xref: /openbmc/linux/drivers/pwm/core.c (revision 3d37ef41)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20 
21 #include <dt-bindings/pwm/pwm.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
25 
26 #define MAX_PWMS 1024
27 
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30 static DEFINE_MUTEX(pwm_lock);
31 static LIST_HEAD(pwm_chips);
32 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
33 static RADIX_TREE(pwm_tree, GFP_KERNEL);
34 
35 static struct pwm_device *pwm_to_device(unsigned int pwm)
36 {
37 	return radix_tree_lookup(&pwm_tree, pwm);
38 }
39 
40 static int alloc_pwms(unsigned int count)
41 {
42 	unsigned int start;
43 
44 	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
45 					   count, 0);
46 
47 	if (start + count > MAX_PWMS)
48 		return -ENOSPC;
49 
50 	return start;
51 }
52 
53 static void free_pwms(struct pwm_chip *chip)
54 {
55 	unsigned int i;
56 
57 	for (i = 0; i < chip->npwm; i++) {
58 		struct pwm_device *pwm = &chip->pwms[i];
59 
60 		radix_tree_delete(&pwm_tree, pwm->pwm);
61 	}
62 
63 	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
64 
65 	kfree(chip->pwms);
66 	chip->pwms = NULL;
67 }
68 
69 static struct pwm_chip *pwmchip_find_by_name(const char *name)
70 {
71 	struct pwm_chip *chip;
72 
73 	if (!name)
74 		return NULL;
75 
76 	mutex_lock(&pwm_lock);
77 
78 	list_for_each_entry(chip, &pwm_chips, list) {
79 		const char *chip_name = dev_name(chip->dev);
80 
81 		if (chip_name && strcmp(chip_name, name) == 0) {
82 			mutex_unlock(&pwm_lock);
83 			return chip;
84 		}
85 	}
86 
87 	mutex_unlock(&pwm_lock);
88 
89 	return NULL;
90 }
91 
92 static int pwm_device_request(struct pwm_device *pwm, const char *label)
93 {
94 	int err;
95 
96 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
97 		return -EBUSY;
98 
99 	if (!try_module_get(pwm->chip->ops->owner))
100 		return -ENODEV;
101 
102 	if (pwm->chip->ops->request) {
103 		err = pwm->chip->ops->request(pwm->chip, pwm);
104 		if (err) {
105 			module_put(pwm->chip->ops->owner);
106 			return err;
107 		}
108 	}
109 
110 	if (pwm->chip->ops->get_state) {
111 		pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
112 		trace_pwm_get(pwm, &pwm->state);
113 
114 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
115 			pwm->last = pwm->state;
116 	}
117 
118 	set_bit(PWMF_REQUESTED, &pwm->flags);
119 	pwm->label = label;
120 
121 	return 0;
122 }
123 
124 struct pwm_device *
125 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
126 {
127 	struct pwm_device *pwm;
128 
129 	/* check, whether the driver supports a third cell for flags */
130 	if (pc->of_pwm_n_cells < 3)
131 		return ERR_PTR(-EINVAL);
132 
133 	/* flags in the third cell are optional */
134 	if (args->args_count < 2)
135 		return ERR_PTR(-EINVAL);
136 
137 	if (args->args[0] >= pc->npwm)
138 		return ERR_PTR(-EINVAL);
139 
140 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
141 	if (IS_ERR(pwm))
142 		return pwm;
143 
144 	pwm->args.period = args->args[1];
145 	pwm->args.polarity = PWM_POLARITY_NORMAL;
146 
147 	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
148 		pwm->args.polarity = PWM_POLARITY_INVERSED;
149 
150 	return pwm;
151 }
152 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
153 
154 static struct pwm_device *
155 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
156 {
157 	struct pwm_device *pwm;
158 
159 	/* sanity check driver support */
160 	if (pc->of_pwm_n_cells < 2)
161 		return ERR_PTR(-EINVAL);
162 
163 	/* all cells are required */
164 	if (args->args_count != pc->of_pwm_n_cells)
165 		return ERR_PTR(-EINVAL);
166 
167 	if (args->args[0] >= pc->npwm)
168 		return ERR_PTR(-EINVAL);
169 
170 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
171 	if (IS_ERR(pwm))
172 		return pwm;
173 
174 	pwm->args.period = args->args[1];
175 
176 	return pwm;
177 }
178 
179 static void of_pwmchip_add(struct pwm_chip *chip)
180 {
181 	if (!chip->dev || !chip->dev->of_node)
182 		return;
183 
184 	if (!chip->of_xlate) {
185 		chip->of_xlate = of_pwm_simple_xlate;
186 		chip->of_pwm_n_cells = 2;
187 	}
188 
189 	of_node_get(chip->dev->of_node);
190 }
191 
192 static void of_pwmchip_remove(struct pwm_chip *chip)
193 {
194 	if (chip->dev)
195 		of_node_put(chip->dev->of_node);
196 }
197 
198 /**
199  * pwm_set_chip_data() - set private chip data for a PWM
200  * @pwm: PWM device
201  * @data: pointer to chip-specific data
202  *
203  * Returns: 0 on success or a negative error code on failure.
204  */
205 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
206 {
207 	if (!pwm)
208 		return -EINVAL;
209 
210 	pwm->chip_data = data;
211 
212 	return 0;
213 }
214 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
215 
216 /**
217  * pwm_get_chip_data() - get private chip data for a PWM
218  * @pwm: PWM device
219  *
220  * Returns: A pointer to the chip-private data for the PWM device.
221  */
222 void *pwm_get_chip_data(struct pwm_device *pwm)
223 {
224 	return pwm ? pwm->chip_data : NULL;
225 }
226 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
227 
228 static bool pwm_ops_check(const struct pwm_chip *chip)
229 {
230 
231 	const struct pwm_ops *ops = chip->ops;
232 
233 	/* driver supports legacy, non-atomic operation */
234 	if (ops->config && ops->enable && ops->disable) {
235 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
236 			dev_warn(chip->dev,
237 				 "Driver needs updating to atomic API\n");
238 
239 		return true;
240 	}
241 
242 	if (!ops->apply)
243 		return false;
244 
245 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
246 		dev_warn(chip->dev,
247 			 "Please implement the .get_state() callback\n");
248 
249 	return true;
250 }
251 
252 /**
253  * pwmchip_add() - register a new PWM chip
254  * @chip: the PWM chip to add
255  *
256  * Register a new PWM chip.
257  *
258  * Returns: 0 on success or a negative error code on failure.
259  */
260 int pwmchip_add(struct pwm_chip *chip)
261 {
262 	struct pwm_device *pwm;
263 	unsigned int i;
264 	int ret;
265 
266 	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
267 		return -EINVAL;
268 
269 	if (!pwm_ops_check(chip))
270 		return -EINVAL;
271 
272 	mutex_lock(&pwm_lock);
273 
274 	ret = alloc_pwms(chip->npwm);
275 	if (ret < 0)
276 		goto out;
277 
278 	chip->base = ret;
279 
280 	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
281 	if (!chip->pwms) {
282 		ret = -ENOMEM;
283 		goto out;
284 	}
285 
286 	for (i = 0; i < chip->npwm; i++) {
287 		pwm = &chip->pwms[i];
288 
289 		pwm->chip = chip;
290 		pwm->pwm = chip->base + i;
291 		pwm->hwpwm = i;
292 
293 		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
294 	}
295 
296 	bitmap_set(allocated_pwms, chip->base, chip->npwm);
297 
298 	INIT_LIST_HEAD(&chip->list);
299 	list_add(&chip->list, &pwm_chips);
300 
301 	ret = 0;
302 
303 	if (IS_ENABLED(CONFIG_OF))
304 		of_pwmchip_add(chip);
305 
306 out:
307 	mutex_unlock(&pwm_lock);
308 
309 	if (!ret)
310 		pwmchip_sysfs_export(chip);
311 
312 	return ret;
313 }
314 EXPORT_SYMBOL_GPL(pwmchip_add);
315 
316 /**
317  * pwmchip_remove() - remove a PWM chip
318  * @chip: the PWM chip to remove
319  *
320  * Removes a PWM chip. This function may return busy if the PWM chip provides
321  * a PWM device that is still requested.
322  *
323  * Returns: 0 on success or a negative error code on failure.
324  */
325 int pwmchip_remove(struct pwm_chip *chip)
326 {
327 	unsigned int i;
328 	int ret = 0;
329 
330 	pwmchip_sysfs_unexport(chip);
331 
332 	mutex_lock(&pwm_lock);
333 
334 	for (i = 0; i < chip->npwm; i++) {
335 		struct pwm_device *pwm = &chip->pwms[i];
336 
337 		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
338 			ret = -EBUSY;
339 			goto out;
340 		}
341 	}
342 
343 	list_del_init(&chip->list);
344 
345 	if (IS_ENABLED(CONFIG_OF))
346 		of_pwmchip_remove(chip);
347 
348 	free_pwms(chip);
349 
350 out:
351 	mutex_unlock(&pwm_lock);
352 	return ret;
353 }
354 EXPORT_SYMBOL_GPL(pwmchip_remove);
355 
356 /**
357  * pwm_request() - request a PWM device
358  * @pwm: global PWM device index
359  * @label: PWM device label
360  *
361  * This function is deprecated, use pwm_get() instead.
362  *
363  * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
364  * failure.
365  */
366 struct pwm_device *pwm_request(int pwm, const char *label)
367 {
368 	struct pwm_device *dev;
369 	int err;
370 
371 	if (pwm < 0 || pwm >= MAX_PWMS)
372 		return ERR_PTR(-EINVAL);
373 
374 	mutex_lock(&pwm_lock);
375 
376 	dev = pwm_to_device(pwm);
377 	if (!dev) {
378 		dev = ERR_PTR(-EPROBE_DEFER);
379 		goto out;
380 	}
381 
382 	err = pwm_device_request(dev, label);
383 	if (err < 0)
384 		dev = ERR_PTR(err);
385 
386 out:
387 	mutex_unlock(&pwm_lock);
388 
389 	return dev;
390 }
391 EXPORT_SYMBOL_GPL(pwm_request);
392 
393 /**
394  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
395  * @chip: PWM chip
396  * @index: per-chip index of the PWM to request
397  * @label: a literal description string of this PWM
398  *
399  * Returns: A pointer to the PWM device at the given index of the given PWM
400  * chip. A negative error code is returned if the index is not valid for the
401  * specified PWM chip or if the PWM device cannot be requested.
402  */
403 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
404 					 unsigned int index,
405 					 const char *label)
406 {
407 	struct pwm_device *pwm;
408 	int err;
409 
410 	if (!chip || index >= chip->npwm)
411 		return ERR_PTR(-EINVAL);
412 
413 	mutex_lock(&pwm_lock);
414 	pwm = &chip->pwms[index];
415 
416 	err = pwm_device_request(pwm, label);
417 	if (err < 0)
418 		pwm = ERR_PTR(err);
419 
420 	mutex_unlock(&pwm_lock);
421 	return pwm;
422 }
423 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
424 
425 /**
426  * pwm_free() - free a PWM device
427  * @pwm: PWM device
428  *
429  * This function is deprecated, use pwm_put() instead.
430  */
431 void pwm_free(struct pwm_device *pwm)
432 {
433 	pwm_put(pwm);
434 }
435 EXPORT_SYMBOL_GPL(pwm_free);
436 
437 static void pwm_apply_state_debug(struct pwm_device *pwm,
438 				  const struct pwm_state *state)
439 {
440 	struct pwm_state *last = &pwm->last;
441 	struct pwm_chip *chip = pwm->chip;
442 	struct pwm_state s1, s2;
443 	int err;
444 
445 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
446 		return;
447 
448 	/* No reasonable diagnosis possible without .get_state() */
449 	if (!chip->ops->get_state)
450 		return;
451 
452 	/*
453 	 * *state was just applied. Read out the hardware state and do some
454 	 * checks.
455 	 */
456 
457 	chip->ops->get_state(chip, pwm, &s1);
458 	trace_pwm_get(pwm, &s1);
459 
460 	/*
461 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
462 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
463 	 * Undo this inversion and fixup for further tests.
464 	 */
465 	if (s1.enabled && s1.polarity != state->polarity) {
466 		s2.polarity = state->polarity;
467 		s2.duty_cycle = s1.period - s1.duty_cycle;
468 		s2.period = s1.period;
469 		s2.enabled = s1.enabled;
470 	} else {
471 		s2 = s1;
472 	}
473 
474 	if (s2.polarity != state->polarity &&
475 	    state->duty_cycle < state->period)
476 		dev_warn(chip->dev, ".apply ignored .polarity\n");
477 
478 	if (state->enabled &&
479 	    last->polarity == state->polarity &&
480 	    last->period > s2.period &&
481 	    last->period <= state->period)
482 		dev_warn(chip->dev,
483 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
484 			 state->period, s2.period, last->period);
485 
486 	if (state->enabled && state->period < s2.period)
487 		dev_warn(chip->dev,
488 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
489 			 state->period, s2.period);
490 
491 	if (state->enabled &&
492 	    last->polarity == state->polarity &&
493 	    last->period == s2.period &&
494 	    last->duty_cycle > s2.duty_cycle &&
495 	    last->duty_cycle <= state->duty_cycle)
496 		dev_warn(chip->dev,
497 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
498 			 state->duty_cycle, state->period,
499 			 s2.duty_cycle, s2.period,
500 			 last->duty_cycle, last->period);
501 
502 	if (state->enabled && state->duty_cycle < s2.duty_cycle)
503 		dev_warn(chip->dev,
504 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
505 			 state->duty_cycle, state->period,
506 			 s2.duty_cycle, s2.period);
507 
508 	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
509 		dev_warn(chip->dev,
510 			 "requested disabled, but yielded enabled with duty > 0\n");
511 
512 	/* reapply the state that the driver reported being configured. */
513 	err = chip->ops->apply(chip, pwm, &s1);
514 	if (err) {
515 		*last = s1;
516 		dev_err(chip->dev, "failed to reapply current setting\n");
517 		return;
518 	}
519 
520 	trace_pwm_apply(pwm, &s1);
521 
522 	chip->ops->get_state(chip, pwm, last);
523 	trace_pwm_get(pwm, last);
524 
525 	/* reapplication of the current state should give an exact match */
526 	if (s1.enabled != last->enabled ||
527 	    s1.polarity != last->polarity ||
528 	    (s1.enabled && s1.period != last->period) ||
529 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
530 		dev_err(chip->dev,
531 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
532 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
533 			last->enabled, last->polarity, last->duty_cycle,
534 			last->period);
535 	}
536 }
537 
538 /**
539  * pwm_apply_state() - atomically apply a new state to a PWM device
540  * @pwm: PWM device
541  * @state: new state to apply
542  */
543 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
544 {
545 	struct pwm_chip *chip;
546 	int err;
547 
548 	if (!pwm || !state || !state->period ||
549 	    state->duty_cycle > state->period)
550 		return -EINVAL;
551 
552 	chip = pwm->chip;
553 
554 	if (state->period == pwm->state.period &&
555 	    state->duty_cycle == pwm->state.duty_cycle &&
556 	    state->polarity == pwm->state.polarity &&
557 	    state->enabled == pwm->state.enabled)
558 		return 0;
559 
560 	if (chip->ops->apply) {
561 		err = chip->ops->apply(chip, pwm, state);
562 		if (err)
563 			return err;
564 
565 		trace_pwm_apply(pwm, state);
566 
567 		pwm->state = *state;
568 
569 		/*
570 		 * only do this after pwm->state was applied as some
571 		 * implementations of .get_state depend on this
572 		 */
573 		pwm_apply_state_debug(pwm, state);
574 	} else {
575 		/*
576 		 * FIXME: restore the initial state in case of error.
577 		 */
578 		if (state->polarity != pwm->state.polarity) {
579 			if (!chip->ops->set_polarity)
580 				return -EINVAL;
581 
582 			/*
583 			 * Changing the polarity of a running PWM is
584 			 * only allowed when the PWM driver implements
585 			 * ->apply().
586 			 */
587 			if (pwm->state.enabled) {
588 				chip->ops->disable(chip, pwm);
589 				pwm->state.enabled = false;
590 			}
591 
592 			err = chip->ops->set_polarity(chip, pwm,
593 						      state->polarity);
594 			if (err)
595 				return err;
596 
597 			pwm->state.polarity = state->polarity;
598 		}
599 
600 		if (state->period != pwm->state.period ||
601 		    state->duty_cycle != pwm->state.duty_cycle) {
602 			err = chip->ops->config(pwm->chip, pwm,
603 						state->duty_cycle,
604 						state->period);
605 			if (err)
606 				return err;
607 
608 			pwm->state.duty_cycle = state->duty_cycle;
609 			pwm->state.period = state->period;
610 		}
611 
612 		if (state->enabled != pwm->state.enabled) {
613 			if (state->enabled) {
614 				err = chip->ops->enable(chip, pwm);
615 				if (err)
616 					return err;
617 			} else {
618 				chip->ops->disable(chip, pwm);
619 			}
620 
621 			pwm->state.enabled = state->enabled;
622 		}
623 	}
624 
625 	return 0;
626 }
627 EXPORT_SYMBOL_GPL(pwm_apply_state);
628 
629 /**
630  * pwm_capture() - capture and report a PWM signal
631  * @pwm: PWM device
632  * @result: structure to fill with capture result
633  * @timeout: time to wait, in milliseconds, before giving up on capture
634  *
635  * Returns: 0 on success or a negative error code on failure.
636  */
637 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
638 		unsigned long timeout)
639 {
640 	int err;
641 
642 	if (!pwm || !pwm->chip->ops)
643 		return -EINVAL;
644 
645 	if (!pwm->chip->ops->capture)
646 		return -ENOSYS;
647 
648 	mutex_lock(&pwm_lock);
649 	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
650 	mutex_unlock(&pwm_lock);
651 
652 	return err;
653 }
654 EXPORT_SYMBOL_GPL(pwm_capture);
655 
656 /**
657  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
658  * @pwm: PWM device
659  *
660  * This function will adjust the PWM config to the PWM arguments provided
661  * by the DT or PWM lookup table. This is particularly useful to adapt
662  * the bootloader config to the Linux one.
663  */
664 int pwm_adjust_config(struct pwm_device *pwm)
665 {
666 	struct pwm_state state;
667 	struct pwm_args pargs;
668 
669 	pwm_get_args(pwm, &pargs);
670 	pwm_get_state(pwm, &state);
671 
672 	/*
673 	 * If the current period is zero it means that either the PWM driver
674 	 * does not support initial state retrieval or the PWM has not yet
675 	 * been configured.
676 	 *
677 	 * In either case, we setup the new period and polarity, and assign a
678 	 * duty cycle of 0.
679 	 */
680 	if (!state.period) {
681 		state.duty_cycle = 0;
682 		state.period = pargs.period;
683 		state.polarity = pargs.polarity;
684 
685 		return pwm_apply_state(pwm, &state);
686 	}
687 
688 	/*
689 	 * Adjust the PWM duty cycle/period based on the period value provided
690 	 * in PWM args.
691 	 */
692 	if (pargs.period != state.period) {
693 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
694 
695 		do_div(dutycycle, state.period);
696 		state.duty_cycle = dutycycle;
697 		state.period = pargs.period;
698 	}
699 
700 	/*
701 	 * If the polarity changed, we should also change the duty cycle.
702 	 */
703 	if (pargs.polarity != state.polarity) {
704 		state.polarity = pargs.polarity;
705 		state.duty_cycle = state.period - state.duty_cycle;
706 	}
707 
708 	return pwm_apply_state(pwm, &state);
709 }
710 EXPORT_SYMBOL_GPL(pwm_adjust_config);
711 
712 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
713 {
714 	struct pwm_chip *chip;
715 
716 	mutex_lock(&pwm_lock);
717 
718 	list_for_each_entry(chip, &pwm_chips, list)
719 		if (chip->dev && chip->dev->of_node == np) {
720 			mutex_unlock(&pwm_lock);
721 			return chip;
722 		}
723 
724 	mutex_unlock(&pwm_lock);
725 
726 	return ERR_PTR(-EPROBE_DEFER);
727 }
728 
729 static struct device_link *pwm_device_link_add(struct device *dev,
730 					       struct pwm_device *pwm)
731 {
732 	struct device_link *dl;
733 
734 	if (!dev) {
735 		/*
736 		 * No device for the PWM consumer has been provided. It may
737 		 * impact the PM sequence ordering: the PWM supplier may get
738 		 * suspended before the consumer.
739 		 */
740 		dev_warn(pwm->chip->dev,
741 			 "No consumer device specified to create a link to\n");
742 		return NULL;
743 	}
744 
745 	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
746 	if (!dl) {
747 		dev_err(dev, "failed to create device link to %s\n",
748 			dev_name(pwm->chip->dev));
749 		return ERR_PTR(-EINVAL);
750 	}
751 
752 	return dl;
753 }
754 
755 /**
756  * of_pwm_get() - request a PWM via the PWM framework
757  * @dev: device for PWM consumer
758  * @np: device node to get the PWM from
759  * @con_id: consumer name
760  *
761  * Returns the PWM device parsed from the phandle and index specified in the
762  * "pwms" property of a device tree node or a negative error-code on failure.
763  * Values parsed from the device tree are stored in the returned PWM device
764  * object.
765  *
766  * If con_id is NULL, the first PWM device listed in the "pwms" property will
767  * be requested. Otherwise the "pwm-names" property is used to do a reverse
768  * lookup of the PWM index. This also means that the "pwm-names" property
769  * becomes mandatory for devices that look up the PWM device via the con_id
770  * parameter.
771  *
772  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
773  * error code on failure.
774  */
775 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
776 			      const char *con_id)
777 {
778 	struct pwm_device *pwm = NULL;
779 	struct of_phandle_args args;
780 	struct device_link *dl;
781 	struct pwm_chip *pc;
782 	int index = 0;
783 	int err;
784 
785 	if (con_id) {
786 		index = of_property_match_string(np, "pwm-names", con_id);
787 		if (index < 0)
788 			return ERR_PTR(index);
789 	}
790 
791 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
792 					 &args);
793 	if (err) {
794 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
795 		return ERR_PTR(err);
796 	}
797 
798 	pc = of_node_to_pwmchip(args.np);
799 	if (IS_ERR(pc)) {
800 		if (PTR_ERR(pc) != -EPROBE_DEFER)
801 			pr_err("%s(): PWM chip not found\n", __func__);
802 
803 		pwm = ERR_CAST(pc);
804 		goto put;
805 	}
806 
807 	pwm = pc->of_xlate(pc, &args);
808 	if (IS_ERR(pwm))
809 		goto put;
810 
811 	dl = pwm_device_link_add(dev, pwm);
812 	if (IS_ERR(dl)) {
813 		/* of_xlate ended up calling pwm_request_from_chip() */
814 		pwm_free(pwm);
815 		pwm = ERR_CAST(dl);
816 		goto put;
817 	}
818 
819 	/*
820 	 * If a consumer name was not given, try to look it up from the
821 	 * "pwm-names" property if it exists. Otherwise use the name of
822 	 * the user device node.
823 	 */
824 	if (!con_id) {
825 		err = of_property_read_string_index(np, "pwm-names", index,
826 						    &con_id);
827 		if (err < 0)
828 			con_id = np->name;
829 	}
830 
831 	pwm->label = con_id;
832 
833 put:
834 	of_node_put(args.np);
835 
836 	return pwm;
837 }
838 EXPORT_SYMBOL_GPL(of_pwm_get);
839 
840 #if IS_ENABLED(CONFIG_ACPI)
841 static struct pwm_chip *device_to_pwmchip(struct device *dev)
842 {
843 	struct pwm_chip *chip;
844 
845 	mutex_lock(&pwm_lock);
846 
847 	list_for_each_entry(chip, &pwm_chips, list) {
848 		struct acpi_device *adev = ACPI_COMPANION(chip->dev);
849 
850 		if ((chip->dev == dev) || (adev && &adev->dev == dev)) {
851 			mutex_unlock(&pwm_lock);
852 			return chip;
853 		}
854 	}
855 
856 	mutex_unlock(&pwm_lock);
857 
858 	return ERR_PTR(-EPROBE_DEFER);
859 }
860 #endif
861 
862 /**
863  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
864  * @fwnode: firmware node to get the "pwm" property from
865  *
866  * Returns the PWM device parsed from the fwnode and index specified in the
867  * "pwms" property or a negative error-code on failure.
868  * Values parsed from the device tree are stored in the returned PWM device
869  * object.
870  *
871  * This is analogous to of_pwm_get() except con_id is not yet supported.
872  * ACPI entries must look like
873  * Package () {"pwms", Package ()
874  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
875  *
876  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
877  * error code on failure.
878  */
879 static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode)
880 {
881 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
882 #if IS_ENABLED(CONFIG_ACPI)
883 	struct fwnode_reference_args args;
884 	struct acpi_device *acpi;
885 	struct pwm_chip *chip;
886 	int ret;
887 
888 	memset(&args, 0, sizeof(args));
889 
890 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
891 	if (ret < 0)
892 		return ERR_PTR(ret);
893 
894 	acpi = to_acpi_device_node(args.fwnode);
895 	if (!acpi)
896 		return ERR_PTR(-EINVAL);
897 
898 	if (args.nargs < 2)
899 		return ERR_PTR(-EPROTO);
900 
901 	chip = device_to_pwmchip(&acpi->dev);
902 	if (IS_ERR(chip))
903 		return ERR_CAST(chip);
904 
905 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
906 	if (IS_ERR(pwm))
907 		return pwm;
908 
909 	pwm->args.period = args.args[1];
910 	pwm->args.polarity = PWM_POLARITY_NORMAL;
911 
912 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
913 		pwm->args.polarity = PWM_POLARITY_INVERSED;
914 #endif
915 
916 	return pwm;
917 }
918 
919 /**
920  * pwm_add_table() - register PWM device consumers
921  * @table: array of consumers to register
922  * @num: number of consumers in table
923  */
924 void pwm_add_table(struct pwm_lookup *table, size_t num)
925 {
926 	mutex_lock(&pwm_lookup_lock);
927 
928 	while (num--) {
929 		list_add_tail(&table->list, &pwm_lookup_list);
930 		table++;
931 	}
932 
933 	mutex_unlock(&pwm_lookup_lock);
934 }
935 
936 /**
937  * pwm_remove_table() - unregister PWM device consumers
938  * @table: array of consumers to unregister
939  * @num: number of consumers in table
940  */
941 void pwm_remove_table(struct pwm_lookup *table, size_t num)
942 {
943 	mutex_lock(&pwm_lookup_lock);
944 
945 	while (num--) {
946 		list_del(&table->list);
947 		table++;
948 	}
949 
950 	mutex_unlock(&pwm_lookup_lock);
951 }
952 
953 /**
954  * pwm_get() - look up and request a PWM device
955  * @dev: device for PWM consumer
956  * @con_id: consumer name
957  *
958  * Lookup is first attempted using DT. If the device was not instantiated from
959  * a device tree, a PWM chip and a relative index is looked up via a table
960  * supplied by board setup code (see pwm_add_table()).
961  *
962  * Once a PWM chip has been found the specified PWM device will be requested
963  * and is ready to be used.
964  *
965  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
966  * error code on failure.
967  */
968 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
969 {
970 	const char *dev_id = dev ? dev_name(dev) : NULL;
971 	struct pwm_device *pwm;
972 	struct pwm_chip *chip;
973 	struct device_link *dl;
974 	unsigned int best = 0;
975 	struct pwm_lookup *p, *chosen = NULL;
976 	unsigned int match;
977 	int err;
978 
979 	/* look up via DT first */
980 	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
981 		return of_pwm_get(dev, dev->of_node, con_id);
982 
983 	/* then lookup via ACPI */
984 	if (dev && is_acpi_node(dev->fwnode)) {
985 		pwm = acpi_pwm_get(dev->fwnode);
986 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
987 			return pwm;
988 	}
989 
990 	/*
991 	 * We look up the provider in the static table typically provided by
992 	 * board setup code. We first try to lookup the consumer device by
993 	 * name. If the consumer device was passed in as NULL or if no match
994 	 * was found, we try to find the consumer by directly looking it up
995 	 * by name.
996 	 *
997 	 * If a match is found, the provider PWM chip is looked up by name
998 	 * and a PWM device is requested using the PWM device per-chip index.
999 	 *
1000 	 * The lookup algorithm was shamelessly taken from the clock
1001 	 * framework:
1002 	 *
1003 	 * We do slightly fuzzy matching here:
1004 	 *  An entry with a NULL ID is assumed to be a wildcard.
1005 	 *  If an entry has a device ID, it must match
1006 	 *  If an entry has a connection ID, it must match
1007 	 * Then we take the most specific entry - with the following order
1008 	 * of precedence: dev+con > dev only > con only.
1009 	 */
1010 	mutex_lock(&pwm_lookup_lock);
1011 
1012 	list_for_each_entry(p, &pwm_lookup_list, list) {
1013 		match = 0;
1014 
1015 		if (p->dev_id) {
1016 			if (!dev_id || strcmp(p->dev_id, dev_id))
1017 				continue;
1018 
1019 			match += 2;
1020 		}
1021 
1022 		if (p->con_id) {
1023 			if (!con_id || strcmp(p->con_id, con_id))
1024 				continue;
1025 
1026 			match += 1;
1027 		}
1028 
1029 		if (match > best) {
1030 			chosen = p;
1031 
1032 			if (match != 3)
1033 				best = match;
1034 			else
1035 				break;
1036 		}
1037 	}
1038 
1039 	mutex_unlock(&pwm_lookup_lock);
1040 
1041 	if (!chosen)
1042 		return ERR_PTR(-ENODEV);
1043 
1044 	chip = pwmchip_find_by_name(chosen->provider);
1045 
1046 	/*
1047 	 * If the lookup entry specifies a module, load the module and retry
1048 	 * the PWM chip lookup. This can be used to work around driver load
1049 	 * ordering issues if driver's can't be made to properly support the
1050 	 * deferred probe mechanism.
1051 	 */
1052 	if (!chip && chosen->module) {
1053 		err = request_module(chosen->module);
1054 		if (err == 0)
1055 			chip = pwmchip_find_by_name(chosen->provider);
1056 	}
1057 
1058 	if (!chip)
1059 		return ERR_PTR(-EPROBE_DEFER);
1060 
1061 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1062 	if (IS_ERR(pwm))
1063 		return pwm;
1064 
1065 	dl = pwm_device_link_add(dev, pwm);
1066 	if (IS_ERR(dl)) {
1067 		pwm_free(pwm);
1068 		return ERR_CAST(dl);
1069 	}
1070 
1071 	pwm->args.period = chosen->period;
1072 	pwm->args.polarity = chosen->polarity;
1073 
1074 	return pwm;
1075 }
1076 EXPORT_SYMBOL_GPL(pwm_get);
1077 
1078 /**
1079  * pwm_put() - release a PWM device
1080  * @pwm: PWM device
1081  */
1082 void pwm_put(struct pwm_device *pwm)
1083 {
1084 	if (!pwm)
1085 		return;
1086 
1087 	mutex_lock(&pwm_lock);
1088 
1089 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1090 		pr_warn("PWM device already freed\n");
1091 		goto out;
1092 	}
1093 
1094 	if (pwm->chip->ops->free)
1095 		pwm->chip->ops->free(pwm->chip, pwm);
1096 
1097 	pwm_set_chip_data(pwm, NULL);
1098 	pwm->label = NULL;
1099 
1100 	module_put(pwm->chip->ops->owner);
1101 out:
1102 	mutex_unlock(&pwm_lock);
1103 }
1104 EXPORT_SYMBOL_GPL(pwm_put);
1105 
1106 static void devm_pwm_release(struct device *dev, void *res)
1107 {
1108 	pwm_put(*(struct pwm_device **)res);
1109 }
1110 
1111 /**
1112  * devm_pwm_get() - resource managed pwm_get()
1113  * @dev: device for PWM consumer
1114  * @con_id: consumer name
1115  *
1116  * This function performs like pwm_get() but the acquired PWM device will
1117  * automatically be released on driver detach.
1118  *
1119  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1120  * error code on failure.
1121  */
1122 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1123 {
1124 	struct pwm_device **ptr, *pwm;
1125 
1126 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1127 	if (!ptr)
1128 		return ERR_PTR(-ENOMEM);
1129 
1130 	pwm = pwm_get(dev, con_id);
1131 	if (!IS_ERR(pwm)) {
1132 		*ptr = pwm;
1133 		devres_add(dev, ptr);
1134 	} else {
1135 		devres_free(ptr);
1136 	}
1137 
1138 	return pwm;
1139 }
1140 EXPORT_SYMBOL_GPL(devm_pwm_get);
1141 
1142 /**
1143  * devm_of_pwm_get() - resource managed of_pwm_get()
1144  * @dev: device for PWM consumer
1145  * @np: device node to get the PWM from
1146  * @con_id: consumer name
1147  *
1148  * This function performs like of_pwm_get() but the acquired PWM device will
1149  * automatically be released on driver detach.
1150  *
1151  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1152  * error code on failure.
1153  */
1154 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1155 				   const char *con_id)
1156 {
1157 	struct pwm_device **ptr, *pwm;
1158 
1159 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1160 	if (!ptr)
1161 		return ERR_PTR(-ENOMEM);
1162 
1163 	pwm = of_pwm_get(dev, np, con_id);
1164 	if (!IS_ERR(pwm)) {
1165 		*ptr = pwm;
1166 		devres_add(dev, ptr);
1167 	} else {
1168 		devres_free(ptr);
1169 	}
1170 
1171 	return pwm;
1172 }
1173 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1174 
1175 /**
1176  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1177  * @dev: device for PWM consumer
1178  * @fwnode: firmware node to get the PWM from
1179  * @con_id: consumer name
1180  *
1181  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1182  * acpi_pwm_get() for a detailed description.
1183  *
1184  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1185  * error code on failure.
1186  */
1187 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1188 				       struct fwnode_handle *fwnode,
1189 				       const char *con_id)
1190 {
1191 	struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV);
1192 
1193 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1194 	if (!ptr)
1195 		return ERR_PTR(-ENOMEM);
1196 
1197 	if (is_of_node(fwnode))
1198 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1199 	else if (is_acpi_node(fwnode))
1200 		pwm = acpi_pwm_get(fwnode);
1201 
1202 	if (!IS_ERR(pwm)) {
1203 		*ptr = pwm;
1204 		devres_add(dev, ptr);
1205 	} else {
1206 		devres_free(ptr);
1207 	}
1208 
1209 	return pwm;
1210 }
1211 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1212 
1213 static int devm_pwm_match(struct device *dev, void *res, void *data)
1214 {
1215 	struct pwm_device **p = res;
1216 
1217 	if (WARN_ON(!p || !*p))
1218 		return 0;
1219 
1220 	return *p == data;
1221 }
1222 
1223 /**
1224  * devm_pwm_put() - resource managed pwm_put()
1225  * @dev: device for PWM consumer
1226  * @pwm: PWM device
1227  *
1228  * Release a PWM previously allocated using devm_pwm_get(). Calling this
1229  * function is usually not needed because devm-allocated resources are
1230  * automatically released on driver detach.
1231  */
1232 void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
1233 {
1234 	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
1235 }
1236 EXPORT_SYMBOL_GPL(devm_pwm_put);
1237 
1238 #ifdef CONFIG_DEBUG_FS
1239 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1240 {
1241 	unsigned int i;
1242 
1243 	for (i = 0; i < chip->npwm; i++) {
1244 		struct pwm_device *pwm = &chip->pwms[i];
1245 		struct pwm_state state;
1246 
1247 		pwm_get_state(pwm, &state);
1248 
1249 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1250 
1251 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1252 			seq_puts(s, " requested");
1253 
1254 		if (state.enabled)
1255 			seq_puts(s, " enabled");
1256 
1257 		seq_printf(s, " period: %llu ns", state.period);
1258 		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1259 		seq_printf(s, " polarity: %s",
1260 			   state.polarity ? "inverse" : "normal");
1261 
1262 		seq_puts(s, "\n");
1263 	}
1264 }
1265 
1266 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1267 {
1268 	mutex_lock(&pwm_lock);
1269 	s->private = "";
1270 
1271 	return seq_list_start(&pwm_chips, *pos);
1272 }
1273 
1274 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1275 {
1276 	s->private = "\n";
1277 
1278 	return seq_list_next(v, &pwm_chips, pos);
1279 }
1280 
1281 static void pwm_seq_stop(struct seq_file *s, void *v)
1282 {
1283 	mutex_unlock(&pwm_lock);
1284 }
1285 
1286 static int pwm_seq_show(struct seq_file *s, void *v)
1287 {
1288 	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1289 
1290 	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1291 		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1292 		   dev_name(chip->dev), chip->npwm,
1293 		   (chip->npwm != 1) ? "s" : "");
1294 
1295 	pwm_dbg_show(chip, s);
1296 
1297 	return 0;
1298 }
1299 
1300 static const struct seq_operations pwm_debugfs_sops = {
1301 	.start = pwm_seq_start,
1302 	.next = pwm_seq_next,
1303 	.stop = pwm_seq_stop,
1304 	.show = pwm_seq_show,
1305 };
1306 
1307 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1308 
1309 static int __init pwm_debugfs_init(void)
1310 {
1311 	debugfs_create_file("pwm", S_IFREG | 0444, NULL, NULL,
1312 			    &pwm_debugfs_fops);
1313 
1314 	return 0;
1315 }
1316 subsys_initcall(pwm_debugfs_init);
1317 #endif /* CONFIG_DEBUG_FS */
1318