity) { 605 state.polarity = pargs.polarity; 606 state.duty_cycle = state.period - state.duty_cycle; 607 } 608 609 return pwm_apply_state(pwm, &state); 610 } 611 EXPORT_SYMBOL_GPL(pwm_adjust_config); 612 613 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np) 614 { 615 struct pwm_chip *chip; 616 617 mutex_lock(&pwm_lock); 618 619 list_for_each_entry(chip, &pwm_chips, list) 620 if (chip->dev && chip->dev->of_node == np) { 621 mutex_unlock(&pwm_lock); 622 return chip; 623 } 624 625 mutex_unlock(&pwm_lock); 626 627 return ERR_PTR(-EPROBE_DEFER); 628 } 629 630 /** 631 * of_pwm_get() - request a PWM via the PWM framework 632 * @np: device node to get the PWM from 633 * @con_id: consumer name 634 * 635 * Returns the PWM device parsed from the phandle and index specified in the 636 * "pwms" property of a device tree node or a negative error-code on failure. 637 * Values parsed from the device tree are stored in the returned PWM device 638 * object. 639 * 640 * If con_id is NULL, the first PWM device listed in the "pwms" property will 641 * be requested. Otherwise the "pwm-names" property is used to do a reverse 642 * lookup of the PWM index. This also means that the "pwm-names" property 643 * becomes mandatory for devices that look up the PWM device via the con_id 644 * parameter. 645 * 646 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 647 * error code on failure. 648 */ 649 struct pwm_device *of_pwm_get(struct device_node *np, const char *con_id) 650 { 651 struct pwm_device *pwm = NULL; 652 struct of_phandle_args args; 653 struct pwm_chip *pc; 654 int index = 0; 655 int err; 656 657 if (con_id) { 658 index = of_property_match_string(np, "pwm-names", con_id); 659 if (index < 0) 660 return ERR_PTR(index); 661 } 662 663 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index, 664 &args); 665 if (err) { 666 pr_debug("%s(): can't parse \"pwms\" property\n", __func__); 667 return ERR_PTR(err); 668 } 669 670 pc = of_node_to_pwmchip(args.np); 671 if (IS_ERR(pc)) { 672 pr_debug("%s(): PWM chip not found\n", __func__); 673 pwm = ERR_CAST(pc); 674 goto put; 675 } 676 677 if (args.args_count != pc->of_pwm_n_cells) { 678 pr_debug("%s: wrong #pwm-cells for %s\n", np->full_name, 679 args.np->full_name); 680 pwm = ERR_PTR(-EINVAL); 681 goto put; 682 } 683 684 pwm = pc->of_xlate(pc, &args); 685 if (IS_ERR(pwm)) 686 goto put; 687 688 /* 689 * If a consumer name was not given, try to look it up from the 690 * "pwm-names" property if it exists. Otherwise use the name of 691 * the user device node. 692 */ 693 if (!con_id) { 694 err = of_property_read_string_index(np, "pwm-names", index, 695 &con_id); 696 if (err < 0) 697 con_id = np->name; 698 } 699 700 pwm->label = con_id; 701 702 put: 703 of_node_put(args.np); 704 705 return pwm; 706 } 707 EXPORT_SYMBOL_GPL(of_pwm_get); 708 709 /** 710 * pwm_add_table() - register PWM device consumers 711 * @table: array of consumers to register 712 * @num: number of consumers in table 713 */ 714 void pwm_add_table(struct pwm_lookup *table, size_t num) 715 { 716 mutex_lock(&pwm_lookup_lock); 717 718 while (num--) { 719 list_add_tail(&table->list, &pwm_lookup_list); 720 table++; 721 } 722 723 mutex_unlock(&pwm_lookup_lock); 724 } 725 726 /** 727 * pwm_remove_table() - unregister PWM device consumers 728 * @table: array of consumers to unregister 729 * @num: number of consumers in table 730 */ 731 void pwm_remove_table(struct pwm_lookup *table, size_t num) 732 { 733 mutex_lock(&pwm_lookup_lock); 734 735 while (num--) { 736 list_del(&table->list); 737 table++; 738 } 739 740 mutex_unlock(&pwm_lookup_lock); 741 } 742 743 /** 744 * pwm_get() - look up and request a PWM device 745 * @dev: device for PWM consumer 746 * @con_id: consumer name 747 * 748 * Lookup is first attempted using DT. If the device was not instantiated from 749 * a device tree, a PWM chip and a relative index is looked up via a table 750 * supplied by board setup code (see pwm_add_table()). 751 * 752 * Once a PWM chip has been found the specified PWM device will be requested 753 * and is ready to be used. 754 * 755 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 756 * error code on failure. 757 */ 758 struct pwm_device *pwm_get(struct device *dev, const char *con_id) 759 { 760 struct pwm_device *pwm = ERR_PTR(-EPROBE_DEFER); 761 const char *dev_id = dev ? dev_name(dev) : NULL; 762 struct pwm_chip *chip = NULL; 763 unsigned int best = 0; 764 struct pwm_lookup *p, *chosen = NULL; 765 unsigned int match; 766 767 /* look up via DT first */ 768 if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node) 769 return of_pwm_get(dev->of_node, con_id); 770 771 /* 772 * We look up the provider in the static table typically provided by 773 * board setup code. We first try to lookup the consumer device by 774 * name. If the consumer device was passed in as NULL or if no match 775 * was found, we try to find the consumer by directly looking it up 776 * by name. 777 * 778 * If a match is found, the provider PWM chip is looked up by name 779 * and a PWM device is requested using the PWM device per-chip index. 780 * 781 * The lookup algorithm was shamelessly taken from the clock 782 * framework: 783 * 784 * We do slightly fuzzy matching here: 785 * An entry with a NULL ID is assumed to be a wildcard. 786 * If an entry has a device ID, it must match 787 * If an entry has a connection ID, it must match 788 * Then we take the most specific entry - with the following order 789 * of precedence: dev+con > dev only > con only. 790 */ 791 mutex_lock(&pwm_lookup_lock); 792 793 list_for_each_entry(p, &pwm_lookup_list, list) { 794 match = 0; 795 796 if (p->dev_id) { 797 if (!dev_id || strcmp(p->dev_id, dev_id)) 798 continue; 799 800 match += 2; 801 } 802 803 if (p->con_id) { 804 if (!con_id || strcmp(p->con_id, con_id)) 805 continue; 806 807 match += 1; 808 } 809 810 if (match > best) { 811 chosen = p; 812 813 if (match != 3) 814 best = match; 815 else 816 break; 817 } 818 } 819 820 if (!chosen) { 821 pwm = ERR_PTR(-ENODEV); 822 goto out; 823 } 824 825 chip = pwmchip_find_by_name(chosen->provider); 826 if (!chip) 827 goto out; 828 829 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id); 830 if (IS_ERR(pwm)) 831 goto out; 832 833 pwm->args.period = chosen->period; 834 pwm->args.polarity = chosen->polarity; 835 836 out: 837 mutex_unlock(&pwm_lookup_lock); 838 return pwm; 839 } 840 EXPORT_SYMBOL_GPL(pwm_get); 841 842 /** 843 * pwm_put() - release a PWM device 844 * @pwm: PWM device 845 */ 846 void pwm_put(struct pwm_device *pwm) 847 { 848 if (!pwm) 849 return; 850 851 mutex_lock(&pwm_lock); 852 853 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 854 pr_warn("PWM device already freed\n"); 855 goto out; 856 } 857 858 if (pwm->chip->ops->free) 859 pwm->chip->ops->free(pwm->chip, pwm); 860 861 pwm->label = NULL; 862 863 module_put(pwm->chip->ops->owner); 864 out: 865 mutex_unlock(&pwm_lock); 866 } 867 EXPORT_SYMBOL_GPL(pwm_put); 868 869 static void devm_pwm_release(struct device *dev, void *res) 870 { 871 pwm_put(*(struct pwm_device **)res); 872 } 873 874 /** 875 * devm_pwm_get() - resource managed pwm_get() 876 * @dev: device for PWM consumer 877 * @con_id: consumer name 878 * 879 * This function performs like pwm_get() but the acquired PWM device will 880 * automatically be released on driver detach. 881 * 882 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 883 * error code on failure. 884 */ 885 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id) 886 { 887 struct pwm_device **ptr, *pwm; 888 889 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL); 890 if (!ptr) 891 return ERR_PTR(-ENOMEM); 892 893 pwm = pwm_get(dev, con_id); 894 if (!IS_ERR(pwm)) { 895 *ptr = pwm; 896 devres_add(dev, ptr); 897 } else { 898 devres_free(ptr); 899 } 900 901 return pwm; 902 } 903 EXPORT_SYMBOL_GPL(devm_pwm_get); 904 905 /** 906 * devm_of_pwm_get() - resource managed of_pwm_get() 907 * @dev: device for PWM consumer 908 * @np: device node to get the PWM from 909 * @con_id: consumer name 910 * 911 * This function performs like of_pwm_get() but the acquired PWM device will 912 * automatically be released on driver detach. 913 * 914 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 915 * error code on failure. 916 */ 917 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np, 918 const char *con_id) 919 { 920 struct pwm_device **ptr, *pwm; 921 922 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL); 923 if (!ptr) 924 return ERR_PTR(-ENOMEM); 925 926 pwm = of_pwm_get(np, con_id); 927 if (!IS_ERR(pwm)) { 928 *ptr = pwm; 929 devres_add(dev, ptr); 930 } else { 931 devres_free(ptr); 932 } 933 934 return pwm; 935 } 936 EXPORT_SYMBOL_GPL(devm_of_pwm_get); 937 938 static int devm_pwm_match(struct device *dev, void *res, void *data) 939 { 940 struct pwm_device **p = res; 941 942 if (WARN_ON(!p || !*p)) 943 return 0; 944 945 return *p == data; 946 } 947 948 /** 949 * devm_pwm_put() - resource managed pwm_put() 950 * @dev: device for PWM consumer 951 * @pwm: PWM device 952 * 953 * Release a PWM previously allocated using devm_pwm_get(). Calling this 954 * function is usually not needed because devm-allocated resources are 955 * automatically released on driver detach. 956 */ 957 void devm_pwm_put(struct device *dev, struct pwm_device *pwm) 958 { 959 WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm)); 960 } 961 EXPORT_SYMBOL_GPL(devm_pwm_put); 962 963 /** 964 * pwm_can_sleep() - report whether PWM access will sleep 965 * @pwm: PWM device 966 * 967 * Returns: True if accessing the PWM can sleep, false otherwise. 968 */ 969 bool pwm_can_sleep(struct pwm_device *pwm) 970 { 971 return true; 972 } 973 EXPORT_SYMBOL_GPL(pwm_can_sleep); 974 975 #ifdef CONFIG_DEBUG_FS 976 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s) 977 { 978 unsigned int i; 979 980 for (i = 0; i < chip->npwm; i++) { 981 struct pwm_device *pwm = &chip->pwms[i]; 982 struct pwm_state state; 983 984 pwm_get_state(pwm, &state); 985 986 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label); 987 988 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 989 seq_puts(s, " requested"); 990 991 if (state.enabled) 992 seq_puts(s, " enabled"); 993 994 seq_printf(s, " period: %u ns", state.period); 995 seq_printf(s, " duty: %u ns", state.duty_cycle); 996 seq_printf(s, " polarity: %s", 997 state.polarity ? "inverse" : "normal"); 998 999 seq_puts(s, "\n"); 1000 } 1001 } 1002 1003 static void *pwm_seq_start(struct seq_file *s, loff_t *pos) 1004 { 1005 mutex_lock(&pwm_lock); 1006 s->private = ""; 1007 1008 return seq_list_start(&pwm_chips, *pos); 1009 } 1010 1011 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos) 1012 { 1013 s->private = "\n"; 1014 1015 return seq_list_next(v, &pwm_chips, pos); 1016 } 1017 1018 static void pwm_seq_stop(struct seq_file *s, void *v) 1019 { 1020 mutex_unlock(&pwm_lock); 1021 } 1022 1023 static int pwm_seq_show(struct seq_file *s, void *v) 1024 { 1025 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list); 1026 1027 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private, 1028 chip->dev->bus ? chip->dev->bus->name : "no-bus", 1029 dev_name(chip->dev), chip->npwm, 1030 (chip->npwm != 1) ? "s" : ""); 1031 1032 if (chip->ops->dbg_show) 1033 chip->ops->dbg_show(chip, s); 1034 else 1035 pwm_dbg_show(chip, s); 1036 1037 return 0; 1038 } 1039 1040 static const struct seq_operations pwm_seq_ops = { 1041 .start = pwm_seq_start, 1042 .next = pwm_seq_next, 1043 .stop = pwm_seq_stop, 1044 .show = pwm_seq_show, 1045 }; 1046 1047 static int pwm_seq_open(struct inode *inode, struct file *file) 1048 { 1049 return seq_open(file, &pwm_seq_ops); 1050 } 1051 1052 static const struct file_operations pwm_debugfs_ops = { 1053 .owner = THIS_MODULE, 1054 .open = pwm_seq_open, 1055 .read = seq_read, 1056 .llseek = seq_lseek, 1057 .release = seq_release, 1058 }; 1059 1060 static int __init pwm_debugfs_init(void) 1061 { 1062 debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL, 1063 &pwm_debugfs_ops); 1064 1065 return 0; 1066 } 1067 subsys_initcall(pwm_debugfs_init); 1068 #endif /* CONFIG_DEBUG_FS */ 1069