1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic pwmlib implementation 4 * 5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de> 6 * Copyright (C) 2011-2012 Avionic Design GmbH 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/module.h> 11 #include <linux/pwm.h> 12 #include <linux/radix-tree.h> 13 #include <linux/list.h> 14 #include <linux/mutex.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/debugfs.h> 19 #include <linux/seq_file.h> 20 21 #include <dt-bindings/pwm/pwm.h> 22 23 #define CREATE_TRACE_POINTS 24 #include <trace/events/pwm.h> 25 26 #define MAX_PWMS 1024 27 28 static DEFINE_MUTEX(pwm_lookup_lock); 29 static LIST_HEAD(pwm_lookup_list); 30 static DEFINE_MUTEX(pwm_lock); 31 static LIST_HEAD(pwm_chips); 32 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS); 33 static RADIX_TREE(pwm_tree, GFP_KERNEL); 34 35 static struct pwm_device *pwm_to_device(unsigned int pwm) 36 { 37 return radix_tree_lookup(&pwm_tree, pwm); 38 } 39 40 static int alloc_pwms(int pwm, unsigned int count) 41 { 42 unsigned int from = 0; 43 unsigned int start; 44 45 if (pwm >= MAX_PWMS) 46 return -EINVAL; 47 48 if (pwm >= 0) 49 from = pwm; 50 51 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from, 52 count, 0); 53 54 if (pwm >= 0 && start != pwm) 55 return -EEXIST; 56 57 if (start + count > MAX_PWMS) 58 return -ENOSPC; 59 60 return start; 61 } 62 63 static void free_pwms(struct pwm_chip *chip) 64 { 65 unsigned int i; 66 67 for (i = 0; i < chip->npwm; i++) { 68 struct pwm_device *pwm = &chip->pwms[i]; 69 70 radix_tree_delete(&pwm_tree, pwm->pwm); 71 } 72 73 bitmap_clear(allocated_pwms, chip->base, chip->npwm); 74 75 kfree(chip->pwms); 76 chip->pwms = NULL; 77 } 78 79 static struct pwm_chip *pwmchip_find_by_name(const char *name) 80 { 81 struct pwm_chip *chip; 82 83 if (!name) 84 return NULL; 85 86 mutex_lock(&pwm_lock); 87 88 list_for_each_entry(chip, &pwm_chips, list) { 89 const char *chip_name = dev_name(chip->dev); 90 91 if (chip_name && strcmp(chip_name, name) == 0) { 92 mutex_unlock(&pwm_lock); 93 return chip; 94 } 95 } 96 97 mutex_unlock(&pwm_lock); 98 99 return NULL; 100 } 101 102 static int pwm_device_request(struct pwm_device *pwm, const char *label) 103 { 104 int err; 105 106 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 107 return -EBUSY; 108 109 if (!try_module_get(pwm->chip->ops->owner)) 110 return -ENODEV; 111 112 if (pwm->chip->ops->request) { 113 err = pwm->chip->ops->request(pwm->chip, pwm); 114 if (err) { 115 module_put(pwm->chip->ops->owner); 116 return err; 117 } 118 } 119 120 if (pwm->chip->ops->get_state) { 121 pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state); 122 trace_pwm_get(pwm, &pwm->state); 123 } 124 125 set_bit(PWMF_REQUESTED, &pwm->flags); 126 pwm->label = label; 127 128 return 0; 129 } 130 131 struct pwm_device * 132 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args) 133 { 134 struct pwm_device *pwm; 135 136 /* check, whether the driver supports a third cell for flags */ 137 if (pc->of_pwm_n_cells < 3) 138 return ERR_PTR(-EINVAL); 139 140 /* flags in the third cell are optional */ 141 if (args->args_count < 2) 142 return ERR_PTR(-EINVAL); 143 144 if (args->args[0] >= pc->npwm) 145 return ERR_PTR(-EINVAL); 146 147 pwm = pwm_request_from_chip(pc, args->args[0], NULL); 148 if (IS_ERR(pwm)) 149 return pwm; 150 151 pwm->args.period = args->args[1]; 152 pwm->args.polarity = PWM_POLARITY_NORMAL; 153 154 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED) 155 pwm->args.polarity = PWM_POLARITY_INVERSED; 156 157 return pwm; 158 } 159 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags); 160 161 static struct pwm_device * 162 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args) 163 { 164 struct pwm_device *pwm; 165 166 /* sanity check driver support */ 167 if (pc->of_pwm_n_cells < 2) 168 return ERR_PTR(-EINVAL); 169 170 /* all cells are required */ 171 if (args->args_count != pc->of_pwm_n_cells) 172 return ERR_PTR(-EINVAL); 173 174 if (args->args[0] >= pc->npwm) 175 return ERR_PTR(-EINVAL); 176 177 pwm = pwm_request_from_chip(pc, args->args[0], NULL); 178 if (IS_ERR(pwm)) 179 return pwm; 180 181 pwm->args.period = args->args[1]; 182 183 return pwm; 184 } 185 186 static void of_pwmchip_add(struct pwm_chip *chip) 187 { 188 if (!chip->dev || !chip->dev->of_node) 189 return; 190 191 if (!chip->of_xlate) { 192 chip->of_xlate = of_pwm_simple_xlate; 193 chip->of_pwm_n_cells = 2; 194 } 195 196 of_node_get(chip->dev->of_node); 197 } 198 199 static void of_pwmchip_remove(struct pwm_chip *chip) 200 { 201 if (chip->dev) 202 of_node_put(chip->dev->of_node); 203 } 204 205 /** 206 * pwm_set_chip_data() - set private chip data for a PWM 207 * @pwm: PWM device 208 * @data: pointer to chip-specific data 209 * 210 * Returns: 0 on success or a negative error code on failure. 211 */ 212 int pwm_set_chip_data(struct pwm_device *pwm, void *data) 213 { 214 if (!pwm) 215 return -EINVAL; 216 217 pwm->chip_data = data; 218 219 return 0; 220 } 221 EXPORT_SYMBOL_GPL(pwm_set_chip_data); 222 223 /** 224 * pwm_get_chip_data() - get private chip data for a PWM 225 * @pwm: PWM device 226 * 227 * Returns: A pointer to the chip-private data for the PWM device. 228 */ 229 void *pwm_get_chip_data(struct pwm_device *pwm) 230 { 231 return pwm ? pwm->chip_data : NULL; 232 } 233 EXPORT_SYMBOL_GPL(pwm_get_chip_data); 234 235 static bool pwm_ops_check(const struct pwm_ops *ops) 236 { 237 /* driver supports legacy, non-atomic operation */ 238 if (ops->config && ops->enable && ops->disable) 239 return true; 240 241 /* driver supports atomic operation */ 242 if (ops->apply) 243 return true; 244 245 return false; 246 } 247 248 /** 249 * pwmchip_add_with_polarity() - register a new PWM chip 250 * @chip: the PWM chip to add 251 * @polarity: initial polarity of PWM channels 252 * 253 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base 254 * will be used. The initial polarity for all channels is specified by the 255 * @polarity parameter. 256 * 257 * Returns: 0 on success or a negative error code on failure. 258 */ 259 int pwmchip_add_with_polarity(struct pwm_chip *chip, 260 enum pwm_polarity polarity) 261 { 262 struct pwm_device *pwm; 263 unsigned int i; 264 int ret; 265 266 if (!chip || !chip->dev || !chip->ops || !chip->npwm) 267 return -EINVAL; 268 269 if (!pwm_ops_check(chip->ops)) 270 return -EINVAL; 271 272 mutex_lock(&pwm_lock); 273 274 ret = alloc_pwms(chip->base, chip->npwm); 275 if (ret < 0) 276 goto out; 277 278 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL); 279 if (!chip->pwms) { 280 ret = -ENOMEM; 281 goto out; 282 } 283 284 chip->base = ret; 285 286 for (i = 0; i < chip->npwm; i++) { 287 pwm = &chip->pwms[i]; 288 289 pwm->chip = chip; 290 pwm->pwm = chip->base + i; 291 pwm->hwpwm = i; 292 pwm->state.polarity = polarity; 293 294 radix_tree_insert(&pwm_tree, pwm->pwm, pwm); 295 } 296 297 bitmap_set(allocated_pwms, chip->base, chip->npwm); 298 299 INIT_LIST_HEAD(&chip->list); 300 list_add(&chip->list, &pwm_chips); 301 302 ret = 0; 303 304 if (IS_ENABLED(CONFIG_OF)) 305 of_pwmchip_add(chip); 306 307 out: 308 mutex_unlock(&pwm_lock); 309 310 if (!ret) 311 pwmchip_sysfs_export(chip); 312 313 return ret; 314 } 315 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity); 316 317 /** 318 * pwmchip_add() - register a new PWM chip 319 * @chip: the PWM chip to add 320 * 321 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base 322 * will be used. The initial polarity for all channels is normal. 323 * 324 * Returns: 0 on success or a negative error code on failure. 325 */ 326 int pwmchip_add(struct pwm_chip *chip) 327 { 328 return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL); 329 } 330 EXPORT_SYMBOL_GPL(pwmchip_add); 331 332 /** 333 * pwmchip_remove() - remove a PWM chip 334 * @chip: the PWM chip to remove 335 * 336 * Removes a PWM chip. This function may return busy if the PWM chip provides 337 * a PWM device that is still requested. 338 * 339 * Returns: 0 on success or a negative error code on failure. 340 */ 341 int pwmchip_remove(struct pwm_chip *chip) 342 { 343 unsigned int i; 344 int ret = 0; 345 346 pwmchip_sysfs_unexport(chip); 347 348 mutex_lock(&pwm_lock); 349 350 for (i = 0; i < chip->npwm; i++) { 351 struct pwm_device *pwm = &chip->pwms[i]; 352 353 if (test_bit(PWMF_REQUESTED, &pwm->flags)) { 354 ret = -EBUSY; 355 goto out; 356 } 357 } 358 359 list_del_init(&chip->list); 360 361 if (IS_ENABLED(CONFIG_OF)) 362 of_pwmchip_remove(chip); 363 364 free_pwms(chip); 365 366 out: 367 mutex_unlock(&pwm_lock); 368 return ret; 369 } 370 EXPORT_SYMBOL_GPL(pwmchip_remove); 371 372 /** 373 * pwm_request() - request a PWM device 374 * @pwm: global PWM device index 375 * @label: PWM device label 376 * 377 * This function is deprecated, use pwm_get() instead. 378 * 379 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on 380 * failure. 381 */ 382 struct pwm_device *pwm_request(int pwm, const char *label) 383 { 384 struct pwm_device *dev; 385 int err; 386 387 if (pwm < 0 || pwm >= MAX_PWMS) 388 return ERR_PTR(-EINVAL); 389 390 mutex_lock(&pwm_lock); 391 392 dev = pwm_to_device(pwm); 393 if (!dev) { 394 dev = ERR_PTR(-EPROBE_DEFER); 395 goto out; 396 } 397 398 err = pwm_device_request(dev, label); 399 if (err < 0) 400 dev = ERR_PTR(err); 401 402 out: 403 mutex_unlock(&pwm_lock); 404 405 return dev; 406 } 407 EXPORT_SYMBOL_GPL(pwm_request); 408 409 /** 410 * pwm_request_from_chip() - request a PWM device relative to a PWM chip 411 * @chip: PWM chip 412 * @index: per-chip index of the PWM to request 413 * @label: a literal description string of this PWM 414 * 415 * Returns: A pointer to the PWM device at the given index of the given PWM 416 * chip. A negative error code is returned if the index is not valid for the 417 * specified PWM chip or if the PWM device cannot be requested. 418 */ 419 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, 420 unsigned int index, 421 const char *label) 422 { 423 struct pwm_device *pwm; 424 int err; 425 426 if (!chip || index >= chip->npwm) 427 return ERR_PTR(-EINVAL); 428 429 mutex_lock(&pwm_lock); 430 pwm = &chip->pwms[index]; 431 432 err = pwm_device_request(pwm, label); 433 if (err < 0) 434 pwm = ERR_PTR(err); 435 436 mutex_unlock(&pwm_lock); 437 return pwm; 438 } 439 EXPORT_SYMBOL_GPL(pwm_request_from_chip); 440 441 /** 442 * pwm_free() - free a PWM device 443 * @pwm: PWM device 444 * 445 * This function is deprecated, use pwm_put() instead. 446 */ 447 void pwm_free(struct pwm_device *pwm) 448 { 449 pwm_put(pwm); 450 } 451 EXPORT_SYMBOL_GPL(pwm_free); 452 453 /** 454 * pwm_apply_state() - atomically apply a new state to a PWM device 455 * @pwm: PWM device 456 * @state: new state to apply 457 */ 458 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state) 459 { 460 struct pwm_chip *chip; 461 int err; 462 463 if (!pwm || !state || !state->period || 464 state->duty_cycle > state->period) 465 return -EINVAL; 466 467 chip = pwm->chip; 468 469 if (state->period == pwm->state.period && 470 state->duty_cycle == pwm->state.duty_cycle && 471 state->polarity == pwm->state.polarity && 472 state->enabled == pwm->state.enabled) 473 return 0; 474 475 if (chip->ops->apply) { 476 err = chip->ops->apply(chip, pwm, state); 477 if (err) 478 return err; 479 480 trace_pwm_apply(pwm, state); 481 482 pwm->state = *state; 483 } else { 484 /* 485 * FIXME: restore the initial state in case of error. 486 */ 487 if (state->polarity != pwm->state.polarity) { 488 if (!chip->ops->set_polarity) 489 return -ENOTSUPP; 490 491 /* 492 * Changing the polarity of a running PWM is 493 * only allowed when the PWM driver implements 494 * ->apply(). 495 */ 496 if (pwm->state.enabled) { 497 chip->ops->disable(chip, pwm); 498 pwm->state.enabled = false; 499 } 500 501 err = chip->ops->set_polarity(chip, pwm, 502 state->polarity); 503 if (err) 504 return err; 505 506 pwm->state.polarity = state->polarity; 507 } 508 509 if (state->period != pwm->state.period || 510 state->duty_cycle != pwm->state.duty_cycle) { 511 err = chip->ops->config(pwm->chip, pwm, 512 state->duty_cycle, 513 state->period); 514 if (err) 515 return err; 516 517 pwm->state.duty_cycle = state->duty_cycle; 518 pwm->state.period = state->period; 519 } 520 521 if (state->enabled != pwm->state.enabled) { 522 if (state->enabled) { 523 err = chip->ops->enable(chip, pwm); 524 if (err) 525 return err; 526 } else { 527 chip->ops->disable(chip, pwm); 528 } 529 530 pwm->state.enabled = state->enabled; 531 } 532 } 533 534 return 0; 535 } 536 EXPORT_SYMBOL_GPL(pwm_apply_state); 537 538 /** 539 * pwm_capture() - capture and report a PWM signal 540 * @pwm: PWM device 541 * @result: structure to fill with capture result 542 * @timeout: time to wait, in milliseconds, before giving up on capture 543 * 544 * Returns: 0 on success or a negative error code on failure. 545 */ 546 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result, 547 unsigned long timeout) 548 { 549 int err; 550 551 if (!pwm || !pwm->chip->ops) 552 return -EINVAL; 553 554 if (!pwm->chip->ops->capture) 555 return -ENOSYS; 556 557 mutex_lock(&pwm_lock); 558 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout); 559 mutex_unlock(&pwm_lock); 560 561 return err; 562 } 563 EXPORT_SYMBOL_GPL(pwm_capture); 564 565 /** 566 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments 567 * @pwm: PWM device 568 * 569 * This function will adjust the PWM config to the PWM arguments provided 570 * by the DT or PWM lookup table. This is particularly useful to adapt 571 * the bootloader config to the Linux one. 572 */ 573 int pwm_adjust_config(struct pwm_device *pwm) 574 { 575 struct pwm_state state; 576 struct pwm_args pargs; 577 578 pwm_get_args(pwm, &pargs); 579 pwm_get_state(pwm, &state); 580 581 /* 582 * If the current period is zero it means that either the PWM driver 583 * does not support initial state retrieval or the PWM has not yet 584 * been configured. 585 * 586 * In either case, we setup the new period and polarity, and assign a 587 * duty cycle of 0. 588 */ 589 if (!state.period) { 590 state.duty_cycle = 0; 591 state.period = pargs.period; 592 state.polarity = pargs.polarity; 593 594 return pwm_apply_state(pwm, &state); 595 } 596 597 /* 598 * Adjust the PWM duty cycle/period based on the period value provided 599 * in PWM args. 600 */ 601 if (pargs.period != state.period) { 602 u64 dutycycle = (u64)state.duty_cycle * pargs.period; 603 604 do_div(dutycycle, state.period); 605 state.duty_cycle = dutycycle; 606 state.period = pargs.period; 607 } 608 609 /* 610 * If the polarity changed, we should also change the duty cycle. 611 */ 612 if (pargs.polarity != state.polarity) { 613 state.polarity = pargs.polarity; 614 state.duty_cycle = state.period - state.duty_cycle; 615 } 616 617 return pwm_apply_state(pwm, &state); 618 } 619 EXPORT_SYMBOL_GPL(pwm_adjust_config); 620 621 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np) 622 { 623 struct pwm_chip *chip; 624 625 mutex_lock(&pwm_lock); 626 627 list_for_each_entry(chip, &pwm_chips, list) 628 if (chip->dev && chip->dev->of_node == np) { 629 mutex_unlock(&pwm_lock); 630 return chip; 631 } 632 633 mutex_unlock(&pwm_lock); 634 635 return ERR_PTR(-EPROBE_DEFER); 636 } 637 638 static struct device_link *pwm_device_link_add(struct device *dev, 639 struct pwm_device *pwm) 640 { 641 struct device_link *dl; 642 643 if (!dev) { 644 /* 645 * No device for the PWM consumer has been provided. It may 646 * impact the PM sequence ordering: the PWM supplier may get 647 * suspended before the consumer. 648 */ 649 dev_warn(pwm->chip->dev, 650 "No consumer device specified to create a link to\n"); 651 return NULL; 652 } 653 654 dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER); 655 if (!dl) { 656 dev_err(dev, "failed to create device link to %s\n", 657 dev_name(pwm->chip->dev)); 658 return ERR_PTR(-EINVAL); 659 } 660 661 return dl; 662 } 663 664 /** 665 * of_pwm_get() - request a PWM via the PWM framework 666 * @dev: device for PWM consumer 667 * @np: device node to get the PWM from 668 * @con_id: consumer name 669 * 670 * Returns the PWM device parsed from the phandle and index specified in the 671 * "pwms" property of a device tree node or a negative error-code on failure. 672 * Values parsed from the device tree are stored in the returned PWM device 673 * object. 674 * 675 * If con_id is NULL, the first PWM device listed in the "pwms" property will 676 * be requested. Otherwise the "pwm-names" property is used to do a reverse 677 * lookup of the PWM index. This also means that the "pwm-names" property 678 * becomes mandatory for devices that look up the PWM device via the con_id 679 * parameter. 680 * 681 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 682 * error code on failure. 683 */ 684 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np, 685 const char *con_id) 686 { 687 struct pwm_device *pwm = NULL; 688 struct of_phandle_args args; 689 struct device_link *dl; 690 struct pwm_chip *pc; 691 int index = 0; 692 int err; 693 694 if (con_id) { 695 index = of_property_match_string(np, "pwm-names", con_id); 696 if (index < 0) 697 return ERR_PTR(index); 698 } 699 700 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index, 701 &args); 702 if (err) { 703 pr_err("%s(): can't parse \"pwms\" property\n", __func__); 704 return ERR_PTR(err); 705 } 706 707 pc = of_node_to_pwmchip(args.np); 708 if (IS_ERR(pc)) { 709 if (PTR_ERR(pc) != -EPROBE_DEFER) 710 pr_err("%s(): PWM chip not found\n", __func__); 711 712 pwm = ERR_CAST(pc); 713 goto put; 714 } 715 716 pwm = pc->of_xlate(pc, &args); 717 if (IS_ERR(pwm)) 718 goto put; 719 720 dl = pwm_device_link_add(dev, pwm); 721 if (IS_ERR(dl)) { 722 /* of_xlate ended up calling pwm_request_from_chip() */ 723 pwm_free(pwm); 724 pwm = ERR_CAST(dl); 725 goto put; 726 } 727 728 /* 729 * If a consumer name was not given, try to look it up from the 730 * "pwm-names" property if it exists. Otherwise use the name of 731 * the user device node. 732 */ 733 if (!con_id) { 734 err = of_property_read_string_index(np, "pwm-names", index, 735 &con_id); 736 if (err < 0) 737 con_id = np->name; 738 } 739 740 pwm->label = con_id; 741 742 put: 743 of_node_put(args.np); 744 745 return pwm; 746 } 747 EXPORT_SYMBOL_GPL(of_pwm_get); 748 749 #if IS_ENABLED(CONFIG_ACPI) 750 static struct pwm_chip *device_to_pwmchip(struct device *dev) 751 { 752 struct pwm_chip *chip; 753 754 mutex_lock(&pwm_lock); 755 756 list_for_each_entry(chip, &pwm_chips, list) { 757 struct acpi_device *adev = ACPI_COMPANION(chip->dev); 758 759 if ((chip->dev == dev) || (adev && &adev->dev == dev)) { 760 mutex_unlock(&pwm_lock); 761 return chip; 762 } 763 } 764 765 mutex_unlock(&pwm_lock); 766 767 return ERR_PTR(-EPROBE_DEFER); 768 } 769 #endif 770 771 /** 772 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI 773 * @fwnode: firmware node to get the "pwm" property from 774 * 775 * Returns the PWM device parsed from the fwnode and index specified in the 776 * "pwms" property or a negative error-code on failure. 777 * Values parsed from the device tree are stored in the returned PWM device 778 * object. 779 * 780 * This is analogous to of_pwm_get() except con_id is not yet supported. 781 * ACPI entries must look like 782 * Package () {"pwms", Package () 783 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}} 784 * 785 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 786 * error code on failure. 787 */ 788 static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode) 789 { 790 struct pwm_device *pwm = ERR_PTR(-ENODEV); 791 #if IS_ENABLED(CONFIG_ACPI) 792 struct fwnode_reference_args args; 793 struct acpi_device *acpi; 794 struct pwm_chip *chip; 795 int ret; 796 797 memset(&args, 0, sizeof(args)); 798 799 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args); 800 if (ret < 0) 801 return ERR_PTR(ret); 802 803 acpi = to_acpi_device_node(args.fwnode); 804 if (!acpi) 805 return ERR_PTR(-EINVAL); 806 807 if (args.nargs < 2) 808 return ERR_PTR(-EPROTO); 809 810 chip = device_to_pwmchip(&acpi->dev); 811 if (IS_ERR(chip)) 812 return ERR_CAST(chip); 813 814 pwm = pwm_request_from_chip(chip, args.args[0], NULL); 815 if (IS_ERR(pwm)) 816 return pwm; 817 818 pwm->args.period = args.args[1]; 819 pwm->args.polarity = PWM_POLARITY_NORMAL; 820 821 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED) 822 pwm->args.polarity = PWM_POLARITY_INVERSED; 823 #endif 824 825 return pwm; 826 } 827 828 /** 829 * pwm_add_table() - register PWM device consumers 830 * @table: array of consumers to register 831 * @num: number of consumers in table 832 */ 833 void pwm_add_table(struct pwm_lookup *table, size_t num) 834 { 835 mutex_lock(&pwm_lookup_lock); 836 837 while (num--) { 838 list_add_tail(&table->list, &pwm_lookup_list); 839 table++; 840 } 841 842 mutex_unlock(&pwm_lookup_lock); 843 } 844 845 /** 846 * pwm_remove_table() - unregister PWM device consumers 847 * @table: array of consumers to unregister 848 * @num: number of consumers in table 849 */ 850 void pwm_remove_table(struct pwm_lookup *table, size_t num) 851 { 852 mutex_lock(&pwm_lookup_lock); 853 854 while (num--) { 855 list_del(&table->list); 856 table++; 857 } 858 859 mutex_unlock(&pwm_lookup_lock); 860 } 861 862 /** 863 * pwm_get() - look up and request a PWM device 864 * @dev: device for PWM consumer 865 * @con_id: consumer name 866 * 867 * Lookup is first attempted using DT. If the device was not instantiated from 868 * a device tree, a PWM chip and a relative index is looked up via a table 869 * supplied by board setup code (see pwm_add_table()). 870 * 871 * Once a PWM chip has been found the specified PWM device will be requested 872 * and is ready to be used. 873 * 874 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 875 * error code on failure. 876 */ 877 struct pwm_device *pwm_get(struct device *dev, const char *con_id) 878 { 879 const char *dev_id = dev ? dev_name(dev) : NULL; 880 struct pwm_device *pwm; 881 struct pwm_chip *chip; 882 struct device_link *dl; 883 unsigned int best = 0; 884 struct pwm_lookup *p, *chosen = NULL; 885 unsigned int match; 886 int err; 887 888 /* look up via DT first */ 889 if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node) 890 return of_pwm_get(dev, dev->of_node, con_id); 891 892 /* then lookup via ACPI */ 893 if (dev && is_acpi_node(dev->fwnode)) { 894 pwm = acpi_pwm_get(dev->fwnode); 895 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT) 896 return pwm; 897 } 898 899 /* 900 * We look up the provider in the static table typically provided by 901 * board setup code. We first try to lookup the consumer device by 902 * name. If the consumer device was passed in as NULL or if no match 903 * was found, we try to find the consumer by directly looking it up 904 * by name. 905 * 906 * If a match is found, the provider PWM chip is looked up by name 907 * and a PWM device is requested using the PWM device per-chip index. 908 * 909 * The lookup algorithm was shamelessly taken from the clock 910 * framework: 911 * 912 * We do slightly fuzzy matching here: 913 * An entry with a NULL ID is assumed to be a wildcard. 914 * If an entry has a device ID, it must match 915 * If an entry has a connection ID, it must match 916 * Then we take the most specific entry - with the following order 917 * of precedence: dev+con > dev only > con only. 918 */ 919 mutex_lock(&pwm_lookup_lock); 920 921 list_for_each_entry(p, &pwm_lookup_list, list) { 922 match = 0; 923 924 if (p->dev_id) { 925 if (!dev_id || strcmp(p->dev_id, dev_id)) 926 continue; 927 928 match += 2; 929 } 930 931 if (p->con_id) { 932 if (!con_id || strcmp(p->con_id, con_id)) 933 continue; 934 935 match += 1; 936 } 937 938 if (match > best) { 939 chosen = p; 940 941 if (match != 3) 942 best = match; 943 else 944 break; 945 } 946 } 947 948 mutex_unlock(&pwm_lookup_lock); 949 950 if (!chosen) 951 return ERR_PTR(-ENODEV); 952 953 chip = pwmchip_find_by_name(chosen->provider); 954 955 /* 956 * If the lookup entry specifies a module, load the module and retry 957 * the PWM chip lookup. This can be used to work around driver load 958 * ordering issues if driver's can't be made to properly support the 959 * deferred probe mechanism. 960 */ 961 if (!chip && chosen->module) { 962 err = request_module(chosen->module); 963 if (err == 0) 964 chip = pwmchip_find_by_name(chosen->provider); 965 } 966 967 if (!chip) 968 return ERR_PTR(-EPROBE_DEFER); 969 970 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id); 971 if (IS_ERR(pwm)) 972 return pwm; 973 974 dl = pwm_device_link_add(dev, pwm); 975 if (IS_ERR(dl)) { 976 pwm_free(pwm); 977 return ERR_CAST(dl); 978 } 979 980 pwm->args.period = chosen->period; 981 pwm->args.polarity = chosen->polarity; 982 983 return pwm; 984 } 985 EXPORT_SYMBOL_GPL(pwm_get); 986 987 /** 988 * pwm_put() - release a PWM device 989 * @pwm: PWM device 990 */ 991 void pwm_put(struct pwm_device *pwm) 992 { 993 if (!pwm) 994 return; 995 996 mutex_lock(&pwm_lock); 997 998 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 999 pr_warn("PWM device already freed\n"); 1000 goto out; 1001 } 1002 1003 if (pwm->chip->ops->free) 1004 pwm->chip->ops->free(pwm->chip, pwm); 1005 1006 pwm_set_chip_data(pwm, NULL); 1007 pwm->label = NULL; 1008 1009 module_put(pwm->chip->ops->owner); 1010 out: 1011 mutex_unlock(&pwm_lock); 1012 } 1013 EXPORT_SYMBOL_GPL(pwm_put); 1014 1015 static void devm_pwm_release(struct device *dev, void *res) 1016 { 1017 pwm_put(*(struct pwm_device **)res); 1018 } 1019 1020 /** 1021 * devm_pwm_get() - resource managed pwm_get() 1022 * @dev: device for PWM consumer 1023 * @con_id: consumer name 1024 * 1025 * This function performs like pwm_get() but the acquired PWM device will 1026 * automatically be released on driver detach. 1027 * 1028 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1029 * error code on failure. 1030 */ 1031 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id) 1032 { 1033 struct pwm_device **ptr, *pwm; 1034 1035 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL); 1036 if (!ptr) 1037 return ERR_PTR(-ENOMEM); 1038 1039 pwm = pwm_get(dev, con_id); 1040 if (!IS_ERR(pwm)) { 1041 *ptr = pwm; 1042 devres_add(dev, ptr); 1043 } else { 1044 devres_free(ptr); 1045 } 1046 1047 return pwm; 1048 } 1049 EXPORT_SYMBOL_GPL(devm_pwm_get); 1050 1051 /** 1052 * devm_of_pwm_get() - resource managed of_pwm_get() 1053 * @dev: device for PWM consumer 1054 * @np: device node to get the PWM from 1055 * @con_id: consumer name 1056 * 1057 * This function performs like of_pwm_get() but the acquired PWM device will 1058 * automatically be released on driver detach. 1059 * 1060 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1061 * error code on failure. 1062 */ 1063 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np, 1064 const char *con_id) 1065 { 1066 struct pwm_device **ptr, *pwm; 1067 1068 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL); 1069 if (!ptr) 1070 return ERR_PTR(-ENOMEM); 1071 1072 pwm = of_pwm_get(dev, np, con_id); 1073 if (!IS_ERR(pwm)) { 1074 *ptr = pwm; 1075 devres_add(dev, ptr); 1076 } else { 1077 devres_free(ptr); 1078 } 1079 1080 return pwm; 1081 } 1082 EXPORT_SYMBOL_GPL(devm_of_pwm_get); 1083 1084 /** 1085 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node 1086 * @dev: device for PWM consumer 1087 * @fwnode: firmware node to get the PWM from 1088 * @con_id: consumer name 1089 * 1090 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and 1091 * acpi_pwm_get() for a detailed description. 1092 * 1093 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1094 * error code on failure. 1095 */ 1096 struct pwm_device *devm_fwnode_pwm_get(struct device *dev, 1097 struct fwnode_handle *fwnode, 1098 const char *con_id) 1099 { 1100 struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV); 1101 1102 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL); 1103 if (!ptr) 1104 return ERR_PTR(-ENOMEM); 1105 1106 if (is_of_node(fwnode)) 1107 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id); 1108 else if (is_acpi_node(fwnode)) 1109 pwm = acpi_pwm_get(fwnode); 1110 1111 if (!IS_ERR(pwm)) { 1112 *ptr = pwm; 1113 devres_add(dev, ptr); 1114 } else { 1115 devres_free(ptr); 1116 } 1117 1118 return pwm; 1119 } 1120 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get); 1121 1122 static int devm_pwm_match(struct device *dev, void *res, void *data) 1123 { 1124 struct pwm_device **p = res; 1125 1126 if (WARN_ON(!p || !*p)) 1127 return 0; 1128 1129 return *p == data; 1130 } 1131 1132 /** 1133 * devm_pwm_put() - resource managed pwm_put() 1134 * @dev: device for PWM consumer 1135 * @pwm: PWM device 1136 * 1137 * Release a PWM previously allocated using devm_pwm_get(). Calling this 1138 * function is usually not needed because devm-allocated resources are 1139 * automatically released on driver detach. 1140 */ 1141 void devm_pwm_put(struct device *dev, struct pwm_device *pwm) 1142 { 1143 WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm)); 1144 } 1145 EXPORT_SYMBOL_GPL(devm_pwm_put); 1146 1147 #ifdef CONFIG_DEBUG_FS 1148 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s) 1149 { 1150 unsigned int i; 1151 1152 for (i = 0; i < chip->npwm; i++) { 1153 struct pwm_device *pwm = &chip->pwms[i]; 1154 struct pwm_state state; 1155 1156 pwm_get_state(pwm, &state); 1157 1158 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label); 1159 1160 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 1161 seq_puts(s, " requested"); 1162 1163 if (state.enabled) 1164 seq_puts(s, " enabled"); 1165 1166 seq_printf(s, " period: %u ns", state.period); 1167 seq_printf(s, " duty: %u ns", state.duty_cycle); 1168 seq_printf(s, " polarity: %s", 1169 state.polarity ? "inverse" : "normal"); 1170 1171 seq_puts(s, "\n"); 1172 } 1173 } 1174 1175 static void *pwm_seq_start(struct seq_file *s, loff_t *pos) 1176 { 1177 mutex_lock(&pwm_lock); 1178 s->private = ""; 1179 1180 return seq_list_start(&pwm_chips, *pos); 1181 } 1182 1183 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos) 1184 { 1185 s->private = "\n"; 1186 1187 return seq_list_next(v, &pwm_chips, pos); 1188 } 1189 1190 static void pwm_seq_stop(struct seq_file *s, void *v) 1191 { 1192 mutex_unlock(&pwm_lock); 1193 } 1194 1195 static int pwm_seq_show(struct seq_file *s, void *v) 1196 { 1197 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list); 1198 1199 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private, 1200 chip->dev->bus ? chip->dev->bus->name : "no-bus", 1201 dev_name(chip->dev), chip->npwm, 1202 (chip->npwm != 1) ? "s" : ""); 1203 1204 pwm_dbg_show(chip, s); 1205 1206 return 0; 1207 } 1208 1209 static const struct seq_operations pwm_seq_ops = { 1210 .start = pwm_seq_start, 1211 .next = pwm_seq_next, 1212 .stop = pwm_seq_stop, 1213 .show = pwm_seq_show, 1214 }; 1215 1216 static int pwm_seq_open(struct inode *inode, struct file *file) 1217 { 1218 return seq_open(file, &pwm_seq_ops); 1219 } 1220 1221 static const struct file_operations pwm_debugfs_ops = { 1222 .owner = THIS_MODULE, 1223 .open = pwm_seq_open, 1224 .read = seq_read, 1225 .llseek = seq_lseek, 1226 .release = seq_release, 1227 }; 1228 1229 static int __init pwm_debugfs_init(void) 1230 { 1231 debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL, 1232 &pwm_debugfs_ops); 1233 1234 return 0; 1235 } 1236 subsys_initcall(pwm_debugfs_init); 1237 #endif /* CONFIG_DEBUG_FS */ 1238