xref: /openbmc/linux/drivers/pwm/core.c (revision 6dfcd296)
1 /*
2  * Generic pwmlib implementation
3  *
4  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
5  * Copyright (C) 2011-2012 Avionic Design GmbH
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2, or (at your option)
10  *  any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; see the file COPYING.  If not, write to
19  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/module.h>
23 #include <linux/pwm.h>
24 #include <linux/radix-tree.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/err.h>
28 #include <linux/slab.h>
29 #include <linux/device.h>
30 #include <linux/debugfs.h>
31 #include <linux/seq_file.h>
32 
33 #include <dt-bindings/pwm/pwm.h>
34 
35 #define MAX_PWMS 1024
36 
37 static DEFINE_MUTEX(pwm_lookup_lock);
38 static LIST_HEAD(pwm_lookup_list);
39 static DEFINE_MUTEX(pwm_lock);
40 static LIST_HEAD(pwm_chips);
41 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
42 static RADIX_TREE(pwm_tree, GFP_KERNEL);
43 
44 static struct pwm_device *pwm_to_device(unsigned int pwm)
45 {
46 	return radix_tree_lookup(&pwm_tree, pwm);
47 }
48 
49 static int alloc_pwms(int pwm, unsigned int count)
50 {
51 	unsigned int from = 0;
52 	unsigned int start;
53 
54 	if (pwm >= MAX_PWMS)
55 		return -EINVAL;
56 
57 	if (pwm >= 0)
58 		from = pwm;
59 
60 	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
61 					   count, 0);
62 
63 	if (pwm >= 0 && start != pwm)
64 		return -EEXIST;
65 
66 	if (start + count > MAX_PWMS)
67 		return -ENOSPC;
68 
69 	return start;
70 }
71 
72 static void free_pwms(struct pwm_chip *chip)
73 {
74 	unsigned int i;
75 
76 	for (i = 0; i < chip->npwm; i++) {
77 		struct pwm_device *pwm = &chip->pwms[i];
78 
79 		radix_tree_delete(&pwm_tree, pwm->pwm);
80 	}
81 
82 	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
83 
84 	kfree(chip->pwms);
85 	chip->pwms = NULL;
86 }
87 
88 static struct pwm_chip *pwmchip_find_by_name(const char *name)
89 {
90 	struct pwm_chip *chip;
91 
92 	if (!name)
93 		return NULL;
94 
95 	mutex_lock(&pwm_lock);
96 
97 	list_for_each_entry(chip, &pwm_chips, list) {
98 		const char *chip_name = dev_name(chip->dev);
99 
100 		if (chip_name && strcmp(chip_name, name) == 0) {
101 			mutex_unlock(&pwm_lock);
102 			return chip;
103 		}
104 	}
105 
106 	mutex_unlock(&pwm_lock);
107 
108 	return NULL;
109 }
110 
111 static int pwm_device_request(struct pwm_device *pwm, const char *label)
112 {
113 	int err;
114 
115 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
116 		return -EBUSY;
117 
118 	if (!try_module_get(pwm->chip->ops->owner))
119 		return -ENODEV;
120 
121 	if (pwm->chip->ops->request) {
122 		err = pwm->chip->ops->request(pwm->chip, pwm);
123 		if (err) {
124 			module_put(pwm->chip->ops->owner);
125 			return err;
126 		}
127 	}
128 
129 	set_bit(PWMF_REQUESTED, &pwm->flags);
130 	pwm->label = label;
131 
132 	return 0;
133 }
134 
135 struct pwm_device *
136 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
137 {
138 	struct pwm_device *pwm;
139 
140 	if (pc->of_pwm_n_cells < 3)
141 		return ERR_PTR(-EINVAL);
142 
143 	if (args->args[0] >= pc->npwm)
144 		return ERR_PTR(-EINVAL);
145 
146 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
147 	if (IS_ERR(pwm))
148 		return pwm;
149 
150 	pwm->args.period = args->args[1];
151 
152 	if (args->args[2] & PWM_POLARITY_INVERTED)
153 		pwm->args.polarity = PWM_POLARITY_INVERSED;
154 	else
155 		pwm->args.polarity = PWM_POLARITY_NORMAL;
156 
157 	return pwm;
158 }
159 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
160 
161 static struct pwm_device *
162 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
163 {
164 	struct pwm_device *pwm;
165 
166 	if (pc->of_pwm_n_cells < 2)
167 		return ERR_PTR(-EINVAL);
168 
169 	if (args->args[0] >= pc->npwm)
170 		return ERR_PTR(-EINVAL);
171 
172 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
173 	if (IS_ERR(pwm))
174 		return pwm;
175 
176 	pwm->args.period = args->args[1];
177 
178 	return pwm;
179 }
180 
181 static void of_pwmchip_add(struct pwm_chip *chip)
182 {
183 	if (!chip->dev || !chip->dev->of_node)
184 		return;
185 
186 	if (!chip->of_xlate) {
187 		chip->of_xlate = of_pwm_simple_xlate;
188 		chip->of_pwm_n_cells = 2;
189 	}
190 
191 	of_node_get(chip->dev->of_node);
192 }
193 
194 static void of_pwmchip_remove(struct pwm_chip *chip)
195 {
196 	if (chip->dev)
197 		of_node_put(chip->dev->of_node);
198 }
199 
200 /**
201  * pwm_set_chip_data() - set private chip data for a PWM
202  * @pwm: PWM device
203  * @data: pointer to chip-specific data
204  *
205  * Returns: 0 on success or a negative error code on failure.
206  */
207 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
208 {
209 	if (!pwm)
210 		return -EINVAL;
211 
212 	pwm->chip_data = data;
213 
214 	return 0;
215 }
216 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
217 
218 /**
219  * pwm_get_chip_data() - get private chip data for a PWM
220  * @pwm: PWM device
221  *
222  * Returns: A pointer to the chip-private data for the PWM device.
223  */
224 void *pwm_get_chip_data(struct pwm_device *pwm)
225 {
226 	return pwm ? pwm->chip_data : NULL;
227 }
228 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
229 
230 static bool pwm_ops_check(const struct pwm_ops *ops)
231 {
232 	/* driver supports legacy, non-atomic operation */
233 	if (ops->config && ops->enable && ops->disable)
234 		return true;
235 
236 	/* driver supports atomic operation */
237 	if (ops->apply)
238 		return true;
239 
240 	return false;
241 }
242 
243 /**
244  * pwmchip_add_with_polarity() - register a new PWM chip
245  * @chip: the PWM chip to add
246  * @polarity: initial polarity of PWM channels
247  *
248  * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
249  * will be used. The initial polarity for all channels is specified by the
250  * @polarity parameter.
251  *
252  * Returns: 0 on success or a negative error code on failure.
253  */
254 int pwmchip_add_with_polarity(struct pwm_chip *chip,
255 			      enum pwm_polarity polarity)
256 {
257 	struct pwm_device *pwm;
258 	unsigned int i;
259 	int ret;
260 
261 	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
262 		return -EINVAL;
263 
264 	if (!pwm_ops_check(chip->ops))
265 		return -EINVAL;
266 
267 	mutex_lock(&pwm_lock);
268 
269 	ret = alloc_pwms(chip->base, chip->npwm);
270 	if (ret < 0)
271 		goto out;
272 
273 	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
274 	if (!chip->pwms) {
275 		ret = -ENOMEM;
276 		goto out;
277 	}
278 
279 	chip->base = ret;
280 
281 	for (i = 0; i < chip->npwm; i++) {
282 		pwm = &chip->pwms[i];
283 
284 		pwm->chip = chip;
285 		pwm->pwm = chip->base + i;
286 		pwm->hwpwm = i;
287 		pwm->state.polarity = polarity;
288 
289 		if (chip->ops->get_state)
290 			chip->ops->get_state(chip, pwm, &pwm->state);
291 
292 		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
293 	}
294 
295 	bitmap_set(allocated_pwms, chip->base, chip->npwm);
296 
297 	INIT_LIST_HEAD(&chip->list);
298 	list_add(&chip->list, &pwm_chips);
299 
300 	ret = 0;
301 
302 	if (IS_ENABLED(CONFIG_OF))
303 		of_pwmchip_add(chip);
304 
305 	pwmchip_sysfs_export(chip);
306 
307 out:
308 	mutex_unlock(&pwm_lock);
309 	return ret;
310 }
311 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
312 
313 /**
314  * pwmchip_add() - register a new PWM chip
315  * @chip: the PWM chip to add
316  *
317  * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
318  * will be used. The initial polarity for all channels is normal.
319  *
320  * Returns: 0 on success or a negative error code on failure.
321  */
322 int pwmchip_add(struct pwm_chip *chip)
323 {
324 	return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
325 }
326 EXPORT_SYMBOL_GPL(pwmchip_add);
327 
328 /**
329  * pwmchip_remove() - remove a PWM chip
330  * @chip: the PWM chip to remove
331  *
332  * Removes a PWM chip. This function may return busy if the PWM chip provides
333  * a PWM device that is still requested.
334  *
335  * Returns: 0 on success or a negative error code on failure.
336  */
337 int pwmchip_remove(struct pwm_chip *chip)
338 {
339 	unsigned int i;
340 	int ret = 0;
341 
342 	pwmchip_sysfs_unexport_children(chip);
343 
344 	mutex_lock(&pwm_lock);
345 
346 	for (i = 0; i < chip->npwm; i++) {
347 		struct pwm_device *pwm = &chip->pwms[i];
348 
349 		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
350 			ret = -EBUSY;
351 			goto out;
352 		}
353 	}
354 
355 	list_del_init(&chip->list);
356 
357 	if (IS_ENABLED(CONFIG_OF))
358 		of_pwmchip_remove(chip);
359 
360 	free_pwms(chip);
361 
362 	pwmchip_sysfs_unexport(chip);
363 
364 out:
365 	mutex_unlock(&pwm_lock);
366 	return ret;
367 }
368 EXPORT_SYMBOL_GPL(pwmchip_remove);
369 
370 /**
371  * pwm_request() - request a PWM device
372  * @pwm: global PWM device index
373  * @label: PWM device label
374  *
375  * This function is deprecated, use pwm_get() instead.
376  *
377  * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
378  * failure.
379  */
380 struct pwm_device *pwm_request(int pwm, const char *label)
381 {
382 	struct pwm_device *dev;
383 	int err;
384 
385 	if (pwm < 0 || pwm >= MAX_PWMS)
386 		return ERR_PTR(-EINVAL);
387 
388 	mutex_lock(&pwm_lock);
389 
390 	dev = pwm_to_device(pwm);
391 	if (!dev) {
392 		dev = ERR_PTR(-EPROBE_DEFER);
393 		goto out;
394 	}
395 
396 	err = pwm_device_request(dev, label);
397 	if (err < 0)
398 		dev = ERR_PTR(err);
399 
400 out:
401 	mutex_unlock(&pwm_lock);
402 
403 	return dev;
404 }
405 EXPORT_SYMBOL_GPL(pwm_request);
406 
407 /**
408  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
409  * @chip: PWM chip
410  * @index: per-chip index of the PWM to request
411  * @label: a literal description string of this PWM
412  *
413  * Returns: A pointer to the PWM device at the given index of the given PWM
414  * chip. A negative error code is returned if the index is not valid for the
415  * specified PWM chip or if the PWM device cannot be requested.
416  */
417 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
418 					 unsigned int index,
419 					 const char *label)
420 {
421 	struct pwm_device *pwm;
422 	int err;
423 
424 	if (!chip || index >= chip->npwm)
425 		return ERR_PTR(-EINVAL);
426 
427 	mutex_lock(&pwm_lock);
428 	pwm = &chip->pwms[index];
429 
430 	err = pwm_device_request(pwm, label);
431 	if (err < 0)
432 		pwm = ERR_PTR(err);
433 
434 	mutex_unlock(&pwm_lock);
435 	return pwm;
436 }
437 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
438 
439 /**
440  * pwm_free() - free a PWM device
441  * @pwm: PWM device
442  *
443  * This function is deprecated, use pwm_put() instead.
444  */
445 void pwm_free(struct pwm_device *pwm)
446 {
447 	pwm_put(pwm);
448 }
449 EXPORT_SYMBOL_GPL(pwm_free);
450 
451 /**
452  * pwm_apply_state() - atomically apply a new state to a PWM device
453  * @pwm: PWM device
454  * @state: new state to apply. This can be adjusted by the PWM driver
455  *	   if the requested config is not achievable, for example,
456  *	   ->duty_cycle and ->period might be approximated.
457  */
458 int pwm_apply_state(struct pwm_device *pwm, struct pwm_state *state)
459 {
460 	int err;
461 
462 	if (!pwm || !state || !state->period ||
463 	    state->duty_cycle > state->period)
464 		return -EINVAL;
465 
466 	if (!memcmp(state, &pwm->state, sizeof(*state)))
467 		return 0;
468 
469 	if (pwm->chip->ops->apply) {
470 		err = pwm->chip->ops->apply(pwm->chip, pwm, state);
471 		if (err)
472 			return err;
473 
474 		pwm->state = *state;
475 	} else {
476 		/*
477 		 * FIXME: restore the initial state in case of error.
478 		 */
479 		if (state->polarity != pwm->state.polarity) {
480 			if (!pwm->chip->ops->set_polarity)
481 				return -ENOTSUPP;
482 
483 			/*
484 			 * Changing the polarity of a running PWM is
485 			 * only allowed when the PWM driver implements
486 			 * ->apply().
487 			 */
488 			if (pwm->state.enabled) {
489 				pwm->chip->ops->disable(pwm->chip, pwm);
490 				pwm->state.enabled = false;
491 			}
492 
493 			err = pwm->chip->ops->set_polarity(pwm->chip, pwm,
494 							   state->polarity);
495 			if (err)
496 				return err;
497 
498 			pwm->state.polarity = state->polarity;
499 		}
500 
501 		if (state->period != pwm->state.period ||
502 		    state->duty_cycle != pwm->state.duty_cycle) {
503 			err = pwm->chip->ops->config(pwm->chip, pwm,
504 						     state->duty_cycle,
505 						     state->period);
506 			if (err)
507 				return err;
508 
509 			pwm->state.duty_cycle = state->duty_cycle;
510 			pwm->state.period = state->period;
511 		}
512 
513 		if (state->enabled != pwm->state.enabled) {
514 			if (state->enabled) {
515 				err = pwm->chip->ops->enable(pwm->chip, pwm);
516 				if (err)
517 					return err;
518 			} else {
519 				pwm->chip->ops->disable(pwm->chip, pwm);
520 			}
521 
522 			pwm->state.enabled = state->enabled;
523 		}
524 	}
525 
526 	return 0;
527 }
528 EXPORT_SYMBOL_GPL(pwm_apply_state);
529 
530 /**
531  * pwm_capture() - capture and report a PWM signal
532  * @pwm: PWM device
533  * @result: structure to fill with capture result
534  * @timeout: time to wait, in milliseconds, before giving up on capture
535  *
536  * Returns: 0 on success or a negative error code on failure.
537  */
538 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
539 		unsigned long timeout)
540 {
541 	int err;
542 
543 	if (!pwm || !pwm->chip->ops)
544 		return -EINVAL;
545 
546 	if (!pwm->chip->ops->capture)
547 		return -ENOSYS;
548 
549 	mutex_lock(&pwm_lock);
550 	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
551 	mutex_unlock(&pwm_lock);
552 
553 	return err;
554 }
555 EXPORT_SYMBOL_GPL(pwm_capture);
556 
557 /**
558  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
559  * @pwm: PWM device
560  *
561  * This function will adjust the PWM config to the PWM arguments provided
562  * by the DT or PWM lookup table. This is particularly useful to adapt
563  * the bootloader config to the Linux one.
564  */
565 int pwm_adjust_config(struct pwm_device *pwm)
566 {
567 	struct pwm_state state;
568 	struct pwm_args pargs;
569 
570 	pwm_get_args(pwm, &pargs);
571 	pwm_get_state(pwm, &state);
572 
573 	/*
574 	 * If the current period is zero it means that either the PWM driver
575 	 * does not support initial state retrieval or the PWM has not yet
576 	 * been configured.
577 	 *
578 	 * In either case, we setup the new period and polarity, and assign a
579 	 * duty cycle of 0.
580 	 */
581 	if (!state.period) {
582 		state.duty_cycle = 0;
583 		state.period = pargs.period;
584 		state.polarity = pargs.polarity;
585 
586 		return pwm_apply_state(pwm, &state);
587 	}
588 
589 	/*
590 	 * Adjust the PWM duty cycle/period based on the period value provided
591 	 * in PWM args.
592 	 */
593 	if (pargs.period != state.period) {
594 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
595 
596 		do_div(dutycycle, state.period);
597 		state.duty_cycle = dutycycle;
598 		state.period = pargs.period;
599 	}
600 
601 	/*
602 	 * If the polarity changed, we should also change the duty cycle.
603 	 */
604 	if (pargs.polarity != state.polarity) {
605 		state.polarity = pargs.polarity;
606 		state.duty_cycle = state.period - state.duty_cycle;
607 	}
608 
609 	return pwm_apply_state(pwm, &state);
610 }
611 EXPORT_SYMBOL_GPL(pwm_adjust_config);
612 
613 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
614 {
615 	struct pwm_chip *chip;
616 
617 	mutex_lock(&pwm_lock);
618 
619 	list_for_each_entry(chip, &pwm_chips, list)
620 		if (chip->dev && chip->dev->of_node == np) {
621 			mutex_unlock(&pwm_lock);
622 			return chip;
623 		}
624 
625 	mutex_unlock(&pwm_lock);
626 
627 	return ERR_PTR(-EPROBE_DEFER);
628 }
629 
630 /**
631  * of_pwm_get() - request a PWM via the PWM framework
632  * @np: device node to get the PWM from
633  * @con_id: consumer name
634  *
635  * Returns the PWM device parsed from the phandle and index specified in the
636  * "pwms" property of a device tree node or a negative error-code on failure.
637  * Values parsed from the device tree are stored in the returned PWM device
638  * object.
639  *
640  * If con_id is NULL, the first PWM device listed in the "pwms" property will
641  * be requested. Otherwise the "pwm-names" property is used to do a reverse
642  * lookup of the PWM index. This also means that the "pwm-names" property
643  * becomes mandatory for devices that look up the PWM device via the con_id
644  * parameter.
645  *
646  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
647  * error code on failure.
648  */
649 struct pwm_device *of_pwm_get(struct device_node *np, const char *con_id)
650 {
651 	struct pwm_device *pwm = NULL;
652 	struct of_phandle_args args;
653 	struct pwm_chip *pc;
654 	int index = 0;
655 	int err;
656 
657 	if (con_id) {
658 		index = of_property_match_string(np, "pwm-names", con_id);
659 		if (index < 0)
660 			return ERR_PTR(index);
661 	}
662 
663 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
664 					 &args);
665 	if (err) {
666 		pr_debug("%s(): can't parse \"pwms\" property\n", __func__);
667 		return ERR_PTR(err);
668 	}
669 
670 	pc = of_node_to_pwmchip(args.np);
671 	if (IS_ERR(pc)) {
672 		pr_debug("%s(): PWM chip not found\n", __func__);
673 		pwm = ERR_CAST(pc);
674 		goto put;
675 	}
676 
677 	if (args.args_count != pc->of_pwm_n_cells) {
678 		pr_debug("%s: wrong #pwm-cells for %s\n", np->full_name,
679 			 args.np->full_name);
680 		pwm = ERR_PTR(-EINVAL);
681 		goto put;
682 	}
683 
684 	pwm = pc->of_xlate(pc, &args);
685 	if (IS_ERR(pwm))
686 		goto put;
687 
688 	/*
689 	 * If a consumer name was not given, try to look it up from the
690 	 * "pwm-names" property if it exists. Otherwise use the name of
691 	 * the user device node.
692 	 */
693 	if (!con_id) {
694 		err = of_property_read_string_index(np, "pwm-names", index,
695 						    &con_id);
696 		if (err < 0)
697 			con_id = np->name;
698 	}
699 
700 	pwm->label = con_id;
701 
702 put:
703 	of_node_put(args.np);
704 
705 	return pwm;
706 }
707 EXPORT_SYMBOL_GPL(of_pwm_get);
708 
709 /**
710  * pwm_add_table() - register PWM device consumers
711  * @table: array of consumers to register
712  * @num: number of consumers in table
713  */
714 void pwm_add_table(struct pwm_lookup *table, size_t num)
715 {
716 	mutex_lock(&pwm_lookup_lock);
717 
718 	while (num--) {
719 		list_add_tail(&table->list, &pwm_lookup_list);
720 		table++;
721 	}
722 
723 	mutex_unlock(&pwm_lookup_lock);
724 }
725 
726 /**
727  * pwm_remove_table() - unregister PWM device consumers
728  * @table: array of consumers to unregister
729  * @num: number of consumers in table
730  */
731 void pwm_remove_table(struct pwm_lookup *table, size_t num)
732 {
733 	mutex_lock(&pwm_lookup_lock);
734 
735 	while (num--) {
736 		list_del(&table->list);
737 		table++;
738 	}
739 
740 	mutex_unlock(&pwm_lookup_lock);
741 }
742 
743 /**
744  * pwm_get() - look up and request a PWM device
745  * @dev: device for PWM consumer
746  * @con_id: consumer name
747  *
748  * Lookup is first attempted using DT. If the device was not instantiated from
749  * a device tree, a PWM chip and a relative index is looked up via a table
750  * supplied by board setup code (see pwm_add_table()).
751  *
752  * Once a PWM chip has been found the specified PWM device will be requested
753  * and is ready to be used.
754  *
755  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
756  * error code on failure.
757  */
758 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
759 {
760 	struct pwm_device *pwm = ERR_PTR(-EPROBE_DEFER);
761 	const char *dev_id = dev ? dev_name(dev) : NULL;
762 	struct pwm_chip *chip = NULL;
763 	unsigned int best = 0;
764 	struct pwm_lookup *p, *chosen = NULL;
765 	unsigned int match;
766 
767 	/* look up via DT first */
768 	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
769 		return of_pwm_get(dev->of_node, con_id);
770 
771 	/*
772 	 * We look up the provider in the static table typically provided by
773 	 * board setup code. We first try to lookup the consumer device by
774 	 * name. If the consumer device was passed in as NULL or if no match
775 	 * was found, we try to find the consumer by directly looking it up
776 	 * by name.
777 	 *
778 	 * If a match is found, the provider PWM chip is looked up by name
779 	 * and a PWM device is requested using the PWM device per-chip index.
780 	 *
781 	 * The lookup algorithm was shamelessly taken from the clock
782 	 * framework:
783 	 *
784 	 * We do slightly fuzzy matching here:
785 	 *  An entry with a NULL ID is assumed to be a wildcard.
786 	 *  If an entry has a device ID, it must match
787 	 *  If an entry has a connection ID, it must match
788 	 * Then we take the most specific entry - with the following order
789 	 * of precedence: dev+con > dev only > con only.
790 	 */
791 	mutex_lock(&pwm_lookup_lock);
792 
793 	list_for_each_entry(p, &pwm_lookup_list, list) {
794 		match = 0;
795 
796 		if (p->dev_id) {
797 			if (!dev_id || strcmp(p->dev_id, dev_id))
798 				continue;
799 
800 			match += 2;
801 		}
802 
803 		if (p->con_id) {
804 			if (!con_id || strcmp(p->con_id, con_id))
805 				continue;
806 
807 			match += 1;
808 		}
809 
810 		if (match > best) {
811 			chosen = p;
812 
813 			if (match != 3)
814 				best = match;
815 			else
816 				break;
817 		}
818 	}
819 
820 	if (!chosen) {
821 		pwm = ERR_PTR(-ENODEV);
822 		goto out;
823 	}
824 
825 	chip = pwmchip_find_by_name(chosen->provider);
826 	if (!chip)
827 		goto out;
828 
829 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
830 	if (IS_ERR(pwm))
831 		goto out;
832 
833 	pwm->args.period = chosen->period;
834 	pwm->args.polarity = chosen->polarity;
835 
836 out:
837 	mutex_unlock(&pwm_lookup_lock);
838 	return pwm;
839 }
840 EXPORT_SYMBOL_GPL(pwm_get);
841 
842 /**
843  * pwm_put() - release a PWM device
844  * @pwm: PWM device
845  */
846 void pwm_put(struct pwm_device *pwm)
847 {
848 	if (!pwm)
849 		return;
850 
851 	mutex_lock(&pwm_lock);
852 
853 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
854 		pr_warn("PWM device already freed\n");
855 		goto out;
856 	}
857 
858 	if (pwm->chip->ops->free)
859 		pwm->chip->ops->free(pwm->chip, pwm);
860 
861 	pwm->label = NULL;
862 
863 	module_put(pwm->chip->ops->owner);
864 out:
865 	mutex_unlock(&pwm_lock);
866 }
867 EXPORT_SYMBOL_GPL(pwm_put);
868 
869 static void devm_pwm_release(struct device *dev, void *res)
870 {
871 	pwm_put(*(struct pwm_device **)res);
872 }
873 
874 /**
875  * devm_pwm_get() - resource managed pwm_get()
876  * @dev: device for PWM consumer
877  * @con_id: consumer name
878  *
879  * This function performs like pwm_get() but the acquired PWM device will
880  * automatically be released on driver detach.
881  *
882  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
883  * error code on failure.
884  */
885 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
886 {
887 	struct pwm_device **ptr, *pwm;
888 
889 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
890 	if (!ptr)
891 		return ERR_PTR(-ENOMEM);
892 
893 	pwm = pwm_get(dev, con_id);
894 	if (!IS_ERR(pwm)) {
895 		*ptr = pwm;
896 		devres_add(dev, ptr);
897 	} else {
898 		devres_free(ptr);
899 	}
900 
901 	return pwm;
902 }
903 EXPORT_SYMBOL_GPL(devm_pwm_get);
904 
905 /**
906  * devm_of_pwm_get() - resource managed of_pwm_get()
907  * @dev: device for PWM consumer
908  * @np: device node to get the PWM from
909  * @con_id: consumer name
910  *
911  * This function performs like of_pwm_get() but the acquired PWM device will
912  * automatically be released on driver detach.
913  *
914  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
915  * error code on failure.
916  */
917 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
918 				   const char *con_id)
919 {
920 	struct pwm_device **ptr, *pwm;
921 
922 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
923 	if (!ptr)
924 		return ERR_PTR(-ENOMEM);
925 
926 	pwm = of_pwm_get(np, con_id);
927 	if (!IS_ERR(pwm)) {
928 		*ptr = pwm;
929 		devres_add(dev, ptr);
930 	} else {
931 		devres_free(ptr);
932 	}
933 
934 	return pwm;
935 }
936 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
937 
938 static int devm_pwm_match(struct device *dev, void *res, void *data)
939 {
940 	struct pwm_device **p = res;
941 
942 	if (WARN_ON(!p || !*p))
943 		return 0;
944 
945 	return *p == data;
946 }
947 
948 /**
949  * devm_pwm_put() - resource managed pwm_put()
950  * @dev: device for PWM consumer
951  * @pwm: PWM device
952  *
953  * Release a PWM previously allocated using devm_pwm_get(). Calling this
954  * function is usually not needed because devm-allocated resources are
955  * automatically released on driver detach.
956  */
957 void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
958 {
959 	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
960 }
961 EXPORT_SYMBOL_GPL(devm_pwm_put);
962 
963 /**
964   * pwm_can_sleep() - report whether PWM access will sleep
965   * @pwm: PWM device
966   *
967   * Returns: True if accessing the PWM can sleep, false otherwise.
968   */
969 bool pwm_can_sleep(struct pwm_device *pwm)
970 {
971 	return true;
972 }
973 EXPORT_SYMBOL_GPL(pwm_can_sleep);
974 
975 #ifdef CONFIG_DEBUG_FS
976 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
977 {
978 	unsigned int i;
979 
980 	for (i = 0; i < chip->npwm; i++) {
981 		struct pwm_device *pwm = &chip->pwms[i];
982 		struct pwm_state state;
983 
984 		pwm_get_state(pwm, &state);
985 
986 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
987 
988 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
989 			seq_puts(s, " requested");
990 
991 		if (state.enabled)
992 			seq_puts(s, " enabled");
993 
994 		seq_printf(s, " period: %u ns", state.period);
995 		seq_printf(s, " duty: %u ns", state.duty_cycle);
996 		seq_printf(s, " polarity: %s",
997 			   state.polarity ? "inverse" : "normal");
998 
999 		seq_puts(s, "\n");
1000 	}
1001 }
1002 
1003 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1004 {
1005 	mutex_lock(&pwm_lock);
1006 	s->private = "";
1007 
1008 	return seq_list_start(&pwm_chips, *pos);
1009 }
1010 
1011 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1012 {
1013 	s->private = "\n";
1014 
1015 	return seq_list_next(v, &pwm_chips, pos);
1016 }
1017 
1018 static void pwm_seq_stop(struct seq_file *s, void *v)
1019 {
1020 	mutex_unlock(&pwm_lock);
1021 }
1022 
1023 static int pwm_seq_show(struct seq_file *s, void *v)
1024 {
1025 	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1026 
1027 	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1028 		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1029 		   dev_name(chip->dev), chip->npwm,
1030 		   (chip->npwm != 1) ? "s" : "");
1031 
1032 	if (chip->ops->dbg_show)
1033 		chip->ops->dbg_show(chip, s);
1034 	else
1035 		pwm_dbg_show(chip, s);
1036 
1037 	return 0;
1038 }
1039 
1040 static const struct seq_operations pwm_seq_ops = {
1041 	.start = pwm_seq_start,
1042 	.next = pwm_seq_next,
1043 	.stop = pwm_seq_stop,
1044 	.show = pwm_seq_show,
1045 };
1046 
1047 static int pwm_seq_open(struct inode *inode, struct file *file)
1048 {
1049 	return seq_open(file, &pwm_seq_ops);
1050 }
1051 
1052 static const struct file_operations pwm_debugfs_ops = {
1053 	.owner = THIS_MODULE,
1054 	.open = pwm_seq_open,
1055 	.read = seq_read,
1056 	.llseek = seq_lseek,
1057 	.release = seq_release,
1058 };
1059 
1060 static int __init pwm_debugfs_init(void)
1061 {
1062 	debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1063 			    &pwm_debugfs_ops);
1064 
1065 	return 0;
1066 }
1067 subsys_initcall(pwm_debugfs_init);
1068 #endif /* CONFIG_DEBUG_FS */
1069