xref: /openbmc/linux/drivers/pwm/core.c (revision 2fa5ebe3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20 
21 #include <dt-bindings/pwm/pwm.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
25 
26 #define MAX_PWMS 1024
27 
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30 
31 /* protects access to pwm_chips, allocated_pwms, and pwm_tree */
32 static DEFINE_MUTEX(pwm_lock);
33 
34 static LIST_HEAD(pwm_chips);
35 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
36 static RADIX_TREE(pwm_tree, GFP_KERNEL);
37 
38 static struct pwm_device *pwm_to_device(unsigned int pwm)
39 {
40 	return radix_tree_lookup(&pwm_tree, pwm);
41 }
42 
43 /* Called with pwm_lock held */
44 static int alloc_pwms(unsigned int count)
45 {
46 	unsigned int start;
47 
48 	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
49 					   count, 0);
50 
51 	if (start + count > MAX_PWMS)
52 		return -ENOSPC;
53 
54 	bitmap_set(allocated_pwms, start, count);
55 
56 	return start;
57 }
58 
59 /* Called with pwm_lock held */
60 static void free_pwms(struct pwm_chip *chip)
61 {
62 	unsigned int i;
63 
64 	for (i = 0; i < chip->npwm; i++) {
65 		struct pwm_device *pwm = &chip->pwms[i];
66 
67 		radix_tree_delete(&pwm_tree, pwm->pwm);
68 	}
69 
70 	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
71 
72 	kfree(chip->pwms);
73 	chip->pwms = NULL;
74 }
75 
76 static struct pwm_chip *pwmchip_find_by_name(const char *name)
77 {
78 	struct pwm_chip *chip;
79 
80 	if (!name)
81 		return NULL;
82 
83 	mutex_lock(&pwm_lock);
84 
85 	list_for_each_entry(chip, &pwm_chips, list) {
86 		const char *chip_name = dev_name(chip->dev);
87 
88 		if (chip_name && strcmp(chip_name, name) == 0) {
89 			mutex_unlock(&pwm_lock);
90 			return chip;
91 		}
92 	}
93 
94 	mutex_unlock(&pwm_lock);
95 
96 	return NULL;
97 }
98 
99 static int pwm_device_request(struct pwm_device *pwm, const char *label)
100 {
101 	int err;
102 
103 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
104 		return -EBUSY;
105 
106 	if (!try_module_get(pwm->chip->ops->owner))
107 		return -ENODEV;
108 
109 	if (pwm->chip->ops->request) {
110 		err = pwm->chip->ops->request(pwm->chip, pwm);
111 		if (err) {
112 			module_put(pwm->chip->ops->owner);
113 			return err;
114 		}
115 	}
116 
117 	if (pwm->chip->ops->get_state) {
118 		/*
119 		 * Zero-initialize state because most drivers are unaware of
120 		 * .usage_power. The other members of state are supposed to be
121 		 * set by lowlevel drivers. We still initialize the whole
122 		 * structure for simplicity even though this might paper over
123 		 * faulty implementations of .get_state().
124 		 */
125 		struct pwm_state state = { 0, };
126 
127 		err = pwm->chip->ops->get_state(pwm->chip, pwm, &state);
128 		trace_pwm_get(pwm, &state, err);
129 
130 		if (!err)
131 			pwm->state = state;
132 
133 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
134 			pwm->last = pwm->state;
135 	}
136 
137 	set_bit(PWMF_REQUESTED, &pwm->flags);
138 	pwm->label = label;
139 
140 	return 0;
141 }
142 
143 struct pwm_device *
144 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
145 {
146 	struct pwm_device *pwm;
147 
148 	if (pc->of_pwm_n_cells < 2)
149 		return ERR_PTR(-EINVAL);
150 
151 	/* flags in the third cell are optional */
152 	if (args->args_count < 2)
153 		return ERR_PTR(-EINVAL);
154 
155 	if (args->args[0] >= pc->npwm)
156 		return ERR_PTR(-EINVAL);
157 
158 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
159 	if (IS_ERR(pwm))
160 		return pwm;
161 
162 	pwm->args.period = args->args[1];
163 	pwm->args.polarity = PWM_POLARITY_NORMAL;
164 
165 	if (pc->of_pwm_n_cells >= 3) {
166 		if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
167 			pwm->args.polarity = PWM_POLARITY_INVERSED;
168 	}
169 
170 	return pwm;
171 }
172 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
173 
174 struct pwm_device *
175 of_pwm_single_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
176 {
177 	struct pwm_device *pwm;
178 
179 	if (pc->of_pwm_n_cells < 1)
180 		return ERR_PTR(-EINVAL);
181 
182 	/* validate that one cell is specified, optionally with flags */
183 	if (args->args_count != 1 && args->args_count != 2)
184 		return ERR_PTR(-EINVAL);
185 
186 	pwm = pwm_request_from_chip(pc, 0, NULL);
187 	if (IS_ERR(pwm))
188 		return pwm;
189 
190 	pwm->args.period = args->args[0];
191 	pwm->args.polarity = PWM_POLARITY_NORMAL;
192 
193 	if (args->args_count == 2 && args->args[2] & PWM_POLARITY_INVERTED)
194 		pwm->args.polarity = PWM_POLARITY_INVERSED;
195 
196 	return pwm;
197 }
198 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
199 
200 static void of_pwmchip_add(struct pwm_chip *chip)
201 {
202 	if (!chip->dev || !chip->dev->of_node)
203 		return;
204 
205 	if (!chip->of_xlate) {
206 		u32 pwm_cells;
207 
208 		if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
209 					 &pwm_cells))
210 			pwm_cells = 2;
211 
212 		chip->of_xlate = of_pwm_xlate_with_flags;
213 		chip->of_pwm_n_cells = pwm_cells;
214 	}
215 
216 	of_node_get(chip->dev->of_node);
217 }
218 
219 static void of_pwmchip_remove(struct pwm_chip *chip)
220 {
221 	if (chip->dev)
222 		of_node_put(chip->dev->of_node);
223 }
224 
225 /**
226  * pwm_set_chip_data() - set private chip data for a PWM
227  * @pwm: PWM device
228  * @data: pointer to chip-specific data
229  *
230  * Returns: 0 on success or a negative error code on failure.
231  */
232 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
233 {
234 	if (!pwm)
235 		return -EINVAL;
236 
237 	pwm->chip_data = data;
238 
239 	return 0;
240 }
241 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
242 
243 /**
244  * pwm_get_chip_data() - get private chip data for a PWM
245  * @pwm: PWM device
246  *
247  * Returns: A pointer to the chip-private data for the PWM device.
248  */
249 void *pwm_get_chip_data(struct pwm_device *pwm)
250 {
251 	return pwm ? pwm->chip_data : NULL;
252 }
253 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
254 
255 static bool pwm_ops_check(const struct pwm_chip *chip)
256 {
257 	const struct pwm_ops *ops = chip->ops;
258 
259 	if (!ops->apply)
260 		return false;
261 
262 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
263 		dev_warn(chip->dev,
264 			 "Please implement the .get_state() callback\n");
265 
266 	return true;
267 }
268 
269 /**
270  * pwmchip_add() - register a new PWM chip
271  * @chip: the PWM chip to add
272  *
273  * Register a new PWM chip.
274  *
275  * Returns: 0 on success or a negative error code on failure.
276  */
277 int pwmchip_add(struct pwm_chip *chip)
278 {
279 	struct pwm_device *pwm;
280 	unsigned int i;
281 	int ret;
282 
283 	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
284 		return -EINVAL;
285 
286 	if (!pwm_ops_check(chip))
287 		return -EINVAL;
288 
289 	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
290 	if (!chip->pwms)
291 		return -ENOMEM;
292 
293 	mutex_lock(&pwm_lock);
294 
295 	ret = alloc_pwms(chip->npwm);
296 	if (ret < 0) {
297 		mutex_unlock(&pwm_lock);
298 		kfree(chip->pwms);
299 		return ret;
300 	}
301 
302 	chip->base = ret;
303 
304 	for (i = 0; i < chip->npwm; i++) {
305 		pwm = &chip->pwms[i];
306 
307 		pwm->chip = chip;
308 		pwm->pwm = chip->base + i;
309 		pwm->hwpwm = i;
310 
311 		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
312 	}
313 
314 	list_add(&chip->list, &pwm_chips);
315 
316 	mutex_unlock(&pwm_lock);
317 
318 	if (IS_ENABLED(CONFIG_OF))
319 		of_pwmchip_add(chip);
320 
321 	pwmchip_sysfs_export(chip);
322 
323 	return 0;
324 }
325 EXPORT_SYMBOL_GPL(pwmchip_add);
326 
327 /**
328  * pwmchip_remove() - remove a PWM chip
329  * @chip: the PWM chip to remove
330  *
331  * Removes a PWM chip. This function may return busy if the PWM chip provides
332  * a PWM device that is still requested.
333  *
334  * Returns: 0 on success or a negative error code on failure.
335  */
336 void pwmchip_remove(struct pwm_chip *chip)
337 {
338 	pwmchip_sysfs_unexport(chip);
339 
340 	mutex_lock(&pwm_lock);
341 
342 	list_del_init(&chip->list);
343 
344 	if (IS_ENABLED(CONFIG_OF))
345 		of_pwmchip_remove(chip);
346 
347 	free_pwms(chip);
348 
349 	mutex_unlock(&pwm_lock);
350 }
351 EXPORT_SYMBOL_GPL(pwmchip_remove);
352 
353 static void devm_pwmchip_remove(void *data)
354 {
355 	struct pwm_chip *chip = data;
356 
357 	pwmchip_remove(chip);
358 }
359 
360 int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
361 {
362 	int ret;
363 
364 	ret = pwmchip_add(chip);
365 	if (ret)
366 		return ret;
367 
368 	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
369 }
370 EXPORT_SYMBOL_GPL(devm_pwmchip_add);
371 
372 /**
373  * pwm_request() - request a PWM device
374  * @pwm: global PWM device index
375  * @label: PWM device label
376  *
377  * This function is deprecated, use pwm_get() instead.
378  *
379  * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
380  * failure.
381  */
382 struct pwm_device *pwm_request(int pwm, const char *label)
383 {
384 	struct pwm_device *dev;
385 	int err;
386 
387 	if (pwm < 0 || pwm >= MAX_PWMS)
388 		return ERR_PTR(-EINVAL);
389 
390 	mutex_lock(&pwm_lock);
391 
392 	dev = pwm_to_device(pwm);
393 	if (!dev) {
394 		dev = ERR_PTR(-EPROBE_DEFER);
395 		goto out;
396 	}
397 
398 	err = pwm_device_request(dev, label);
399 	if (err < 0)
400 		dev = ERR_PTR(err);
401 
402 out:
403 	mutex_unlock(&pwm_lock);
404 
405 	return dev;
406 }
407 EXPORT_SYMBOL_GPL(pwm_request);
408 
409 /**
410  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
411  * @chip: PWM chip
412  * @index: per-chip index of the PWM to request
413  * @label: a literal description string of this PWM
414  *
415  * Returns: A pointer to the PWM device at the given index of the given PWM
416  * chip. A negative error code is returned if the index is not valid for the
417  * specified PWM chip or if the PWM device cannot be requested.
418  */
419 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
420 					 unsigned int index,
421 					 const char *label)
422 {
423 	struct pwm_device *pwm;
424 	int err;
425 
426 	if (!chip || index >= chip->npwm)
427 		return ERR_PTR(-EINVAL);
428 
429 	mutex_lock(&pwm_lock);
430 	pwm = &chip->pwms[index];
431 
432 	err = pwm_device_request(pwm, label);
433 	if (err < 0)
434 		pwm = ERR_PTR(err);
435 
436 	mutex_unlock(&pwm_lock);
437 	return pwm;
438 }
439 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
440 
441 /**
442  * pwm_free() - free a PWM device
443  * @pwm: PWM device
444  *
445  * This function is deprecated, use pwm_put() instead.
446  */
447 void pwm_free(struct pwm_device *pwm)
448 {
449 	pwm_put(pwm);
450 }
451 EXPORT_SYMBOL_GPL(pwm_free);
452 
453 static void pwm_apply_state_debug(struct pwm_device *pwm,
454 				  const struct pwm_state *state)
455 {
456 	struct pwm_state *last = &pwm->last;
457 	struct pwm_chip *chip = pwm->chip;
458 	struct pwm_state s1 = { 0 }, s2 = { 0 };
459 	int err;
460 
461 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
462 		return;
463 
464 	/* No reasonable diagnosis possible without .get_state() */
465 	if (!chip->ops->get_state)
466 		return;
467 
468 	/*
469 	 * *state was just applied. Read out the hardware state and do some
470 	 * checks.
471 	 */
472 
473 	err = chip->ops->get_state(chip, pwm, &s1);
474 	trace_pwm_get(pwm, &s1, err);
475 	if (err)
476 		/* If that failed there isn't much to debug */
477 		return;
478 
479 	/*
480 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
481 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
482 	 * Undo this inversion and fixup for further tests.
483 	 */
484 	if (s1.enabled && s1.polarity != state->polarity) {
485 		s2.polarity = state->polarity;
486 		s2.duty_cycle = s1.period - s1.duty_cycle;
487 		s2.period = s1.period;
488 		s2.enabled = s1.enabled;
489 	} else {
490 		s2 = s1;
491 	}
492 
493 	if (s2.polarity != state->polarity &&
494 	    state->duty_cycle < state->period)
495 		dev_warn(chip->dev, ".apply ignored .polarity\n");
496 
497 	if (state->enabled &&
498 	    last->polarity == state->polarity &&
499 	    last->period > s2.period &&
500 	    last->period <= state->period)
501 		dev_warn(chip->dev,
502 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
503 			 state->period, s2.period, last->period);
504 
505 	if (state->enabled && state->period < s2.period)
506 		dev_warn(chip->dev,
507 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
508 			 state->period, s2.period);
509 
510 	if (state->enabled &&
511 	    last->polarity == state->polarity &&
512 	    last->period == s2.period &&
513 	    last->duty_cycle > s2.duty_cycle &&
514 	    last->duty_cycle <= state->duty_cycle)
515 		dev_warn(chip->dev,
516 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
517 			 state->duty_cycle, state->period,
518 			 s2.duty_cycle, s2.period,
519 			 last->duty_cycle, last->period);
520 
521 	if (state->enabled && state->duty_cycle < s2.duty_cycle)
522 		dev_warn(chip->dev,
523 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
524 			 state->duty_cycle, state->period,
525 			 s2.duty_cycle, s2.period);
526 
527 	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
528 		dev_warn(chip->dev,
529 			 "requested disabled, but yielded enabled with duty > 0\n");
530 
531 	/* reapply the state that the driver reported being configured. */
532 	err = chip->ops->apply(chip, pwm, &s1);
533 	trace_pwm_apply(pwm, &s1, err);
534 	if (err) {
535 		*last = s1;
536 		dev_err(chip->dev, "failed to reapply current setting\n");
537 		return;
538 	}
539 
540 	*last = (struct pwm_state){ 0 };
541 	err = chip->ops->get_state(chip, pwm, last);
542 	trace_pwm_get(pwm, last, err);
543 	if (err)
544 		return;
545 
546 	/* reapplication of the current state should give an exact match */
547 	if (s1.enabled != last->enabled ||
548 	    s1.polarity != last->polarity ||
549 	    (s1.enabled && s1.period != last->period) ||
550 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
551 		dev_err(chip->dev,
552 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
553 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
554 			last->enabled, last->polarity, last->duty_cycle,
555 			last->period);
556 	}
557 }
558 
559 /**
560  * pwm_apply_state() - atomically apply a new state to a PWM device
561  * @pwm: PWM device
562  * @state: new state to apply
563  */
564 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
565 {
566 	struct pwm_chip *chip;
567 	int err;
568 
569 	/*
570 	 * Some lowlevel driver's implementations of .apply() make use of
571 	 * mutexes, also with some drivers only returning when the new
572 	 * configuration is active calling pwm_apply_state() from atomic context
573 	 * is a bad idea. So make it explicit that calling this function might
574 	 * sleep.
575 	 */
576 	might_sleep();
577 
578 	if (!pwm || !state || !state->period ||
579 	    state->duty_cycle > state->period)
580 		return -EINVAL;
581 
582 	chip = pwm->chip;
583 
584 	if (state->period == pwm->state.period &&
585 	    state->duty_cycle == pwm->state.duty_cycle &&
586 	    state->polarity == pwm->state.polarity &&
587 	    state->enabled == pwm->state.enabled &&
588 	    state->usage_power == pwm->state.usage_power)
589 		return 0;
590 
591 	err = chip->ops->apply(chip, pwm, state);
592 	trace_pwm_apply(pwm, state, err);
593 	if (err)
594 		return err;
595 
596 	pwm->state = *state;
597 
598 	/*
599 	 * only do this after pwm->state was applied as some
600 	 * implementations of .get_state depend on this
601 	 */
602 	pwm_apply_state_debug(pwm, state);
603 
604 	return 0;
605 }
606 EXPORT_SYMBOL_GPL(pwm_apply_state);
607 
608 /**
609  * pwm_capture() - capture and report a PWM signal
610  * @pwm: PWM device
611  * @result: structure to fill with capture result
612  * @timeout: time to wait, in milliseconds, before giving up on capture
613  *
614  * Returns: 0 on success or a negative error code on failure.
615  */
616 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
617 		unsigned long timeout)
618 {
619 	int err;
620 
621 	if (!pwm || !pwm->chip->ops)
622 		return -EINVAL;
623 
624 	if (!pwm->chip->ops->capture)
625 		return -ENOSYS;
626 
627 	mutex_lock(&pwm_lock);
628 	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
629 	mutex_unlock(&pwm_lock);
630 
631 	return err;
632 }
633 EXPORT_SYMBOL_GPL(pwm_capture);
634 
635 /**
636  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
637  * @pwm: PWM device
638  *
639  * This function will adjust the PWM config to the PWM arguments provided
640  * by the DT or PWM lookup table. This is particularly useful to adapt
641  * the bootloader config to the Linux one.
642  */
643 int pwm_adjust_config(struct pwm_device *pwm)
644 {
645 	struct pwm_state state;
646 	struct pwm_args pargs;
647 
648 	pwm_get_args(pwm, &pargs);
649 	pwm_get_state(pwm, &state);
650 
651 	/*
652 	 * If the current period is zero it means that either the PWM driver
653 	 * does not support initial state retrieval or the PWM has not yet
654 	 * been configured.
655 	 *
656 	 * In either case, we setup the new period and polarity, and assign a
657 	 * duty cycle of 0.
658 	 */
659 	if (!state.period) {
660 		state.duty_cycle = 0;
661 		state.period = pargs.period;
662 		state.polarity = pargs.polarity;
663 
664 		return pwm_apply_state(pwm, &state);
665 	}
666 
667 	/*
668 	 * Adjust the PWM duty cycle/period based on the period value provided
669 	 * in PWM args.
670 	 */
671 	if (pargs.period != state.period) {
672 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
673 
674 		do_div(dutycycle, state.period);
675 		state.duty_cycle = dutycycle;
676 		state.period = pargs.period;
677 	}
678 
679 	/*
680 	 * If the polarity changed, we should also change the duty cycle.
681 	 */
682 	if (pargs.polarity != state.polarity) {
683 		state.polarity = pargs.polarity;
684 		state.duty_cycle = state.period - state.duty_cycle;
685 	}
686 
687 	return pwm_apply_state(pwm, &state);
688 }
689 EXPORT_SYMBOL_GPL(pwm_adjust_config);
690 
691 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
692 {
693 	struct pwm_chip *chip;
694 
695 	mutex_lock(&pwm_lock);
696 
697 	list_for_each_entry(chip, &pwm_chips, list)
698 		if (chip->dev && device_match_fwnode(chip->dev, fwnode)) {
699 			mutex_unlock(&pwm_lock);
700 			return chip;
701 		}
702 
703 	mutex_unlock(&pwm_lock);
704 
705 	return ERR_PTR(-EPROBE_DEFER);
706 }
707 
708 static struct device_link *pwm_device_link_add(struct device *dev,
709 					       struct pwm_device *pwm)
710 {
711 	struct device_link *dl;
712 
713 	if (!dev) {
714 		/*
715 		 * No device for the PWM consumer has been provided. It may
716 		 * impact the PM sequence ordering: the PWM supplier may get
717 		 * suspended before the consumer.
718 		 */
719 		dev_warn(pwm->chip->dev,
720 			 "No consumer device specified to create a link to\n");
721 		return NULL;
722 	}
723 
724 	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
725 	if (!dl) {
726 		dev_err(dev, "failed to create device link to %s\n",
727 			dev_name(pwm->chip->dev));
728 		return ERR_PTR(-EINVAL);
729 	}
730 
731 	return dl;
732 }
733 
734 /**
735  * of_pwm_get() - request a PWM via the PWM framework
736  * @dev: device for PWM consumer
737  * @np: device node to get the PWM from
738  * @con_id: consumer name
739  *
740  * Returns the PWM device parsed from the phandle and index specified in the
741  * "pwms" property of a device tree node or a negative error-code on failure.
742  * Values parsed from the device tree are stored in the returned PWM device
743  * object.
744  *
745  * If con_id is NULL, the first PWM device listed in the "pwms" property will
746  * be requested. Otherwise the "pwm-names" property is used to do a reverse
747  * lookup of the PWM index. This also means that the "pwm-names" property
748  * becomes mandatory for devices that look up the PWM device via the con_id
749  * parameter.
750  *
751  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
752  * error code on failure.
753  */
754 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
755 				     const char *con_id)
756 {
757 	struct pwm_device *pwm = NULL;
758 	struct of_phandle_args args;
759 	struct device_link *dl;
760 	struct pwm_chip *pc;
761 	int index = 0;
762 	int err;
763 
764 	if (con_id) {
765 		index = of_property_match_string(np, "pwm-names", con_id);
766 		if (index < 0)
767 			return ERR_PTR(index);
768 	}
769 
770 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
771 					 &args);
772 	if (err) {
773 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
774 		return ERR_PTR(err);
775 	}
776 
777 	pc = fwnode_to_pwmchip(of_fwnode_handle(args.np));
778 	if (IS_ERR(pc)) {
779 		if (PTR_ERR(pc) != -EPROBE_DEFER)
780 			pr_err("%s(): PWM chip not found\n", __func__);
781 
782 		pwm = ERR_CAST(pc);
783 		goto put;
784 	}
785 
786 	pwm = pc->of_xlate(pc, &args);
787 	if (IS_ERR(pwm))
788 		goto put;
789 
790 	dl = pwm_device_link_add(dev, pwm);
791 	if (IS_ERR(dl)) {
792 		/* of_xlate ended up calling pwm_request_from_chip() */
793 		pwm_free(pwm);
794 		pwm = ERR_CAST(dl);
795 		goto put;
796 	}
797 
798 	/*
799 	 * If a consumer name was not given, try to look it up from the
800 	 * "pwm-names" property if it exists. Otherwise use the name of
801 	 * the user device node.
802 	 */
803 	if (!con_id) {
804 		err = of_property_read_string_index(np, "pwm-names", index,
805 						    &con_id);
806 		if (err < 0)
807 			con_id = np->name;
808 	}
809 
810 	pwm->label = con_id;
811 
812 put:
813 	of_node_put(args.np);
814 
815 	return pwm;
816 }
817 
818 /**
819  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
820  * @fwnode: firmware node to get the "pwms" property from
821  *
822  * Returns the PWM device parsed from the fwnode and index specified in the
823  * "pwms" property or a negative error-code on failure.
824  * Values parsed from the device tree are stored in the returned PWM device
825  * object.
826  *
827  * This is analogous to of_pwm_get() except con_id is not yet supported.
828  * ACPI entries must look like
829  * Package () {"pwms", Package ()
830  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
831  *
832  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
833  * error code on failure.
834  */
835 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
836 {
837 	struct pwm_device *pwm;
838 	struct fwnode_reference_args args;
839 	struct pwm_chip *chip;
840 	int ret;
841 
842 	memset(&args, 0, sizeof(args));
843 
844 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
845 	if (ret < 0)
846 		return ERR_PTR(ret);
847 
848 	if (args.nargs < 2)
849 		return ERR_PTR(-EPROTO);
850 
851 	chip = fwnode_to_pwmchip(args.fwnode);
852 	if (IS_ERR(chip))
853 		return ERR_CAST(chip);
854 
855 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
856 	if (IS_ERR(pwm))
857 		return pwm;
858 
859 	pwm->args.period = args.args[1];
860 	pwm->args.polarity = PWM_POLARITY_NORMAL;
861 
862 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
863 		pwm->args.polarity = PWM_POLARITY_INVERSED;
864 
865 	return pwm;
866 }
867 
868 /**
869  * pwm_add_table() - register PWM device consumers
870  * @table: array of consumers to register
871  * @num: number of consumers in table
872  */
873 void pwm_add_table(struct pwm_lookup *table, size_t num)
874 {
875 	mutex_lock(&pwm_lookup_lock);
876 
877 	while (num--) {
878 		list_add_tail(&table->list, &pwm_lookup_list);
879 		table++;
880 	}
881 
882 	mutex_unlock(&pwm_lookup_lock);
883 }
884 
885 /**
886  * pwm_remove_table() - unregister PWM device consumers
887  * @table: array of consumers to unregister
888  * @num: number of consumers in table
889  */
890 void pwm_remove_table(struct pwm_lookup *table, size_t num)
891 {
892 	mutex_lock(&pwm_lookup_lock);
893 
894 	while (num--) {
895 		list_del(&table->list);
896 		table++;
897 	}
898 
899 	mutex_unlock(&pwm_lookup_lock);
900 }
901 
902 /**
903  * pwm_get() - look up and request a PWM device
904  * @dev: device for PWM consumer
905  * @con_id: consumer name
906  *
907  * Lookup is first attempted using DT. If the device was not instantiated from
908  * a device tree, a PWM chip and a relative index is looked up via a table
909  * supplied by board setup code (see pwm_add_table()).
910  *
911  * Once a PWM chip has been found the specified PWM device will be requested
912  * and is ready to be used.
913  *
914  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
915  * error code on failure.
916  */
917 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
918 {
919 	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
920 	const char *dev_id = dev ? dev_name(dev) : NULL;
921 	struct pwm_device *pwm;
922 	struct pwm_chip *chip;
923 	struct device_link *dl;
924 	unsigned int best = 0;
925 	struct pwm_lookup *p, *chosen = NULL;
926 	unsigned int match;
927 	int err;
928 
929 	/* look up via DT first */
930 	if (is_of_node(fwnode))
931 		return of_pwm_get(dev, to_of_node(fwnode), con_id);
932 
933 	/* then lookup via ACPI */
934 	if (is_acpi_node(fwnode)) {
935 		pwm = acpi_pwm_get(fwnode);
936 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
937 			return pwm;
938 	}
939 
940 	/*
941 	 * We look up the provider in the static table typically provided by
942 	 * board setup code. We first try to lookup the consumer device by
943 	 * name. If the consumer device was passed in as NULL or if no match
944 	 * was found, we try to find the consumer by directly looking it up
945 	 * by name.
946 	 *
947 	 * If a match is found, the provider PWM chip is looked up by name
948 	 * and a PWM device is requested using the PWM device per-chip index.
949 	 *
950 	 * The lookup algorithm was shamelessly taken from the clock
951 	 * framework:
952 	 *
953 	 * We do slightly fuzzy matching here:
954 	 *  An entry with a NULL ID is assumed to be a wildcard.
955 	 *  If an entry has a device ID, it must match
956 	 *  If an entry has a connection ID, it must match
957 	 * Then we take the most specific entry - with the following order
958 	 * of precedence: dev+con > dev only > con only.
959 	 */
960 	mutex_lock(&pwm_lookup_lock);
961 
962 	list_for_each_entry(p, &pwm_lookup_list, list) {
963 		match = 0;
964 
965 		if (p->dev_id) {
966 			if (!dev_id || strcmp(p->dev_id, dev_id))
967 				continue;
968 
969 			match += 2;
970 		}
971 
972 		if (p->con_id) {
973 			if (!con_id || strcmp(p->con_id, con_id))
974 				continue;
975 
976 			match += 1;
977 		}
978 
979 		if (match > best) {
980 			chosen = p;
981 
982 			if (match != 3)
983 				best = match;
984 			else
985 				break;
986 		}
987 	}
988 
989 	mutex_unlock(&pwm_lookup_lock);
990 
991 	if (!chosen)
992 		return ERR_PTR(-ENODEV);
993 
994 	chip = pwmchip_find_by_name(chosen->provider);
995 
996 	/*
997 	 * If the lookup entry specifies a module, load the module and retry
998 	 * the PWM chip lookup. This can be used to work around driver load
999 	 * ordering issues if driver's can't be made to properly support the
1000 	 * deferred probe mechanism.
1001 	 */
1002 	if (!chip && chosen->module) {
1003 		err = request_module(chosen->module);
1004 		if (err == 0)
1005 			chip = pwmchip_find_by_name(chosen->provider);
1006 	}
1007 
1008 	if (!chip)
1009 		return ERR_PTR(-EPROBE_DEFER);
1010 
1011 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1012 	if (IS_ERR(pwm))
1013 		return pwm;
1014 
1015 	dl = pwm_device_link_add(dev, pwm);
1016 	if (IS_ERR(dl)) {
1017 		pwm_free(pwm);
1018 		return ERR_CAST(dl);
1019 	}
1020 
1021 	pwm->args.period = chosen->period;
1022 	pwm->args.polarity = chosen->polarity;
1023 
1024 	return pwm;
1025 }
1026 EXPORT_SYMBOL_GPL(pwm_get);
1027 
1028 /**
1029  * pwm_put() - release a PWM device
1030  * @pwm: PWM device
1031  */
1032 void pwm_put(struct pwm_device *pwm)
1033 {
1034 	if (!pwm)
1035 		return;
1036 
1037 	mutex_lock(&pwm_lock);
1038 
1039 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1040 		pr_warn("PWM device already freed\n");
1041 		goto out;
1042 	}
1043 
1044 	if (pwm->chip->ops->free)
1045 		pwm->chip->ops->free(pwm->chip, pwm);
1046 
1047 	pwm_set_chip_data(pwm, NULL);
1048 	pwm->label = NULL;
1049 
1050 	module_put(pwm->chip->ops->owner);
1051 out:
1052 	mutex_unlock(&pwm_lock);
1053 }
1054 EXPORT_SYMBOL_GPL(pwm_put);
1055 
1056 static void devm_pwm_release(void *pwm)
1057 {
1058 	pwm_put(pwm);
1059 }
1060 
1061 /**
1062  * devm_pwm_get() - resource managed pwm_get()
1063  * @dev: device for PWM consumer
1064  * @con_id: consumer name
1065  *
1066  * This function performs like pwm_get() but the acquired PWM device will
1067  * automatically be released on driver detach.
1068  *
1069  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1070  * error code on failure.
1071  */
1072 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1073 {
1074 	struct pwm_device *pwm;
1075 	int ret;
1076 
1077 	pwm = pwm_get(dev, con_id);
1078 	if (IS_ERR(pwm))
1079 		return pwm;
1080 
1081 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1082 	if (ret)
1083 		return ERR_PTR(ret);
1084 
1085 	return pwm;
1086 }
1087 EXPORT_SYMBOL_GPL(devm_pwm_get);
1088 
1089 /**
1090  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1091  * @dev: device for PWM consumer
1092  * @fwnode: firmware node to get the PWM from
1093  * @con_id: consumer name
1094  *
1095  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1096  * acpi_pwm_get() for a detailed description.
1097  *
1098  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1099  * error code on failure.
1100  */
1101 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1102 				       struct fwnode_handle *fwnode,
1103 				       const char *con_id)
1104 {
1105 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
1106 	int ret;
1107 
1108 	if (is_of_node(fwnode))
1109 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1110 	else if (is_acpi_node(fwnode))
1111 		pwm = acpi_pwm_get(fwnode);
1112 	if (IS_ERR(pwm))
1113 		return pwm;
1114 
1115 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1116 	if (ret)
1117 		return ERR_PTR(ret);
1118 
1119 	return pwm;
1120 }
1121 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1122 
1123 #ifdef CONFIG_DEBUG_FS
1124 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1125 {
1126 	unsigned int i;
1127 
1128 	for (i = 0; i < chip->npwm; i++) {
1129 		struct pwm_device *pwm = &chip->pwms[i];
1130 		struct pwm_state state;
1131 
1132 		pwm_get_state(pwm, &state);
1133 
1134 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1135 
1136 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1137 			seq_puts(s, " requested");
1138 
1139 		if (state.enabled)
1140 			seq_puts(s, " enabled");
1141 
1142 		seq_printf(s, " period: %llu ns", state.period);
1143 		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1144 		seq_printf(s, " polarity: %s",
1145 			   state.polarity ? "inverse" : "normal");
1146 
1147 		if (state.usage_power)
1148 			seq_puts(s, " usage_power");
1149 
1150 		seq_puts(s, "\n");
1151 	}
1152 }
1153 
1154 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1155 {
1156 	mutex_lock(&pwm_lock);
1157 	s->private = "";
1158 
1159 	return seq_list_start(&pwm_chips, *pos);
1160 }
1161 
1162 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1163 {
1164 	s->private = "\n";
1165 
1166 	return seq_list_next(v, &pwm_chips, pos);
1167 }
1168 
1169 static void pwm_seq_stop(struct seq_file *s, void *v)
1170 {
1171 	mutex_unlock(&pwm_lock);
1172 }
1173 
1174 static int pwm_seq_show(struct seq_file *s, void *v)
1175 {
1176 	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1177 
1178 	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1179 		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1180 		   dev_name(chip->dev), chip->npwm,
1181 		   (chip->npwm != 1) ? "s" : "");
1182 
1183 	pwm_dbg_show(chip, s);
1184 
1185 	return 0;
1186 }
1187 
1188 static const struct seq_operations pwm_debugfs_sops = {
1189 	.start = pwm_seq_start,
1190 	.next = pwm_seq_next,
1191 	.stop = pwm_seq_stop,
1192 	.show = pwm_seq_show,
1193 };
1194 
1195 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1196 
1197 static int __init pwm_debugfs_init(void)
1198 {
1199 	debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
1200 
1201 	return 0;
1202 }
1203 subsys_initcall(pwm_debugfs_init);
1204 #endif /* CONFIG_DEBUG_FS */
1205