1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic pwmlib implementation 4 * 5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de> 6 * Copyright (C) 2011-2012 Avionic Design GmbH 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/module.h> 11 #include <linux/pwm.h> 12 #include <linux/radix-tree.h> 13 #include <linux/list.h> 14 #include <linux/mutex.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/debugfs.h> 19 #include <linux/seq_file.h> 20 21 #include <dt-bindings/pwm/pwm.h> 22 23 #define CREATE_TRACE_POINTS 24 #include <trace/events/pwm.h> 25 26 #define MAX_PWMS 1024 27 28 static DEFINE_MUTEX(pwm_lookup_lock); 29 static LIST_HEAD(pwm_lookup_list); 30 static DEFINE_MUTEX(pwm_lock); 31 static LIST_HEAD(pwm_chips); 32 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS); 33 static RADIX_TREE(pwm_tree, GFP_KERNEL); 34 35 static struct pwm_device *pwm_to_device(unsigned int pwm) 36 { 37 return radix_tree_lookup(&pwm_tree, pwm); 38 } 39 40 static int alloc_pwms(unsigned int count) 41 { 42 unsigned int start; 43 44 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0, 45 count, 0); 46 47 if (start + count > MAX_PWMS) 48 return -ENOSPC; 49 50 return start; 51 } 52 53 static void free_pwms(struct pwm_chip *chip) 54 { 55 unsigned int i; 56 57 for (i = 0; i < chip->npwm; i++) { 58 struct pwm_device *pwm = &chip->pwms[i]; 59 60 radix_tree_delete(&pwm_tree, pwm->pwm); 61 } 62 63 bitmap_clear(allocated_pwms, chip->base, chip->npwm); 64 65 kfree(chip->pwms); 66 chip->pwms = NULL; 67 } 68 69 static struct pwm_chip *pwmchip_find_by_name(const char *name) 70 { 71 struct pwm_chip *chip; 72 73 if (!name) 74 return NULL; 75 76 mutex_lock(&pwm_lock); 77 78 list_for_each_entry(chip, &pwm_chips, list) { 79 const char *chip_name = dev_name(chip->dev); 80 81 if (chip_name && strcmp(chip_name, name) == 0) { 82 mutex_unlock(&pwm_lock); 83 return chip; 84 } 85 } 86 87 mutex_unlock(&pwm_lock); 88 89 return NULL; 90 } 91 92 static int pwm_device_request(struct pwm_device *pwm, const char *label) 93 { 94 int err; 95 96 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 97 return -EBUSY; 98 99 if (!try_module_get(pwm->chip->ops->owner)) 100 return -ENODEV; 101 102 if (pwm->chip->ops->request) { 103 err = pwm->chip->ops->request(pwm->chip, pwm); 104 if (err) { 105 module_put(pwm->chip->ops->owner); 106 return err; 107 } 108 } 109 110 if (pwm->chip->ops->get_state) { 111 pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state); 112 trace_pwm_get(pwm, &pwm->state); 113 114 if (IS_ENABLED(CONFIG_PWM_DEBUG)) 115 pwm->last = pwm->state; 116 } 117 118 set_bit(PWMF_REQUESTED, &pwm->flags); 119 pwm->label = label; 120 121 return 0; 122 } 123 124 struct pwm_device * 125 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args) 126 { 127 struct pwm_device *pwm; 128 129 if (pc->of_pwm_n_cells < 2) 130 return ERR_PTR(-EINVAL); 131 132 /* flags in the third cell are optional */ 133 if (args->args_count < 2) 134 return ERR_PTR(-EINVAL); 135 136 if (args->args[0] >= pc->npwm) 137 return ERR_PTR(-EINVAL); 138 139 pwm = pwm_request_from_chip(pc, args->args[0], NULL); 140 if (IS_ERR(pwm)) 141 return pwm; 142 143 pwm->args.period = args->args[1]; 144 pwm->args.polarity = PWM_POLARITY_NORMAL; 145 146 if (pc->of_pwm_n_cells >= 3) { 147 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED) 148 pwm->args.polarity = PWM_POLARITY_INVERSED; 149 } 150 151 return pwm; 152 } 153 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags); 154 155 struct pwm_device * 156 of_pwm_single_xlate(struct pwm_chip *pc, const struct of_phandle_args *args) 157 { 158 struct pwm_device *pwm; 159 160 if (pc->of_pwm_n_cells < 1) 161 return ERR_PTR(-EINVAL); 162 163 /* validate that one cell is specified, optionally with flags */ 164 if (args->args_count != 1 && args->args_count != 2) 165 return ERR_PTR(-EINVAL); 166 167 pwm = pwm_request_from_chip(pc, 0, NULL); 168 if (IS_ERR(pwm)) 169 return pwm; 170 171 pwm->args.period = args->args[0]; 172 pwm->args.polarity = PWM_POLARITY_NORMAL; 173 174 if (args->args_count == 2 && args->args[2] & PWM_POLARITY_INVERTED) 175 pwm->args.polarity = PWM_POLARITY_INVERSED; 176 177 return pwm; 178 } 179 EXPORT_SYMBOL_GPL(of_pwm_single_xlate); 180 181 static void of_pwmchip_add(struct pwm_chip *chip) 182 { 183 if (!chip->dev || !chip->dev->of_node) 184 return; 185 186 if (!chip->of_xlate) { 187 u32 pwm_cells; 188 189 if (of_property_read_u32(chip->dev->of_node, "#pwm-cells", 190 &pwm_cells)) 191 pwm_cells = 2; 192 193 chip->of_xlate = of_pwm_xlate_with_flags; 194 chip->of_pwm_n_cells = pwm_cells; 195 } 196 197 of_node_get(chip->dev->of_node); 198 } 199 200 static void of_pwmchip_remove(struct pwm_chip *chip) 201 { 202 if (chip->dev) 203 of_node_put(chip->dev->of_node); 204 } 205 206 /** 207 * pwm_set_chip_data() - set private chip data for a PWM 208 * @pwm: PWM device 209 * @data: pointer to chip-specific data 210 * 211 * Returns: 0 on success or a negative error code on failure. 212 */ 213 int pwm_set_chip_data(struct pwm_device *pwm, void *data) 214 { 215 if (!pwm) 216 return -EINVAL; 217 218 pwm->chip_data = data; 219 220 return 0; 221 } 222 EXPORT_SYMBOL_GPL(pwm_set_chip_data); 223 224 /** 225 * pwm_get_chip_data() - get private chip data for a PWM 226 * @pwm: PWM device 227 * 228 * Returns: A pointer to the chip-private data for the PWM device. 229 */ 230 void *pwm_get_chip_data(struct pwm_device *pwm) 231 { 232 return pwm ? pwm->chip_data : NULL; 233 } 234 EXPORT_SYMBOL_GPL(pwm_get_chip_data); 235 236 static bool pwm_ops_check(const struct pwm_chip *chip) 237 { 238 239 const struct pwm_ops *ops = chip->ops; 240 241 /* driver supports legacy, non-atomic operation */ 242 if (ops->config && ops->enable && ops->disable) { 243 if (IS_ENABLED(CONFIG_PWM_DEBUG)) 244 dev_warn(chip->dev, 245 "Driver needs updating to atomic API\n"); 246 247 return true; 248 } 249 250 if (!ops->apply) 251 return false; 252 253 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state) 254 dev_warn(chip->dev, 255 "Please implement the .get_state() callback\n"); 256 257 return true; 258 } 259 260 /** 261 * pwmchip_add() - register a new PWM chip 262 * @chip: the PWM chip to add 263 * 264 * Register a new PWM chip. 265 * 266 * Returns: 0 on success or a negative error code on failure. 267 */ 268 int pwmchip_add(struct pwm_chip *chip) 269 { 270 struct pwm_device *pwm; 271 unsigned int i; 272 int ret; 273 274 if (!chip || !chip->dev || !chip->ops || !chip->npwm) 275 return -EINVAL; 276 277 if (!pwm_ops_check(chip)) 278 return -EINVAL; 279 280 mutex_lock(&pwm_lock); 281 282 ret = alloc_pwms(chip->npwm); 283 if (ret < 0) 284 goto out; 285 286 chip->base = ret; 287 288 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL); 289 if (!chip->pwms) { 290 ret = -ENOMEM; 291 goto out; 292 } 293 294 for (i = 0; i < chip->npwm; i++) { 295 pwm = &chip->pwms[i]; 296 297 pwm->chip = chip; 298 pwm->pwm = chip->base + i; 299 pwm->hwpwm = i; 300 301 radix_tree_insert(&pwm_tree, pwm->pwm, pwm); 302 } 303 304 bitmap_set(allocated_pwms, chip->base, chip->npwm); 305 306 INIT_LIST_HEAD(&chip->list); 307 list_add(&chip->list, &pwm_chips); 308 309 ret = 0; 310 311 if (IS_ENABLED(CONFIG_OF)) 312 of_pwmchip_add(chip); 313 314 out: 315 mutex_unlock(&pwm_lock); 316 317 if (!ret) 318 pwmchip_sysfs_export(chip); 319 320 return ret; 321 } 322 EXPORT_SYMBOL_GPL(pwmchip_add); 323 324 /** 325 * pwmchip_remove() - remove a PWM chip 326 * @chip: the PWM chip to remove 327 * 328 * Removes a PWM chip. This function may return busy if the PWM chip provides 329 * a PWM device that is still requested. 330 * 331 * Returns: 0 on success or a negative error code on failure. 332 */ 333 void pwmchip_remove(struct pwm_chip *chip) 334 { 335 pwmchip_sysfs_unexport(chip); 336 337 mutex_lock(&pwm_lock); 338 339 list_del_init(&chip->list); 340 341 if (IS_ENABLED(CONFIG_OF)) 342 of_pwmchip_remove(chip); 343 344 free_pwms(chip); 345 346 mutex_unlock(&pwm_lock); 347 } 348 EXPORT_SYMBOL_GPL(pwmchip_remove); 349 350 static void devm_pwmchip_remove(void *data) 351 { 352 struct pwm_chip *chip = data; 353 354 pwmchip_remove(chip); 355 } 356 357 int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip) 358 { 359 int ret; 360 361 ret = pwmchip_add(chip); 362 if (ret) 363 return ret; 364 365 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip); 366 } 367 EXPORT_SYMBOL_GPL(devm_pwmchip_add); 368 369 /** 370 * pwm_request() - request a PWM device 371 * @pwm: global PWM device index 372 * @label: PWM device label 373 * 374 * This function is deprecated, use pwm_get() instead. 375 * 376 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on 377 * failure. 378 */ 379 struct pwm_device *pwm_request(int pwm, const char *label) 380 { 381 struct pwm_device *dev; 382 int err; 383 384 if (pwm < 0 || pwm >= MAX_PWMS) 385 return ERR_PTR(-EINVAL); 386 387 mutex_lock(&pwm_lock); 388 389 dev = pwm_to_device(pwm); 390 if (!dev) { 391 dev = ERR_PTR(-EPROBE_DEFER); 392 goto out; 393 } 394 395 err = pwm_device_request(dev, label); 396 if (err < 0) 397 dev = ERR_PTR(err); 398 399 out: 400 mutex_unlock(&pwm_lock); 401 402 return dev; 403 } 404 EXPORT_SYMBOL_GPL(pwm_request); 405 406 /** 407 * pwm_request_from_chip() - request a PWM device relative to a PWM chip 408 * @chip: PWM chip 409 * @index: per-chip index of the PWM to request 410 * @label: a literal description string of this PWM 411 * 412 * Returns: A pointer to the PWM device at the given index of the given PWM 413 * chip. A negative error code is returned if the index is not valid for the 414 * specified PWM chip or if the PWM device cannot be requested. 415 */ 416 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, 417 unsigned int index, 418 const char *label) 419 { 420 struct pwm_device *pwm; 421 int err; 422 423 if (!chip || index >= chip->npwm) 424 return ERR_PTR(-EINVAL); 425 426 mutex_lock(&pwm_lock); 427 pwm = &chip->pwms[index]; 428 429 err = pwm_device_request(pwm, label); 430 if (err < 0) 431 pwm = ERR_PTR(err); 432 433 mutex_unlock(&pwm_lock); 434 return pwm; 435 } 436 EXPORT_SYMBOL_GPL(pwm_request_from_chip); 437 438 /** 439 * pwm_free() - free a PWM device 440 * @pwm: PWM device 441 * 442 * This function is deprecated, use pwm_put() instead. 443 */ 444 void pwm_free(struct pwm_device *pwm) 445 { 446 pwm_put(pwm); 447 } 448 EXPORT_SYMBOL_GPL(pwm_free); 449 450 static void pwm_apply_state_debug(struct pwm_device *pwm, 451 const struct pwm_state *state) 452 { 453 struct pwm_state *last = &pwm->last; 454 struct pwm_chip *chip = pwm->chip; 455 struct pwm_state s1, s2; 456 int err; 457 458 if (!IS_ENABLED(CONFIG_PWM_DEBUG)) 459 return; 460 461 /* No reasonable diagnosis possible without .get_state() */ 462 if (!chip->ops->get_state) 463 return; 464 465 /* 466 * *state was just applied. Read out the hardware state and do some 467 * checks. 468 */ 469 470 chip->ops->get_state(chip, pwm, &s1); 471 trace_pwm_get(pwm, &s1); 472 473 /* 474 * The lowlevel driver either ignored .polarity (which is a bug) or as 475 * best effort inverted .polarity and fixed .duty_cycle respectively. 476 * Undo this inversion and fixup for further tests. 477 */ 478 if (s1.enabled && s1.polarity != state->polarity) { 479 s2.polarity = state->polarity; 480 s2.duty_cycle = s1.period - s1.duty_cycle; 481 s2.period = s1.period; 482 s2.enabled = s1.enabled; 483 } else { 484 s2 = s1; 485 } 486 487 if (s2.polarity != state->polarity && 488 state->duty_cycle < state->period) 489 dev_warn(chip->dev, ".apply ignored .polarity\n"); 490 491 if (state->enabled && 492 last->polarity == state->polarity && 493 last->period > s2.period && 494 last->period <= state->period) 495 dev_warn(chip->dev, 496 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n", 497 state->period, s2.period, last->period); 498 499 if (state->enabled && state->period < s2.period) 500 dev_warn(chip->dev, 501 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n", 502 state->period, s2.period); 503 504 if (state->enabled && 505 last->polarity == state->polarity && 506 last->period == s2.period && 507 last->duty_cycle > s2.duty_cycle && 508 last->duty_cycle <= state->duty_cycle) 509 dev_warn(chip->dev, 510 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n", 511 state->duty_cycle, state->period, 512 s2.duty_cycle, s2.period, 513 last->duty_cycle, last->period); 514 515 if (state->enabled && state->duty_cycle < s2.duty_cycle) 516 dev_warn(chip->dev, 517 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n", 518 state->duty_cycle, state->period, 519 s2.duty_cycle, s2.period); 520 521 if (!state->enabled && s2.enabled && s2.duty_cycle > 0) 522 dev_warn(chip->dev, 523 "requested disabled, but yielded enabled with duty > 0\n"); 524 525 /* reapply the state that the driver reported being configured. */ 526 err = chip->ops->apply(chip, pwm, &s1); 527 if (err) { 528 *last = s1; 529 dev_err(chip->dev, "failed to reapply current setting\n"); 530 return; 531 } 532 533 trace_pwm_apply(pwm, &s1); 534 535 chip->ops->get_state(chip, pwm, last); 536 trace_pwm_get(pwm, last); 537 538 /* reapplication of the current state should give an exact match */ 539 if (s1.enabled != last->enabled || 540 s1.polarity != last->polarity || 541 (s1.enabled && s1.period != last->period) || 542 (s1.enabled && s1.duty_cycle != last->duty_cycle)) { 543 dev_err(chip->dev, 544 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n", 545 s1.enabled, s1.polarity, s1.duty_cycle, s1.period, 546 last->enabled, last->polarity, last->duty_cycle, 547 last->period); 548 } 549 } 550 551 static int pwm_apply_legacy(struct pwm_chip *chip, struct pwm_device *pwm, 552 const struct pwm_state *state) 553 { 554 int err; 555 struct pwm_state initial_state = pwm->state; 556 557 if (state->polarity != pwm->state.polarity) { 558 if (!chip->ops->set_polarity) 559 return -EINVAL; 560 561 /* 562 * Changing the polarity of a running PWM is only allowed when 563 * the PWM driver implements ->apply(). 564 */ 565 if (pwm->state.enabled) { 566 chip->ops->disable(chip, pwm); 567 568 /* 569 * Update pwm->state already here in case 570 * .set_polarity() or another callback depend on that. 571 */ 572 pwm->state.enabled = false; 573 } 574 575 err = chip->ops->set_polarity(chip, pwm, state->polarity); 576 if (err) 577 goto rollback; 578 579 pwm->state.polarity = state->polarity; 580 } 581 582 if (!state->enabled) { 583 if (pwm->state.enabled) 584 chip->ops->disable(chip, pwm); 585 586 return 0; 587 } 588 589 /* 590 * We cannot skip calling ->config even if state->period == 591 * pwm->state.period && state->duty_cycle == pwm->state.duty_cycle 592 * because we might have exited early in the last call to 593 * pwm_apply_state because of !state->enabled and so the two values in 594 * pwm->state might not be configured in hardware. 595 */ 596 err = chip->ops->config(pwm->chip, pwm, 597 state->duty_cycle, 598 state->period); 599 if (err) 600 goto rollback; 601 602 pwm->state.period = state->period; 603 pwm->state.duty_cycle = state->duty_cycle; 604 605 if (!pwm->state.enabled) { 606 err = chip->ops->enable(chip, pwm); 607 if (err) 608 goto rollback; 609 } 610 611 return 0; 612 613 rollback: 614 pwm->state = initial_state; 615 return err; 616 } 617 618 /** 619 * pwm_apply_state() - atomically apply a new state to a PWM device 620 * @pwm: PWM device 621 * @state: new state to apply 622 */ 623 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state) 624 { 625 struct pwm_chip *chip; 626 int err; 627 628 /* 629 * Some lowlevel driver's implementations of .apply() make use of 630 * mutexes, also with some drivers only returning when the new 631 * configuration is active calling pwm_apply_state() from atomic context 632 * is a bad idea. So make it explicit that calling this function might 633 * sleep. 634 */ 635 might_sleep(); 636 637 if (!pwm || !state || !state->period || 638 state->duty_cycle > state->period) 639 return -EINVAL; 640 641 chip = pwm->chip; 642 643 if (state->period == pwm->state.period && 644 state->duty_cycle == pwm->state.duty_cycle && 645 state->polarity == pwm->state.polarity && 646 state->enabled == pwm->state.enabled && 647 state->usage_power == pwm->state.usage_power) 648 return 0; 649 650 if (chip->ops->apply) 651 err = chip->ops->apply(chip, pwm, state); 652 else 653 err = pwm_apply_legacy(chip, pwm, state); 654 if (err) 655 return err; 656 657 trace_pwm_apply(pwm, state); 658 659 pwm->state = *state; 660 661 /* 662 * only do this after pwm->state was applied as some 663 * implementations of .get_state depend on this 664 */ 665 pwm_apply_state_debug(pwm, state); 666 667 return 0; 668 } 669 EXPORT_SYMBOL_GPL(pwm_apply_state); 670 671 /** 672 * pwm_capture() - capture and report a PWM signal 673 * @pwm: PWM device 674 * @result: structure to fill with capture result 675 * @timeout: time to wait, in milliseconds, before giving up on capture 676 * 677 * Returns: 0 on success or a negative error code on failure. 678 */ 679 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result, 680 unsigned long timeout) 681 { 682 int err; 683 684 if (!pwm || !pwm->chip->ops) 685 return -EINVAL; 686 687 if (!pwm->chip->ops->capture) 688 return -ENOSYS; 689 690 mutex_lock(&pwm_lock); 691 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout); 692 mutex_unlock(&pwm_lock); 693 694 return err; 695 } 696 EXPORT_SYMBOL_GPL(pwm_capture); 697 698 /** 699 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments 700 * @pwm: PWM device 701 * 702 * This function will adjust the PWM config to the PWM arguments provided 703 * by the DT or PWM lookup table. This is particularly useful to adapt 704 * the bootloader config to the Linux one. 705 */ 706 int pwm_adjust_config(struct pwm_device *pwm) 707 { 708 struct pwm_state state; 709 struct pwm_args pargs; 710 711 pwm_get_args(pwm, &pargs); 712 pwm_get_state(pwm, &state); 713 714 /* 715 * If the current period is zero it means that either the PWM driver 716 * does not support initial state retrieval or the PWM has not yet 717 * been configured. 718 * 719 * In either case, we setup the new period and polarity, and assign a 720 * duty cycle of 0. 721 */ 722 if (!state.period) { 723 state.duty_cycle = 0; 724 state.period = pargs.period; 725 state.polarity = pargs.polarity; 726 727 return pwm_apply_state(pwm, &state); 728 } 729 730 /* 731 * Adjust the PWM duty cycle/period based on the period value provided 732 * in PWM args. 733 */ 734 if (pargs.period != state.period) { 735 u64 dutycycle = (u64)state.duty_cycle * pargs.period; 736 737 do_div(dutycycle, state.period); 738 state.duty_cycle = dutycycle; 739 state.period = pargs.period; 740 } 741 742 /* 743 * If the polarity changed, we should also change the duty cycle. 744 */ 745 if (pargs.polarity != state.polarity) { 746 state.polarity = pargs.polarity; 747 state.duty_cycle = state.period - state.duty_cycle; 748 } 749 750 return pwm_apply_state(pwm, &state); 751 } 752 EXPORT_SYMBOL_GPL(pwm_adjust_config); 753 754 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode) 755 { 756 struct pwm_chip *chip; 757 758 mutex_lock(&pwm_lock); 759 760 list_for_each_entry(chip, &pwm_chips, list) 761 if (chip->dev && dev_fwnode(chip->dev) == fwnode) { 762 mutex_unlock(&pwm_lock); 763 return chip; 764 } 765 766 mutex_unlock(&pwm_lock); 767 768 return ERR_PTR(-EPROBE_DEFER); 769 } 770 771 static struct device_link *pwm_device_link_add(struct device *dev, 772 struct pwm_device *pwm) 773 { 774 struct device_link *dl; 775 776 if (!dev) { 777 /* 778 * No device for the PWM consumer has been provided. It may 779 * impact the PM sequence ordering: the PWM supplier may get 780 * suspended before the consumer. 781 */ 782 dev_warn(pwm->chip->dev, 783 "No consumer device specified to create a link to\n"); 784 return NULL; 785 } 786 787 dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER); 788 if (!dl) { 789 dev_err(dev, "failed to create device link to %s\n", 790 dev_name(pwm->chip->dev)); 791 return ERR_PTR(-EINVAL); 792 } 793 794 return dl; 795 } 796 797 /** 798 * of_pwm_get() - request a PWM via the PWM framework 799 * @dev: device for PWM consumer 800 * @np: device node to get the PWM from 801 * @con_id: consumer name 802 * 803 * Returns the PWM device parsed from the phandle and index specified in the 804 * "pwms" property of a device tree node or a negative error-code on failure. 805 * Values parsed from the device tree are stored in the returned PWM device 806 * object. 807 * 808 * If con_id is NULL, the first PWM device listed in the "pwms" property will 809 * be requested. Otherwise the "pwm-names" property is used to do a reverse 810 * lookup of the PWM index. This also means that the "pwm-names" property 811 * becomes mandatory for devices that look up the PWM device via the con_id 812 * parameter. 813 * 814 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 815 * error code on failure. 816 */ 817 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np, 818 const char *con_id) 819 { 820 struct pwm_device *pwm = NULL; 821 struct of_phandle_args args; 822 struct device_link *dl; 823 struct pwm_chip *pc; 824 int index = 0; 825 int err; 826 827 if (con_id) { 828 index = of_property_match_string(np, "pwm-names", con_id); 829 if (index < 0) 830 return ERR_PTR(index); 831 } 832 833 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index, 834 &args); 835 if (err) { 836 pr_err("%s(): can't parse \"pwms\" property\n", __func__); 837 return ERR_PTR(err); 838 } 839 840 pc = fwnode_to_pwmchip(of_fwnode_handle(args.np)); 841 if (IS_ERR(pc)) { 842 if (PTR_ERR(pc) != -EPROBE_DEFER) 843 pr_err("%s(): PWM chip not found\n", __func__); 844 845 pwm = ERR_CAST(pc); 846 goto put; 847 } 848 849 pwm = pc->of_xlate(pc, &args); 850 if (IS_ERR(pwm)) 851 goto put; 852 853 dl = pwm_device_link_add(dev, pwm); 854 if (IS_ERR(dl)) { 855 /* of_xlate ended up calling pwm_request_from_chip() */ 856 pwm_free(pwm); 857 pwm = ERR_CAST(dl); 858 goto put; 859 } 860 861 /* 862 * If a consumer name was not given, try to look it up from the 863 * "pwm-names" property if it exists. Otherwise use the name of 864 * the user device node. 865 */ 866 if (!con_id) { 867 err = of_property_read_string_index(np, "pwm-names", index, 868 &con_id); 869 if (err < 0) 870 con_id = np->name; 871 } 872 873 pwm->label = con_id; 874 875 put: 876 of_node_put(args.np); 877 878 return pwm; 879 } 880 EXPORT_SYMBOL_GPL(of_pwm_get); 881 882 /** 883 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI 884 * @fwnode: firmware node to get the "pwms" property from 885 * 886 * Returns the PWM device parsed from the fwnode and index specified in the 887 * "pwms" property or a negative error-code on failure. 888 * Values parsed from the device tree are stored in the returned PWM device 889 * object. 890 * 891 * This is analogous to of_pwm_get() except con_id is not yet supported. 892 * ACPI entries must look like 893 * Package () {"pwms", Package () 894 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}} 895 * 896 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 897 * error code on failure. 898 */ 899 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode) 900 { 901 struct pwm_device *pwm; 902 struct fwnode_reference_args args; 903 struct pwm_chip *chip; 904 int ret; 905 906 memset(&args, 0, sizeof(args)); 907 908 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args); 909 if (ret < 0) 910 return ERR_PTR(ret); 911 912 if (args.nargs < 2) 913 return ERR_PTR(-EPROTO); 914 915 chip = fwnode_to_pwmchip(args.fwnode); 916 if (IS_ERR(chip)) 917 return ERR_CAST(chip); 918 919 pwm = pwm_request_from_chip(chip, args.args[0], NULL); 920 if (IS_ERR(pwm)) 921 return pwm; 922 923 pwm->args.period = args.args[1]; 924 pwm->args.polarity = PWM_POLARITY_NORMAL; 925 926 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED) 927 pwm->args.polarity = PWM_POLARITY_INVERSED; 928 929 return pwm; 930 } 931 932 /** 933 * pwm_add_table() - register PWM device consumers 934 * @table: array of consumers to register 935 * @num: number of consumers in table 936 */ 937 void pwm_add_table(struct pwm_lookup *table, size_t num) 938 { 939 mutex_lock(&pwm_lookup_lock); 940 941 while (num--) { 942 list_add_tail(&table->list, &pwm_lookup_list); 943 table++; 944 } 945 946 mutex_unlock(&pwm_lookup_lock); 947 } 948 949 /** 950 * pwm_remove_table() - unregister PWM device consumers 951 * @table: array of consumers to unregister 952 * @num: number of consumers in table 953 */ 954 void pwm_remove_table(struct pwm_lookup *table, size_t num) 955 { 956 mutex_lock(&pwm_lookup_lock); 957 958 while (num--) { 959 list_del(&table->list); 960 table++; 961 } 962 963 mutex_unlock(&pwm_lookup_lock); 964 } 965 966 /** 967 * pwm_get() - look up and request a PWM device 968 * @dev: device for PWM consumer 969 * @con_id: consumer name 970 * 971 * Lookup is first attempted using DT. If the device was not instantiated from 972 * a device tree, a PWM chip and a relative index is looked up via a table 973 * supplied by board setup code (see pwm_add_table()). 974 * 975 * Once a PWM chip has been found the specified PWM device will be requested 976 * and is ready to be used. 977 * 978 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 979 * error code on failure. 980 */ 981 struct pwm_device *pwm_get(struct device *dev, const char *con_id) 982 { 983 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 984 const char *dev_id = dev ? dev_name(dev) : NULL; 985 struct pwm_device *pwm; 986 struct pwm_chip *chip; 987 struct device_link *dl; 988 unsigned int best = 0; 989 struct pwm_lookup *p, *chosen = NULL; 990 unsigned int match; 991 int err; 992 993 /* look up via DT first */ 994 if (is_of_node(fwnode)) 995 return of_pwm_get(dev, to_of_node(fwnode), con_id); 996 997 /* then lookup via ACPI */ 998 if (is_acpi_node(fwnode)) { 999 pwm = acpi_pwm_get(fwnode); 1000 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT) 1001 return pwm; 1002 } 1003 1004 /* 1005 * We look up the provider in the static table typically provided by 1006 * board setup code. We first try to lookup the consumer device by 1007 * name. If the consumer device was passed in as NULL or if no match 1008 * was found, we try to find the consumer by directly looking it up 1009 * by name. 1010 * 1011 * If a match is found, the provider PWM chip is looked up by name 1012 * and a PWM device is requested using the PWM device per-chip index. 1013 * 1014 * The lookup algorithm was shamelessly taken from the clock 1015 * framework: 1016 * 1017 * We do slightly fuzzy matching here: 1018 * An entry with a NULL ID is assumed to be a wildcard. 1019 * If an entry has a device ID, it must match 1020 * If an entry has a connection ID, it must match 1021 * Then we take the most specific entry - with the following order 1022 * of precedence: dev+con > dev only > con only. 1023 */ 1024 mutex_lock(&pwm_lookup_lock); 1025 1026 list_for_each_entry(p, &pwm_lookup_list, list) { 1027 match = 0; 1028 1029 if (p->dev_id) { 1030 if (!dev_id || strcmp(p->dev_id, dev_id)) 1031 continue; 1032 1033 match += 2; 1034 } 1035 1036 if (p->con_id) { 1037 if (!con_id || strcmp(p->con_id, con_id)) 1038 continue; 1039 1040 match += 1; 1041 } 1042 1043 if (match > best) { 1044 chosen = p; 1045 1046 if (match != 3) 1047 best = match; 1048 else 1049 break; 1050 } 1051 } 1052 1053 mutex_unlock(&pwm_lookup_lock); 1054 1055 if (!chosen) 1056 return ERR_PTR(-ENODEV); 1057 1058 chip = pwmchip_find_by_name(chosen->provider); 1059 1060 /* 1061 * If the lookup entry specifies a module, load the module and retry 1062 * the PWM chip lookup. This can be used to work around driver load 1063 * ordering issues if driver's can't be made to properly support the 1064 * deferred probe mechanism. 1065 */ 1066 if (!chip && chosen->module) { 1067 err = request_module(chosen->module); 1068 if (err == 0) 1069 chip = pwmchip_find_by_name(chosen->provider); 1070 } 1071 1072 if (!chip) 1073 return ERR_PTR(-EPROBE_DEFER); 1074 1075 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id); 1076 if (IS_ERR(pwm)) 1077 return pwm; 1078 1079 dl = pwm_device_link_add(dev, pwm); 1080 if (IS_ERR(dl)) { 1081 pwm_free(pwm); 1082 return ERR_CAST(dl); 1083 } 1084 1085 pwm->args.period = chosen->period; 1086 pwm->args.polarity = chosen->polarity; 1087 1088 return pwm; 1089 } 1090 EXPORT_SYMBOL_GPL(pwm_get); 1091 1092 /** 1093 * pwm_put() - release a PWM device 1094 * @pwm: PWM device 1095 */ 1096 void pwm_put(struct pwm_device *pwm) 1097 { 1098 if (!pwm) 1099 return; 1100 1101 mutex_lock(&pwm_lock); 1102 1103 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 1104 pr_warn("PWM device already freed\n"); 1105 goto out; 1106 } 1107 1108 if (pwm->chip->ops->free) 1109 pwm->chip->ops->free(pwm->chip, pwm); 1110 1111 pwm_set_chip_data(pwm, NULL); 1112 pwm->label = NULL; 1113 1114 module_put(pwm->chip->ops->owner); 1115 out: 1116 mutex_unlock(&pwm_lock); 1117 } 1118 EXPORT_SYMBOL_GPL(pwm_put); 1119 1120 static void devm_pwm_release(void *pwm) 1121 { 1122 pwm_put(pwm); 1123 } 1124 1125 /** 1126 * devm_pwm_get() - resource managed pwm_get() 1127 * @dev: device for PWM consumer 1128 * @con_id: consumer name 1129 * 1130 * This function performs like pwm_get() but the acquired PWM device will 1131 * automatically be released on driver detach. 1132 * 1133 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1134 * error code on failure. 1135 */ 1136 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id) 1137 { 1138 struct pwm_device *pwm; 1139 int ret; 1140 1141 pwm = pwm_get(dev, con_id); 1142 if (IS_ERR(pwm)) 1143 return pwm; 1144 1145 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 1146 if (ret) 1147 return ERR_PTR(ret); 1148 1149 return pwm; 1150 } 1151 EXPORT_SYMBOL_GPL(devm_pwm_get); 1152 1153 /** 1154 * devm_of_pwm_get() - resource managed of_pwm_get() 1155 * @dev: device for PWM consumer 1156 * @np: device node to get the PWM from 1157 * @con_id: consumer name 1158 * 1159 * This function performs like of_pwm_get() but the acquired PWM device will 1160 * automatically be released on driver detach. 1161 * 1162 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1163 * error code on failure. 1164 */ 1165 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np, 1166 const char *con_id) 1167 { 1168 struct pwm_device *pwm; 1169 int ret; 1170 1171 pwm = of_pwm_get(dev, np, con_id); 1172 if (IS_ERR(pwm)) 1173 return pwm; 1174 1175 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 1176 if (ret) 1177 return ERR_PTR(ret); 1178 1179 return pwm; 1180 } 1181 EXPORT_SYMBOL_GPL(devm_of_pwm_get); 1182 1183 /** 1184 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node 1185 * @dev: device for PWM consumer 1186 * @fwnode: firmware node to get the PWM from 1187 * @con_id: consumer name 1188 * 1189 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and 1190 * acpi_pwm_get() for a detailed description. 1191 * 1192 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1193 * error code on failure. 1194 */ 1195 struct pwm_device *devm_fwnode_pwm_get(struct device *dev, 1196 struct fwnode_handle *fwnode, 1197 const char *con_id) 1198 { 1199 struct pwm_device *pwm = ERR_PTR(-ENODEV); 1200 int ret; 1201 1202 if (is_of_node(fwnode)) 1203 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id); 1204 else if (is_acpi_node(fwnode)) 1205 pwm = acpi_pwm_get(fwnode); 1206 if (IS_ERR(pwm)) 1207 return pwm; 1208 1209 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 1210 if (ret) 1211 return ERR_PTR(ret); 1212 1213 return pwm; 1214 } 1215 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get); 1216 1217 #ifdef CONFIG_DEBUG_FS 1218 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s) 1219 { 1220 unsigned int i; 1221 1222 for (i = 0; i < chip->npwm; i++) { 1223 struct pwm_device *pwm = &chip->pwms[i]; 1224 struct pwm_state state; 1225 1226 pwm_get_state(pwm, &state); 1227 1228 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label); 1229 1230 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 1231 seq_puts(s, " requested"); 1232 1233 if (state.enabled) 1234 seq_puts(s, " enabled"); 1235 1236 seq_printf(s, " period: %llu ns", state.period); 1237 seq_printf(s, " duty: %llu ns", state.duty_cycle); 1238 seq_printf(s, " polarity: %s", 1239 state.polarity ? "inverse" : "normal"); 1240 1241 if (state.usage_power) 1242 seq_puts(s, " usage_power"); 1243 1244 seq_puts(s, "\n"); 1245 } 1246 } 1247 1248 static void *pwm_seq_start(struct seq_file *s, loff_t *pos) 1249 { 1250 mutex_lock(&pwm_lock); 1251 s->private = ""; 1252 1253 return seq_list_start(&pwm_chips, *pos); 1254 } 1255 1256 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos) 1257 { 1258 s->private = "\n"; 1259 1260 return seq_list_next(v, &pwm_chips, pos); 1261 } 1262 1263 static void pwm_seq_stop(struct seq_file *s, void *v) 1264 { 1265 mutex_unlock(&pwm_lock); 1266 } 1267 1268 static int pwm_seq_show(struct seq_file *s, void *v) 1269 { 1270 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list); 1271 1272 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private, 1273 chip->dev->bus ? chip->dev->bus->name : "no-bus", 1274 dev_name(chip->dev), chip->npwm, 1275 (chip->npwm != 1) ? "s" : ""); 1276 1277 pwm_dbg_show(chip, s); 1278 1279 return 0; 1280 } 1281 1282 static const struct seq_operations pwm_debugfs_sops = { 1283 .start = pwm_seq_start, 1284 .next = pwm_seq_next, 1285 .stop = pwm_seq_stop, 1286 .show = pwm_seq_show, 1287 }; 1288 1289 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs); 1290 1291 static int __init pwm_debugfs_init(void) 1292 { 1293 debugfs_create_file("pwm", S_IFREG | 0444, NULL, NULL, 1294 &pwm_debugfs_fops); 1295 1296 return 0; 1297 } 1298 subsys_initcall(pwm_debugfs_init); 1299 #endif /* CONFIG_DEBUG_FS */ 1300