1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic pwmlib implementation 4 * 5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de> 6 * Copyright (C) 2011-2012 Avionic Design GmbH 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/module.h> 11 #include <linux/pwm.h> 12 #include <linux/radix-tree.h> 13 #include <linux/list.h> 14 #include <linux/mutex.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/debugfs.h> 19 #include <linux/seq_file.h> 20 21 #include <dt-bindings/pwm/pwm.h> 22 23 #define CREATE_TRACE_POINTS 24 #include <trace/events/pwm.h> 25 26 #define MAX_PWMS 1024 27 28 static DEFINE_MUTEX(pwm_lookup_lock); 29 static LIST_HEAD(pwm_lookup_list); 30 static DEFINE_MUTEX(pwm_lock); 31 static LIST_HEAD(pwm_chips); 32 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS); 33 static RADIX_TREE(pwm_tree, GFP_KERNEL); 34 35 static struct pwm_device *pwm_to_device(unsigned int pwm) 36 { 37 return radix_tree_lookup(&pwm_tree, pwm); 38 } 39 40 static int alloc_pwms(unsigned int count) 41 { 42 unsigned int start; 43 44 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0, 45 count, 0); 46 47 if (start + count > MAX_PWMS) 48 return -ENOSPC; 49 50 return start; 51 } 52 53 static void free_pwms(struct pwm_chip *chip) 54 { 55 unsigned int i; 56 57 for (i = 0; i < chip->npwm; i++) { 58 struct pwm_device *pwm = &chip->pwms[i]; 59 60 radix_tree_delete(&pwm_tree, pwm->pwm); 61 } 62 63 bitmap_clear(allocated_pwms, chip->base, chip->npwm); 64 65 kfree(chip->pwms); 66 chip->pwms = NULL; 67 } 68 69 static struct pwm_chip *pwmchip_find_by_name(const char *name) 70 { 71 struct pwm_chip *chip; 72 73 if (!name) 74 return NULL; 75 76 mutex_lock(&pwm_lock); 77 78 list_for_each_entry(chip, &pwm_chips, list) { 79 const char *chip_name = dev_name(chip->dev); 80 81 if (chip_name && strcmp(chip_name, name) == 0) { 82 mutex_unlock(&pwm_lock); 83 return chip; 84 } 85 } 86 87 mutex_unlock(&pwm_lock); 88 89 return NULL; 90 } 91 92 static int pwm_device_request(struct pwm_device *pwm, const char *label) 93 { 94 int err; 95 96 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 97 return -EBUSY; 98 99 if (!try_module_get(pwm->chip->ops->owner)) 100 return -ENODEV; 101 102 if (pwm->chip->ops->request) { 103 err = pwm->chip->ops->request(pwm->chip, pwm); 104 if (err) { 105 module_put(pwm->chip->ops->owner); 106 return err; 107 } 108 } 109 110 if (pwm->chip->ops->get_state) { 111 pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state); 112 trace_pwm_get(pwm, &pwm->state); 113 114 if (IS_ENABLED(CONFIG_PWM_DEBUG)) 115 pwm->last = pwm->state; 116 } 117 118 set_bit(PWMF_REQUESTED, &pwm->flags); 119 pwm->label = label; 120 121 return 0; 122 } 123 124 struct pwm_device * 125 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args) 126 { 127 struct pwm_device *pwm; 128 129 if (pc->of_pwm_n_cells < 2) 130 return ERR_PTR(-EINVAL); 131 132 /* flags in the third cell are optional */ 133 if (args->args_count < 2) 134 return ERR_PTR(-EINVAL); 135 136 if (args->args[0] >= pc->npwm) 137 return ERR_PTR(-EINVAL); 138 139 pwm = pwm_request_from_chip(pc, args->args[0], NULL); 140 if (IS_ERR(pwm)) 141 return pwm; 142 143 pwm->args.period = args->args[1]; 144 pwm->args.polarity = PWM_POLARITY_NORMAL; 145 146 if (pc->of_pwm_n_cells >= 3) { 147 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED) 148 pwm->args.polarity = PWM_POLARITY_INVERSED; 149 } 150 151 return pwm; 152 } 153 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags); 154 155 struct pwm_device * 156 of_pwm_single_xlate(struct pwm_chip *pc, const struct of_phandle_args *args) 157 { 158 struct pwm_device *pwm; 159 160 if (pc->of_pwm_n_cells < 1) 161 return ERR_PTR(-EINVAL); 162 163 /* validate that one cell is specified, optionally with flags */ 164 if (args->args_count != 1 && args->args_count != 2) 165 return ERR_PTR(-EINVAL); 166 167 pwm = pwm_request_from_chip(pc, 0, NULL); 168 if (IS_ERR(pwm)) 169 return pwm; 170 171 pwm->args.period = args->args[0]; 172 pwm->args.polarity = PWM_POLARITY_NORMAL; 173 174 if (args->args_count == 2 && args->args[2] & PWM_POLARITY_INVERTED) 175 pwm->args.polarity = PWM_POLARITY_INVERSED; 176 177 return pwm; 178 } 179 EXPORT_SYMBOL_GPL(of_pwm_single_xlate); 180 181 static void of_pwmchip_add(struct pwm_chip *chip) 182 { 183 if (!chip->dev || !chip->dev->of_node) 184 return; 185 186 if (!chip->of_xlate) { 187 u32 pwm_cells; 188 189 if (of_property_read_u32(chip->dev->of_node, "#pwm-cells", 190 &pwm_cells)) 191 pwm_cells = 2; 192 193 chip->of_xlate = of_pwm_xlate_with_flags; 194 chip->of_pwm_n_cells = pwm_cells; 195 } 196 197 of_node_get(chip->dev->of_node); 198 } 199 200 static void of_pwmchip_remove(struct pwm_chip *chip) 201 { 202 if (chip->dev) 203 of_node_put(chip->dev->of_node); 204 } 205 206 /** 207 * pwm_set_chip_data() - set private chip data for a PWM 208 * @pwm: PWM device 209 * @data: pointer to chip-specific data 210 * 211 * Returns: 0 on success or a negative error code on failure. 212 */ 213 int pwm_set_chip_data(struct pwm_device *pwm, void *data) 214 { 215 if (!pwm) 216 return -EINVAL; 217 218 pwm->chip_data = data; 219 220 return 0; 221 } 222 EXPORT_SYMBOL_GPL(pwm_set_chip_data); 223 224 /** 225 * pwm_get_chip_data() - get private chip data for a PWM 226 * @pwm: PWM device 227 * 228 * Returns: A pointer to the chip-private data for the PWM device. 229 */ 230 void *pwm_get_chip_data(struct pwm_device *pwm) 231 { 232 return pwm ? pwm->chip_data : NULL; 233 } 234 EXPORT_SYMBOL_GPL(pwm_get_chip_data); 235 236 static bool pwm_ops_check(const struct pwm_chip *chip) 237 { 238 239 const struct pwm_ops *ops = chip->ops; 240 241 /* driver supports legacy, non-atomic operation */ 242 if (ops->config && ops->enable && ops->disable) { 243 if (IS_ENABLED(CONFIG_PWM_DEBUG)) 244 dev_warn(chip->dev, 245 "Driver needs updating to atomic API\n"); 246 247 return true; 248 } 249 250 if (!ops->apply) 251 return false; 252 253 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state) 254 dev_warn(chip->dev, 255 "Please implement the .get_state() callback\n"); 256 257 return true; 258 } 259 260 /** 261 * pwmchip_add() - register a new PWM chip 262 * @chip: the PWM chip to add 263 * 264 * Register a new PWM chip. 265 * 266 * Returns: 0 on success or a negative error code on failure. 267 */ 268 int pwmchip_add(struct pwm_chip *chip) 269 { 270 struct pwm_device *pwm; 271 unsigned int i; 272 int ret; 273 274 if (!chip || !chip->dev || !chip->ops || !chip->npwm) 275 return -EINVAL; 276 277 if (!pwm_ops_check(chip)) 278 return -EINVAL; 279 280 mutex_lock(&pwm_lock); 281 282 ret = alloc_pwms(chip->npwm); 283 if (ret < 0) 284 goto out; 285 286 chip->base = ret; 287 288 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL); 289 if (!chip->pwms) { 290 ret = -ENOMEM; 291 goto out; 292 } 293 294 for (i = 0; i < chip->npwm; i++) { 295 pwm = &chip->pwms[i]; 296 297 pwm->chip = chip; 298 pwm->pwm = chip->base + i; 299 pwm->hwpwm = i; 300 301 radix_tree_insert(&pwm_tree, pwm->pwm, pwm); 302 } 303 304 bitmap_set(allocated_pwms, chip->base, chip->npwm); 305 306 INIT_LIST_HEAD(&chip->list); 307 list_add(&chip->list, &pwm_chips); 308 309 ret = 0; 310 311 if (IS_ENABLED(CONFIG_OF)) 312 of_pwmchip_add(chip); 313 314 out: 315 mutex_unlock(&pwm_lock); 316 317 if (!ret) 318 pwmchip_sysfs_export(chip); 319 320 return ret; 321 } 322 EXPORT_SYMBOL_GPL(pwmchip_add); 323 324 /** 325 * pwmchip_remove() - remove a PWM chip 326 * @chip: the PWM chip to remove 327 * 328 * Removes a PWM chip. This function may return busy if the PWM chip provides 329 * a PWM device that is still requested. 330 * 331 * Returns: 0 on success or a negative error code on failure. 332 */ 333 void pwmchip_remove(struct pwm_chip *chip) 334 { 335 pwmchip_sysfs_unexport(chip); 336 337 mutex_lock(&pwm_lock); 338 339 list_del_init(&chip->list); 340 341 if (IS_ENABLED(CONFIG_OF)) 342 of_pwmchip_remove(chip); 343 344 free_pwms(chip); 345 346 mutex_unlock(&pwm_lock); 347 } 348 EXPORT_SYMBOL_GPL(pwmchip_remove); 349 350 static void devm_pwmchip_remove(void *data) 351 { 352 struct pwm_chip *chip = data; 353 354 pwmchip_remove(chip); 355 } 356 357 int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip) 358 { 359 int ret; 360 361 ret = pwmchip_add(chip); 362 if (ret) 363 return ret; 364 365 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip); 366 } 367 EXPORT_SYMBOL_GPL(devm_pwmchip_add); 368 369 /** 370 * pwm_request() - request a PWM device 371 * @pwm: global PWM device index 372 * @label: PWM device label 373 * 374 * This function is deprecated, use pwm_get() instead. 375 * 376 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on 377 * failure. 378 */ 379 struct pwm_device *pwm_request(int pwm, const char *label) 380 { 381 struct pwm_device *dev; 382 int err; 383 384 if (pwm < 0 || pwm >= MAX_PWMS) 385 return ERR_PTR(-EINVAL); 386 387 mutex_lock(&pwm_lock); 388 389 dev = pwm_to_device(pwm); 390 if (!dev) { 391 dev = ERR_PTR(-EPROBE_DEFER); 392 goto out; 393 } 394 395 err = pwm_device_request(dev, label); 396 if (err < 0) 397 dev = ERR_PTR(err); 398 399 out: 400 mutex_unlock(&pwm_lock); 401 402 return dev; 403 } 404 EXPORT_SYMBOL_GPL(pwm_request); 405 406 /** 407 * pwm_request_from_chip() - request a PWM device relative to a PWM chip 408 * @chip: PWM chip 409 * @index: per-chip index of the PWM to request 410 * @label: a literal description string of this PWM 411 * 412 * Returns: A pointer to the PWM device at the given index of the given PWM 413 * chip. A negative error code is returned if the index is not valid for the 414 * specified PWM chip or if the PWM device cannot be requested. 415 */ 416 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, 417 unsigned int index, 418 const char *label) 419 { 420 struct pwm_device *pwm; 421 int err; 422 423 if (!chip || index >= chip->npwm) 424 return ERR_PTR(-EINVAL); 425 426 mutex_lock(&pwm_lock); 427 pwm = &chip->pwms[index]; 428 429 err = pwm_device_request(pwm, label); 430 if (err < 0) 431 pwm = ERR_PTR(err); 432 433 mutex_unlock(&pwm_lock); 434 return pwm; 435 } 436 EXPORT_SYMBOL_GPL(pwm_request_from_chip); 437 438 /** 439 * pwm_free() - free a PWM device 440 * @pwm: PWM device 441 * 442 * This function is deprecated, use pwm_put() instead. 443 */ 444 void pwm_free(struct pwm_device *pwm) 445 { 446 pwm_put(pwm); 447 } 448 EXPORT_SYMBOL_GPL(pwm_free); 449 450 static void pwm_apply_state_debug(struct pwm_device *pwm, 451 const struct pwm_state *state) 452 { 453 struct pwm_state *last = &pwm->last; 454 struct pwm_chip *chip = pwm->chip; 455 struct pwm_state s1, s2; 456 int err; 457 458 if (!IS_ENABLED(CONFIG_PWM_DEBUG)) 459 return; 460 461 /* No reasonable diagnosis possible without .get_state() */ 462 if (!chip->ops->get_state) 463 return; 464 465 /* 466 * *state was just applied. Read out the hardware state and do some 467 * checks. 468 */ 469 470 chip->ops->get_state(chip, pwm, &s1); 471 trace_pwm_get(pwm, &s1); 472 473 /* 474 * The lowlevel driver either ignored .polarity (which is a bug) or as 475 * best effort inverted .polarity and fixed .duty_cycle respectively. 476 * Undo this inversion and fixup for further tests. 477 */ 478 if (s1.enabled && s1.polarity != state->polarity) { 479 s2.polarity = state->polarity; 480 s2.duty_cycle = s1.period - s1.duty_cycle; 481 s2.period = s1.period; 482 s2.enabled = s1.enabled; 483 } else { 484 s2 = s1; 485 } 486 487 if (s2.polarity != state->polarity && 488 state->duty_cycle < state->period) 489 dev_warn(chip->dev, ".apply ignored .polarity\n"); 490 491 if (state->enabled && 492 last->polarity == state->polarity && 493 last->period > s2.period && 494 last->period <= state->period) 495 dev_warn(chip->dev, 496 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n", 497 state->period, s2.period, last->period); 498 499 if (state->enabled && state->period < s2.period) 500 dev_warn(chip->dev, 501 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n", 502 state->period, s2.period); 503 504 if (state->enabled && 505 last->polarity == state->polarity && 506 last->period == s2.period && 507 last->duty_cycle > s2.duty_cycle && 508 last->duty_cycle <= state->duty_cycle) 509 dev_warn(chip->dev, 510 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n", 511 state->duty_cycle, state->period, 512 s2.duty_cycle, s2.period, 513 last->duty_cycle, last->period); 514 515 if (state->enabled && state->duty_cycle < s2.duty_cycle) 516 dev_warn(chip->dev, 517 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n", 518 state->duty_cycle, state->period, 519 s2.duty_cycle, s2.period); 520 521 if (!state->enabled && s2.enabled && s2.duty_cycle > 0) 522 dev_warn(chip->dev, 523 "requested disabled, but yielded enabled with duty > 0\n"); 524 525 /* reapply the state that the driver reported being configured. */ 526 err = chip->ops->apply(chip, pwm, &s1); 527 if (err) { 528 *last = s1; 529 dev_err(chip->dev, "failed to reapply current setting\n"); 530 return; 531 } 532 533 trace_pwm_apply(pwm, &s1); 534 535 chip->ops->get_state(chip, pwm, last); 536 trace_pwm_get(pwm, last); 537 538 /* reapplication of the current state should give an exact match */ 539 if (s1.enabled != last->enabled || 540 s1.polarity != last->polarity || 541 (s1.enabled && s1.period != last->period) || 542 (s1.enabled && s1.duty_cycle != last->duty_cycle)) { 543 dev_err(chip->dev, 544 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n", 545 s1.enabled, s1.polarity, s1.duty_cycle, s1.period, 546 last->enabled, last->polarity, last->duty_cycle, 547 last->period); 548 } 549 } 550 551 /** 552 * pwm_apply_state() - atomically apply a new state to a PWM device 553 * @pwm: PWM device 554 * @state: new state to apply 555 */ 556 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state) 557 { 558 struct pwm_chip *chip; 559 int err; 560 561 if (!pwm || !state || !state->period || 562 state->duty_cycle > state->period) 563 return -EINVAL; 564 565 chip = pwm->chip; 566 567 if (state->period == pwm->state.period && 568 state->duty_cycle == pwm->state.duty_cycle && 569 state->polarity == pwm->state.polarity && 570 state->enabled == pwm->state.enabled && 571 state->usage_power == pwm->state.usage_power) 572 return 0; 573 574 if (chip->ops->apply) { 575 err = chip->ops->apply(chip, pwm, state); 576 if (err) 577 return err; 578 579 trace_pwm_apply(pwm, state); 580 581 pwm->state = *state; 582 583 /* 584 * only do this after pwm->state was applied as some 585 * implementations of .get_state depend on this 586 */ 587 pwm_apply_state_debug(pwm, state); 588 } else { 589 /* 590 * FIXME: restore the initial state in case of error. 591 */ 592 if (state->polarity != pwm->state.polarity) { 593 if (!chip->ops->set_polarity) 594 return -EINVAL; 595 596 /* 597 * Changing the polarity of a running PWM is 598 * only allowed when the PWM driver implements 599 * ->apply(). 600 */ 601 if (pwm->state.enabled) { 602 chip->ops->disable(chip, pwm); 603 pwm->state.enabled = false; 604 } 605 606 err = chip->ops->set_polarity(chip, pwm, 607 state->polarity); 608 if (err) 609 return err; 610 611 pwm->state.polarity = state->polarity; 612 } 613 614 if (state->period != pwm->state.period || 615 state->duty_cycle != pwm->state.duty_cycle) { 616 err = chip->ops->config(pwm->chip, pwm, 617 state->duty_cycle, 618 state->period); 619 if (err) 620 return err; 621 622 pwm->state.duty_cycle = state->duty_cycle; 623 pwm->state.period = state->period; 624 } 625 626 if (state->enabled != pwm->state.enabled) { 627 if (state->enabled) { 628 err = chip->ops->enable(chip, pwm); 629 if (err) 630 return err; 631 } else { 632 chip->ops->disable(chip, pwm); 633 } 634 635 pwm->state.enabled = state->enabled; 636 } 637 } 638 639 return 0; 640 } 641 EXPORT_SYMBOL_GPL(pwm_apply_state); 642 643 /** 644 * pwm_capture() - capture and report a PWM signal 645 * @pwm: PWM device 646 * @result: structure to fill with capture result 647 * @timeout: time to wait, in milliseconds, before giving up on capture 648 * 649 * Returns: 0 on success or a negative error code on failure. 650 */ 651 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result, 652 unsigned long timeout) 653 { 654 int err; 655 656 if (!pwm || !pwm->chip->ops) 657 return -EINVAL; 658 659 if (!pwm->chip->ops->capture) 660 return -ENOSYS; 661 662 mutex_lock(&pwm_lock); 663 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout); 664 mutex_unlock(&pwm_lock); 665 666 return err; 667 } 668 EXPORT_SYMBOL_GPL(pwm_capture); 669 670 /** 671 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments 672 * @pwm: PWM device 673 * 674 * This function will adjust the PWM config to the PWM arguments provided 675 * by the DT or PWM lookup table. This is particularly useful to adapt 676 * the bootloader config to the Linux one. 677 */ 678 int pwm_adjust_config(struct pwm_device *pwm) 679 { 680 struct pwm_state state; 681 struct pwm_args pargs; 682 683 pwm_get_args(pwm, &pargs); 684 pwm_get_state(pwm, &state); 685 686 /* 687 * If the current period is zero it means that either the PWM driver 688 * does not support initial state retrieval or the PWM has not yet 689 * been configured. 690 * 691 * In either case, we setup the new period and polarity, and assign a 692 * duty cycle of 0. 693 */ 694 if (!state.period) { 695 state.duty_cycle = 0; 696 state.period = pargs.period; 697 state.polarity = pargs.polarity; 698 699 return pwm_apply_state(pwm, &state); 700 } 701 702 /* 703 * Adjust the PWM duty cycle/period based on the period value provided 704 * in PWM args. 705 */ 706 if (pargs.period != state.period) { 707 u64 dutycycle = (u64)state.duty_cycle * pargs.period; 708 709 do_div(dutycycle, state.period); 710 state.duty_cycle = dutycycle; 711 state.period = pargs.period; 712 } 713 714 /* 715 * If the polarity changed, we should also change the duty cycle. 716 */ 717 if (pargs.polarity != state.polarity) { 718 state.polarity = pargs.polarity; 719 state.duty_cycle = state.period - state.duty_cycle; 720 } 721 722 return pwm_apply_state(pwm, &state); 723 } 724 EXPORT_SYMBOL_GPL(pwm_adjust_config); 725 726 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode) 727 { 728 struct pwm_chip *chip; 729 730 mutex_lock(&pwm_lock); 731 732 list_for_each_entry(chip, &pwm_chips, list) 733 if (chip->dev && dev_fwnode(chip->dev) == fwnode) { 734 mutex_unlock(&pwm_lock); 735 return chip; 736 } 737 738 mutex_unlock(&pwm_lock); 739 740 return ERR_PTR(-EPROBE_DEFER); 741 } 742 743 static struct device_link *pwm_device_link_add(struct device *dev, 744 struct pwm_device *pwm) 745 { 746 struct device_link *dl; 747 748 if (!dev) { 749 /* 750 * No device for the PWM consumer has been provided. It may 751 * impact the PM sequence ordering: the PWM supplier may get 752 * suspended before the consumer. 753 */ 754 dev_warn(pwm->chip->dev, 755 "No consumer device specified to create a link to\n"); 756 return NULL; 757 } 758 759 dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER); 760 if (!dl) { 761 dev_err(dev, "failed to create device link to %s\n", 762 dev_name(pwm->chip->dev)); 763 return ERR_PTR(-EINVAL); 764 } 765 766 return dl; 767 } 768 769 /** 770 * of_pwm_get() - request a PWM via the PWM framework 771 * @dev: device for PWM consumer 772 * @np: device node to get the PWM from 773 * @con_id: consumer name 774 * 775 * Returns the PWM device parsed from the phandle and index specified in the 776 * "pwms" property of a device tree node or a negative error-code on failure. 777 * Values parsed from the device tree are stored in the returned PWM device 778 * object. 779 * 780 * If con_id is NULL, the first PWM device listed in the "pwms" property will 781 * be requested. Otherwise the "pwm-names" property is used to do a reverse 782 * lookup of the PWM index. This also means that the "pwm-names" property 783 * becomes mandatory for devices that look up the PWM device via the con_id 784 * parameter. 785 * 786 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 787 * error code on failure. 788 */ 789 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np, 790 const char *con_id) 791 { 792 struct pwm_device *pwm = NULL; 793 struct of_phandle_args args; 794 struct device_link *dl; 795 struct pwm_chip *pc; 796 int index = 0; 797 int err; 798 799 if (con_id) { 800 index = of_property_match_string(np, "pwm-names", con_id); 801 if (index < 0) 802 return ERR_PTR(index); 803 } 804 805 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index, 806 &args); 807 if (err) { 808 pr_err("%s(): can't parse \"pwms\" property\n", __func__); 809 return ERR_PTR(err); 810 } 811 812 pc = fwnode_to_pwmchip(of_fwnode_handle(args.np)); 813 if (IS_ERR(pc)) { 814 if (PTR_ERR(pc) != -EPROBE_DEFER) 815 pr_err("%s(): PWM chip not found\n", __func__); 816 817 pwm = ERR_CAST(pc); 818 goto put; 819 } 820 821 pwm = pc->of_xlate(pc, &args); 822 if (IS_ERR(pwm)) 823 goto put; 824 825 dl = pwm_device_link_add(dev, pwm); 826 if (IS_ERR(dl)) { 827 /* of_xlate ended up calling pwm_request_from_chip() */ 828 pwm_free(pwm); 829 pwm = ERR_CAST(dl); 830 goto put; 831 } 832 833 /* 834 * If a consumer name was not given, try to look it up from the 835 * "pwm-names" property if it exists. Otherwise use the name of 836 * the user device node. 837 */ 838 if (!con_id) { 839 err = of_property_read_string_index(np, "pwm-names", index, 840 &con_id); 841 if (err < 0) 842 con_id = np->name; 843 } 844 845 pwm->label = con_id; 846 847 put: 848 of_node_put(args.np); 849 850 return pwm; 851 } 852 EXPORT_SYMBOL_GPL(of_pwm_get); 853 854 /** 855 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI 856 * @fwnode: firmware node to get the "pwms" property from 857 * 858 * Returns the PWM device parsed from the fwnode and index specified in the 859 * "pwms" property or a negative error-code on failure. 860 * Values parsed from the device tree are stored in the returned PWM device 861 * object. 862 * 863 * This is analogous to of_pwm_get() except con_id is not yet supported. 864 * ACPI entries must look like 865 * Package () {"pwms", Package () 866 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}} 867 * 868 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 869 * error code on failure. 870 */ 871 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode) 872 { 873 struct pwm_device *pwm; 874 struct fwnode_reference_args args; 875 struct pwm_chip *chip; 876 int ret; 877 878 memset(&args, 0, sizeof(args)); 879 880 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args); 881 if (ret < 0) 882 return ERR_PTR(ret); 883 884 if (args.nargs < 2) 885 return ERR_PTR(-EPROTO); 886 887 chip = fwnode_to_pwmchip(args.fwnode); 888 if (IS_ERR(chip)) 889 return ERR_CAST(chip); 890 891 pwm = pwm_request_from_chip(chip, args.args[0], NULL); 892 if (IS_ERR(pwm)) 893 return pwm; 894 895 pwm->args.period = args.args[1]; 896 pwm->args.polarity = PWM_POLARITY_NORMAL; 897 898 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED) 899 pwm->args.polarity = PWM_POLARITY_INVERSED; 900 901 return pwm; 902 } 903 904 /** 905 * pwm_add_table() - register PWM device consumers 906 * @table: array of consumers to register 907 * @num: number of consumers in table 908 */ 909 void pwm_add_table(struct pwm_lookup *table, size_t num) 910 { 911 mutex_lock(&pwm_lookup_lock); 912 913 while (num--) { 914 list_add_tail(&table->list, &pwm_lookup_list); 915 table++; 916 } 917 918 mutex_unlock(&pwm_lookup_lock); 919 } 920 921 /** 922 * pwm_remove_table() - unregister PWM device consumers 923 * @table: array of consumers to unregister 924 * @num: number of consumers in table 925 */ 926 void pwm_remove_table(struct pwm_lookup *table, size_t num) 927 { 928 mutex_lock(&pwm_lookup_lock); 929 930 while (num--) { 931 list_del(&table->list); 932 table++; 933 } 934 935 mutex_unlock(&pwm_lookup_lock); 936 } 937 938 /** 939 * pwm_get() - look up and request a PWM device 940 * @dev: device for PWM consumer 941 * @con_id: consumer name 942 * 943 * Lookup is first attempted using DT. If the device was not instantiated from 944 * a device tree, a PWM chip and a relative index is looked up via a table 945 * supplied by board setup code (see pwm_add_table()). 946 * 947 * Once a PWM chip has been found the specified PWM device will be requested 948 * and is ready to be used. 949 * 950 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 951 * error code on failure. 952 */ 953 struct pwm_device *pwm_get(struct device *dev, const char *con_id) 954 { 955 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 956 const char *dev_id = dev ? dev_name(dev) : NULL; 957 struct pwm_device *pwm; 958 struct pwm_chip *chip; 959 struct device_link *dl; 960 unsigned int best = 0; 961 struct pwm_lookup *p, *chosen = NULL; 962 unsigned int match; 963 int err; 964 965 /* look up via DT first */ 966 if (is_of_node(fwnode)) 967 return of_pwm_get(dev, to_of_node(fwnode), con_id); 968 969 /* then lookup via ACPI */ 970 if (is_acpi_node(fwnode)) { 971 pwm = acpi_pwm_get(fwnode); 972 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT) 973 return pwm; 974 } 975 976 /* 977 * We look up the provider in the static table typically provided by 978 * board setup code. We first try to lookup the consumer device by 979 * name. If the consumer device was passed in as NULL or if no match 980 * was found, we try to find the consumer by directly looking it up 981 * by name. 982 * 983 * If a match is found, the provider PWM chip is looked up by name 984 * and a PWM device is requested using the PWM device per-chip index. 985 * 986 * The lookup algorithm was shamelessly taken from the clock 987 * framework: 988 * 989 * We do slightly fuzzy matching here: 990 * An entry with a NULL ID is assumed to be a wildcard. 991 * If an entry has a device ID, it must match 992 * If an entry has a connection ID, it must match 993 * Then we take the most specific entry - with the following order 994 * of precedence: dev+con > dev only > con only. 995 */ 996 mutex_lock(&pwm_lookup_lock); 997 998 list_for_each_entry(p, &pwm_lookup_list, list) { 999 match = 0; 1000 1001 if (p->dev_id) { 1002 if (!dev_id || strcmp(p->dev_id, dev_id)) 1003 continue; 1004 1005 match += 2; 1006 } 1007 1008 if (p->con_id) { 1009 if (!con_id || strcmp(p->con_id, con_id)) 1010 continue; 1011 1012 match += 1; 1013 } 1014 1015 if (match > best) { 1016 chosen = p; 1017 1018 if (match != 3) 1019 best = match; 1020 else 1021 break; 1022 } 1023 } 1024 1025 mutex_unlock(&pwm_lookup_lock); 1026 1027 if (!chosen) 1028 return ERR_PTR(-ENODEV); 1029 1030 chip = pwmchip_find_by_name(chosen->provider); 1031 1032 /* 1033 * If the lookup entry specifies a module, load the module and retry 1034 * the PWM chip lookup. This can be used to work around driver load 1035 * ordering issues if driver's can't be made to properly support the 1036 * deferred probe mechanism. 1037 */ 1038 if (!chip && chosen->module) { 1039 err = request_module(chosen->module); 1040 if (err == 0) 1041 chip = pwmchip_find_by_name(chosen->provider); 1042 } 1043 1044 if (!chip) 1045 return ERR_PTR(-EPROBE_DEFER); 1046 1047 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id); 1048 if (IS_ERR(pwm)) 1049 return pwm; 1050 1051 dl = pwm_device_link_add(dev, pwm); 1052 if (IS_ERR(dl)) { 1053 pwm_free(pwm); 1054 return ERR_CAST(dl); 1055 } 1056 1057 pwm->args.period = chosen->period; 1058 pwm->args.polarity = chosen->polarity; 1059 1060 return pwm; 1061 } 1062 EXPORT_SYMBOL_GPL(pwm_get); 1063 1064 /** 1065 * pwm_put() - release a PWM device 1066 * @pwm: PWM device 1067 */ 1068 void pwm_put(struct pwm_device *pwm) 1069 { 1070 if (!pwm) 1071 return; 1072 1073 mutex_lock(&pwm_lock); 1074 1075 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 1076 pr_warn("PWM device already freed\n"); 1077 goto out; 1078 } 1079 1080 if (pwm->chip->ops->free) 1081 pwm->chip->ops->free(pwm->chip, pwm); 1082 1083 pwm_set_chip_data(pwm, NULL); 1084 pwm->label = NULL; 1085 1086 module_put(pwm->chip->ops->owner); 1087 out: 1088 mutex_unlock(&pwm_lock); 1089 } 1090 EXPORT_SYMBOL_GPL(pwm_put); 1091 1092 static void devm_pwm_release(void *pwm) 1093 { 1094 pwm_put(pwm); 1095 } 1096 1097 /** 1098 * devm_pwm_get() - resource managed pwm_get() 1099 * @dev: device for PWM consumer 1100 * @con_id: consumer name 1101 * 1102 * This function performs like pwm_get() but the acquired PWM device will 1103 * automatically be released on driver detach. 1104 * 1105 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1106 * error code on failure. 1107 */ 1108 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id) 1109 { 1110 struct pwm_device *pwm; 1111 int ret; 1112 1113 pwm = pwm_get(dev, con_id); 1114 if (IS_ERR(pwm)) 1115 return pwm; 1116 1117 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 1118 if (ret) 1119 return ERR_PTR(ret); 1120 1121 return pwm; 1122 } 1123 EXPORT_SYMBOL_GPL(devm_pwm_get); 1124 1125 /** 1126 * devm_of_pwm_get() - resource managed of_pwm_get() 1127 * @dev: device for PWM consumer 1128 * @np: device node to get the PWM from 1129 * @con_id: consumer name 1130 * 1131 * This function performs like of_pwm_get() but the acquired PWM device will 1132 * automatically be released on driver detach. 1133 * 1134 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1135 * error code on failure. 1136 */ 1137 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np, 1138 const char *con_id) 1139 { 1140 struct pwm_device *pwm; 1141 int ret; 1142 1143 pwm = of_pwm_get(dev, np, con_id); 1144 if (IS_ERR(pwm)) 1145 return pwm; 1146 1147 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 1148 if (ret) 1149 return ERR_PTR(ret); 1150 1151 return pwm; 1152 } 1153 EXPORT_SYMBOL_GPL(devm_of_pwm_get); 1154 1155 /** 1156 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node 1157 * @dev: device for PWM consumer 1158 * @fwnode: firmware node to get the PWM from 1159 * @con_id: consumer name 1160 * 1161 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and 1162 * acpi_pwm_get() for a detailed description. 1163 * 1164 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1165 * error code on failure. 1166 */ 1167 struct pwm_device *devm_fwnode_pwm_get(struct device *dev, 1168 struct fwnode_handle *fwnode, 1169 const char *con_id) 1170 { 1171 struct pwm_device *pwm = ERR_PTR(-ENODEV); 1172 int ret; 1173 1174 if (is_of_node(fwnode)) 1175 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id); 1176 else if (is_acpi_node(fwnode)) 1177 pwm = acpi_pwm_get(fwnode); 1178 if (IS_ERR(pwm)) 1179 return pwm; 1180 1181 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 1182 if (ret) 1183 return ERR_PTR(ret); 1184 1185 return pwm; 1186 } 1187 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get); 1188 1189 #ifdef CONFIG_DEBUG_FS 1190 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s) 1191 { 1192 unsigned int i; 1193 1194 for (i = 0; i < chip->npwm; i++) { 1195 struct pwm_device *pwm = &chip->pwms[i]; 1196 struct pwm_state state; 1197 1198 pwm_get_state(pwm, &state); 1199 1200 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label); 1201 1202 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 1203 seq_puts(s, " requested"); 1204 1205 if (state.enabled) 1206 seq_puts(s, " enabled"); 1207 1208 seq_printf(s, " period: %llu ns", state.period); 1209 seq_printf(s, " duty: %llu ns", state.duty_cycle); 1210 seq_printf(s, " polarity: %s", 1211 state.polarity ? "inverse" : "normal"); 1212 1213 if (state.usage_power) 1214 seq_puts(s, " usage_power"); 1215 1216 seq_puts(s, "\n"); 1217 } 1218 } 1219 1220 static void *pwm_seq_start(struct seq_file *s, loff_t *pos) 1221 { 1222 mutex_lock(&pwm_lock); 1223 s->private = ""; 1224 1225 return seq_list_start(&pwm_chips, *pos); 1226 } 1227 1228 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos) 1229 { 1230 s->private = "\n"; 1231 1232 return seq_list_next(v, &pwm_chips, pos); 1233 } 1234 1235 static void pwm_seq_stop(struct seq_file *s, void *v) 1236 { 1237 mutex_unlock(&pwm_lock); 1238 } 1239 1240 static int pwm_seq_show(struct seq_file *s, void *v) 1241 { 1242 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list); 1243 1244 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private, 1245 chip->dev->bus ? chip->dev->bus->name : "no-bus", 1246 dev_name(chip->dev), chip->npwm, 1247 (chip->npwm != 1) ? "s" : ""); 1248 1249 pwm_dbg_show(chip, s); 1250 1251 return 0; 1252 } 1253 1254 static const struct seq_operations pwm_debugfs_sops = { 1255 .start = pwm_seq_start, 1256 .next = pwm_seq_next, 1257 .stop = pwm_seq_stop, 1258 .show = pwm_seq_show, 1259 }; 1260 1261 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs); 1262 1263 static int __init pwm_debugfs_init(void) 1264 { 1265 debugfs_create_file("pwm", S_IFREG | 0444, NULL, NULL, 1266 &pwm_debugfs_fops); 1267 1268 return 0; 1269 } 1270 subsys_initcall(pwm_debugfs_init); 1271 #endif /* CONFIG_DEBUG_FS */ 1272