1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic pwmlib implementation 4 * 5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de> 6 * Copyright (C) 2011-2012 Avionic Design GmbH 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/module.h> 11 #include <linux/pwm.h> 12 #include <linux/radix-tree.h> 13 #include <linux/list.h> 14 #include <linux/mutex.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/debugfs.h> 19 #include <linux/seq_file.h> 20 21 #include <dt-bindings/pwm/pwm.h> 22 23 #define MAX_PWMS 1024 24 25 static DEFINE_MUTEX(pwm_lookup_lock); 26 static LIST_HEAD(pwm_lookup_list); 27 static DEFINE_MUTEX(pwm_lock); 28 static LIST_HEAD(pwm_chips); 29 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS); 30 static RADIX_TREE(pwm_tree, GFP_KERNEL); 31 32 static struct pwm_device *pwm_to_device(unsigned int pwm) 33 { 34 return radix_tree_lookup(&pwm_tree, pwm); 35 } 36 37 static int alloc_pwms(int pwm, unsigned int count) 38 { 39 unsigned int from = 0; 40 unsigned int start; 41 42 if (pwm >= MAX_PWMS) 43 return -EINVAL; 44 45 if (pwm >= 0) 46 from = pwm; 47 48 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from, 49 count, 0); 50 51 if (pwm >= 0 && start != pwm) 52 return -EEXIST; 53 54 if (start + count > MAX_PWMS) 55 return -ENOSPC; 56 57 return start; 58 } 59 60 static void free_pwms(struct pwm_chip *chip) 61 { 62 unsigned int i; 63 64 for (i = 0; i < chip->npwm; i++) { 65 struct pwm_device *pwm = &chip->pwms[i]; 66 67 radix_tree_delete(&pwm_tree, pwm->pwm); 68 } 69 70 bitmap_clear(allocated_pwms, chip->base, chip->npwm); 71 72 kfree(chip->pwms); 73 chip->pwms = NULL; 74 } 75 76 static struct pwm_chip *pwmchip_find_by_name(const char *name) 77 { 78 struct pwm_chip *chip; 79 80 if (!name) 81 return NULL; 82 83 mutex_lock(&pwm_lock); 84 85 list_for_each_entry(chip, &pwm_chips, list) { 86 const char *chip_name = dev_name(chip->dev); 87 88 if (chip_name && strcmp(chip_name, name) == 0) { 89 mutex_unlock(&pwm_lock); 90 return chip; 91 } 92 } 93 94 mutex_unlock(&pwm_lock); 95 96 return NULL; 97 } 98 99 static int pwm_device_request(struct pwm_device *pwm, const char *label) 100 { 101 int err; 102 103 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 104 return -EBUSY; 105 106 if (!try_module_get(pwm->chip->ops->owner)) 107 return -ENODEV; 108 109 if (pwm->chip->ops->request) { 110 err = pwm->chip->ops->request(pwm->chip, pwm); 111 if (err) { 112 module_put(pwm->chip->ops->owner); 113 return err; 114 } 115 } 116 117 set_bit(PWMF_REQUESTED, &pwm->flags); 118 pwm->label = label; 119 120 return 0; 121 } 122 123 struct pwm_device * 124 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args) 125 { 126 struct pwm_device *pwm; 127 128 /* check, whether the driver supports a third cell for flags */ 129 if (pc->of_pwm_n_cells < 3) 130 return ERR_PTR(-EINVAL); 131 132 /* flags in the third cell are optional */ 133 if (args->args_count < 2) 134 return ERR_PTR(-EINVAL); 135 136 if (args->args[0] >= pc->npwm) 137 return ERR_PTR(-EINVAL); 138 139 pwm = pwm_request_from_chip(pc, args->args[0], NULL); 140 if (IS_ERR(pwm)) 141 return pwm; 142 143 pwm->args.period = args->args[1]; 144 pwm->args.polarity = PWM_POLARITY_NORMAL; 145 146 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED) 147 pwm->args.polarity = PWM_POLARITY_INVERSED; 148 149 return pwm; 150 } 151 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags); 152 153 static struct pwm_device * 154 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args) 155 { 156 struct pwm_device *pwm; 157 158 /* sanity check driver support */ 159 if (pc->of_pwm_n_cells < 2) 160 return ERR_PTR(-EINVAL); 161 162 /* all cells are required */ 163 if (args->args_count != pc->of_pwm_n_cells) 164 return ERR_PTR(-EINVAL); 165 166 if (args->args[0] >= pc->npwm) 167 return ERR_PTR(-EINVAL); 168 169 pwm = pwm_request_from_chip(pc, args->args[0], NULL); 170 if (IS_ERR(pwm)) 171 return pwm; 172 173 pwm->args.period = args->args[1]; 174 175 return pwm; 176 } 177 178 static void of_pwmchip_add(struct pwm_chip *chip) 179 { 180 if (!chip->dev || !chip->dev->of_node) 181 return; 182 183 if (!chip->of_xlate) { 184 chip->of_xlate = of_pwm_simple_xlate; 185 chip->of_pwm_n_cells = 2; 186 } 187 188 of_node_get(chip->dev->of_node); 189 } 190 191 static void of_pwmchip_remove(struct pwm_chip *chip) 192 { 193 if (chip->dev) 194 of_node_put(chip->dev->of_node); 195 } 196 197 /** 198 * pwm_set_chip_data() - set private chip data for a PWM 199 * @pwm: PWM device 200 * @data: pointer to chip-specific data 201 * 202 * Returns: 0 on success or a negative error code on failure. 203 */ 204 int pwm_set_chip_data(struct pwm_device *pwm, void *data) 205 { 206 if (!pwm) 207 return -EINVAL; 208 209 pwm->chip_data = data; 210 211 return 0; 212 } 213 EXPORT_SYMBOL_GPL(pwm_set_chip_data); 214 215 /** 216 * pwm_get_chip_data() - get private chip data for a PWM 217 * @pwm: PWM device 218 * 219 * Returns: A pointer to the chip-private data for the PWM device. 220 */ 221 void *pwm_get_chip_data(struct pwm_device *pwm) 222 { 223 return pwm ? pwm->chip_data : NULL; 224 } 225 EXPORT_SYMBOL_GPL(pwm_get_chip_data); 226 227 static bool pwm_ops_check(const struct pwm_ops *ops) 228 { 229 /* driver supports legacy, non-atomic operation */ 230 if (ops->config && ops->enable && ops->disable) 231 return true; 232 233 /* driver supports atomic operation */ 234 if (ops->apply) 235 return true; 236 237 return false; 238 } 239 240 /** 241 * pwmchip_add_with_polarity() - register a new PWM chip 242 * @chip: the PWM chip to add 243 * @polarity: initial polarity of PWM channels 244 * 245 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base 246 * will be used. The initial polarity for all channels is specified by the 247 * @polarity parameter. 248 * 249 * Returns: 0 on success or a negative error code on failure. 250 */ 251 int pwmchip_add_with_polarity(struct pwm_chip *chip, 252 enum pwm_polarity polarity) 253 { 254 struct pwm_device *pwm; 255 unsigned int i; 256 int ret; 257 258 if (!chip || !chip->dev || !chip->ops || !chip->npwm) 259 return -EINVAL; 260 261 if (!pwm_ops_check(chip->ops)) 262 return -EINVAL; 263 264 mutex_lock(&pwm_lock); 265 266 ret = alloc_pwms(chip->base, chip->npwm); 267 if (ret < 0) 268 goto out; 269 270 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL); 271 if (!chip->pwms) { 272 ret = -ENOMEM; 273 goto out; 274 } 275 276 chip->base = ret; 277 278 for (i = 0; i < chip->npwm; i++) { 279 pwm = &chip->pwms[i]; 280 281 pwm->chip = chip; 282 pwm->pwm = chip->base + i; 283 pwm->hwpwm = i; 284 pwm->state.polarity = polarity; 285 286 if (chip->ops->get_state) 287 chip->ops->get_state(chip, pwm, &pwm->state); 288 289 radix_tree_insert(&pwm_tree, pwm->pwm, pwm); 290 } 291 292 bitmap_set(allocated_pwms, chip->base, chip->npwm); 293 294 INIT_LIST_HEAD(&chip->list); 295 list_add(&chip->list, &pwm_chips); 296 297 ret = 0; 298 299 if (IS_ENABLED(CONFIG_OF)) 300 of_pwmchip_add(chip); 301 302 out: 303 mutex_unlock(&pwm_lock); 304 305 if (!ret) 306 pwmchip_sysfs_export(chip); 307 308 return ret; 309 } 310 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity); 311 312 /** 313 * pwmchip_add() - register a new PWM chip 314 * @chip: the PWM chip to add 315 * 316 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base 317 * will be used. The initial polarity for all channels is normal. 318 * 319 * Returns: 0 on success or a negative error code on failure. 320 */ 321 int pwmchip_add(struct pwm_chip *chip) 322 { 323 return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL); 324 } 325 EXPORT_SYMBOL_GPL(pwmchip_add); 326 327 /** 328 * pwmchip_remove() - remove a PWM chip 329 * @chip: the PWM chip to remove 330 * 331 * Removes a PWM chip. This function may return busy if the PWM chip provides 332 * a PWM device that is still requested. 333 * 334 * Returns: 0 on success or a negative error code on failure. 335 */ 336 int pwmchip_remove(struct pwm_chip *chip) 337 { 338 unsigned int i; 339 int ret = 0; 340 341 pwmchip_sysfs_unexport(chip); 342 343 mutex_lock(&pwm_lock); 344 345 for (i = 0; i < chip->npwm; i++) { 346 struct pwm_device *pwm = &chip->pwms[i]; 347 348 if (test_bit(PWMF_REQUESTED, &pwm->flags)) { 349 ret = -EBUSY; 350 goto out; 351 } 352 } 353 354 list_del_init(&chip->list); 355 356 if (IS_ENABLED(CONFIG_OF)) 357 of_pwmchip_remove(chip); 358 359 free_pwms(chip); 360 361 out: 362 mutex_unlock(&pwm_lock); 363 return ret; 364 } 365 EXPORT_SYMBOL_GPL(pwmchip_remove); 366 367 /** 368 * pwm_request() - request a PWM device 369 * @pwm: global PWM device index 370 * @label: PWM device label 371 * 372 * This function is deprecated, use pwm_get() instead. 373 * 374 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on 375 * failure. 376 */ 377 struct pwm_device *pwm_request(int pwm, const char *label) 378 { 379 struct pwm_device *dev; 380 int err; 381 382 if (pwm < 0 || pwm >= MAX_PWMS) 383 return ERR_PTR(-EINVAL); 384 385 mutex_lock(&pwm_lock); 386 387 dev = pwm_to_device(pwm); 388 if (!dev) { 389 dev = ERR_PTR(-EPROBE_DEFER); 390 goto out; 391 } 392 393 err = pwm_device_request(dev, label); 394 if (err < 0) 395 dev = ERR_PTR(err); 396 397 out: 398 mutex_unlock(&pwm_lock); 399 400 return dev; 401 } 402 EXPORT_SYMBOL_GPL(pwm_request); 403 404 /** 405 * pwm_request_from_chip() - request a PWM device relative to a PWM chip 406 * @chip: PWM chip 407 * @index: per-chip index of the PWM to request 408 * @label: a literal description string of this PWM 409 * 410 * Returns: A pointer to the PWM device at the given index of the given PWM 411 * chip. A negative error code is returned if the index is not valid for the 412 * specified PWM chip or if the PWM device cannot be requested. 413 */ 414 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, 415 unsigned int index, 416 const char *label) 417 { 418 struct pwm_device *pwm; 419 int err; 420 421 if (!chip || index >= chip->npwm) 422 return ERR_PTR(-EINVAL); 423 424 mutex_lock(&pwm_lock); 425 pwm = &chip->pwms[index]; 426 427 err = pwm_device_request(pwm, label); 428 if (err < 0) 429 pwm = ERR_PTR(err); 430 431 mutex_unlock(&pwm_lock); 432 return pwm; 433 } 434 EXPORT_SYMBOL_GPL(pwm_request_from_chip); 435 436 /** 437 * pwm_free() - free a PWM device 438 * @pwm: PWM device 439 * 440 * This function is deprecated, use pwm_put() instead. 441 */ 442 void pwm_free(struct pwm_device *pwm) 443 { 444 pwm_put(pwm); 445 } 446 EXPORT_SYMBOL_GPL(pwm_free); 447 448 /** 449 * pwm_apply_state() - atomically apply a new state to a PWM device 450 * @pwm: PWM device 451 * @state: new state to apply. This can be adjusted by the PWM driver 452 * if the requested config is not achievable, for example, 453 * ->duty_cycle and ->period might be approximated. 454 */ 455 int pwm_apply_state(struct pwm_device *pwm, struct pwm_state *state) 456 { 457 int err; 458 459 if (!pwm || !state || !state->period || 460 state->duty_cycle > state->period) 461 return -EINVAL; 462 463 if (state->period == pwm->state.period && 464 state->duty_cycle == pwm->state.duty_cycle && 465 state->polarity == pwm->state.polarity && 466 state->enabled == pwm->state.enabled) 467 return 0; 468 469 if (pwm->chip->ops->apply) { 470 err = pwm->chip->ops->apply(pwm->chip, pwm, state); 471 if (err) 472 return err; 473 474 pwm->state = *state; 475 } else { 476 /* 477 * FIXME: restore the initial state in case of error. 478 */ 479 if (state->polarity != pwm->state.polarity) { 480 if (!pwm->chip->ops->set_polarity) 481 return -ENOTSUPP; 482 483 /* 484 * Changing the polarity of a running PWM is 485 * only allowed when the PWM driver implements 486 * ->apply(). 487 */ 488 if (pwm->state.enabled) { 489 pwm->chip->ops->disable(pwm->chip, pwm); 490 pwm->state.enabled = false; 491 } 492 493 err = pwm->chip->ops->set_polarity(pwm->chip, pwm, 494 state->polarity); 495 if (err) 496 return err; 497 498 pwm->state.polarity = state->polarity; 499 } 500 501 if (state->period != pwm->state.period || 502 state->duty_cycle != pwm->state.duty_cycle) { 503 err = pwm->chip->ops->config(pwm->chip, pwm, 504 state->duty_cycle, 505 state->period); 506 if (err) 507 return err; 508 509 pwm->state.duty_cycle = state->duty_cycle; 510 pwm->state.period = state->period; 511 } 512 513 if (state->enabled != pwm->state.enabled) { 514 if (state->enabled) { 515 err = pwm->chip->ops->enable(pwm->chip, pwm); 516 if (err) 517 return err; 518 } else { 519 pwm->chip->ops->disable(pwm->chip, pwm); 520 } 521 522 pwm->state.enabled = state->enabled; 523 } 524 } 525 526 return 0; 527 } 528 EXPORT_SYMBOL_GPL(pwm_apply_state); 529 530 /** 531 * pwm_capture() - capture and report a PWM signal 532 * @pwm: PWM device 533 * @result: structure to fill with capture result 534 * @timeout: time to wait, in milliseconds, before giving up on capture 535 * 536 * Returns: 0 on success or a negative error code on failure. 537 */ 538 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result, 539 unsigned long timeout) 540 { 541 int err; 542 543 if (!pwm || !pwm->chip->ops) 544 return -EINVAL; 545 546 if (!pwm->chip->ops->capture) 547 return -ENOSYS; 548 549 mutex_lock(&pwm_lock); 550 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout); 551 mutex_unlock(&pwm_lock); 552 553 return err; 554 } 555 EXPORT_SYMBOL_GPL(pwm_capture); 556 557 /** 558 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments 559 * @pwm: PWM device 560 * 561 * This function will adjust the PWM config to the PWM arguments provided 562 * by the DT or PWM lookup table. This is particularly useful to adapt 563 * the bootloader config to the Linux one. 564 */ 565 int pwm_adjust_config(struct pwm_device *pwm) 566 { 567 struct pwm_state state; 568 struct pwm_args pargs; 569 570 pwm_get_args(pwm, &pargs); 571 pwm_get_state(pwm, &state); 572 573 /* 574 * If the current period is zero it means that either the PWM driver 575 * does not support initial state retrieval or the PWM has not yet 576 * been configured. 577 * 578 * In either case, we setup the new period and polarity, and assign a 579 * duty cycle of 0. 580 */ 581 if (!state.period) { 582 state.duty_cycle = 0; 583 state.period = pargs.period; 584 state.polarity = pargs.polarity; 585 586 return pwm_apply_state(pwm, &state); 587 } 588 589 /* 590 * Adjust the PWM duty cycle/period based on the period value provided 591 * in PWM args. 592 */ 593 if (pargs.period != state.period) { 594 u64 dutycycle = (u64)state.duty_cycle * pargs.period; 595 596 do_div(dutycycle, state.period); 597 state.duty_cycle = dutycycle; 598 state.period = pargs.period; 599 } 600 601 /* 602 * If the polarity changed, we should also change the duty cycle. 603 */ 604 if (pargs.polarity != state.polarity) { 605 state.polarity = pargs.polarity; 606 state.duty_cycle = state.period - state.duty_cycle; 607 } 608 609 return pwm_apply_state(pwm, &state); 610 } 611 EXPORT_SYMBOL_GPL(pwm_adjust_config); 612 613 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np) 614 { 615 struct pwm_chip *chip; 616 617 mutex_lock(&pwm_lock); 618 619 list_for_each_entry(chip, &pwm_chips, list) 620 if (chip->dev && chip->dev->of_node == np) { 621 mutex_unlock(&pwm_lock); 622 return chip; 623 } 624 625 mutex_unlock(&pwm_lock); 626 627 return ERR_PTR(-EPROBE_DEFER); 628 } 629 630 static struct device_link *pwm_device_link_add(struct device *dev, 631 struct pwm_device *pwm) 632 { 633 struct device_link *dl; 634 635 if (!dev) { 636 /* 637 * No device for the PWM consumer has been provided. It may 638 * impact the PM sequence ordering: the PWM supplier may get 639 * suspended before the consumer. 640 */ 641 dev_warn(pwm->chip->dev, 642 "No consumer device specified to create a link to\n"); 643 return NULL; 644 } 645 646 dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER); 647 if (!dl) { 648 dev_err(dev, "failed to create device link to %s\n", 649 dev_name(pwm->chip->dev)); 650 return ERR_PTR(-EINVAL); 651 } 652 653 return dl; 654 } 655 656 /** 657 * of_pwm_get() - request a PWM via the PWM framework 658 * @dev: device for PWM consumer 659 * @np: device node to get the PWM from 660 * @con_id: consumer name 661 * 662 * Returns the PWM device parsed from the phandle and index specified in the 663 * "pwms" property of a device tree node or a negative error-code on failure. 664 * Values parsed from the device tree are stored in the returned PWM device 665 * object. 666 * 667 * If con_id is NULL, the first PWM device listed in the "pwms" property will 668 * be requested. Otherwise the "pwm-names" property is used to do a reverse 669 * lookup of the PWM index. This also means that the "pwm-names" property 670 * becomes mandatory for devices that look up the PWM device via the con_id 671 * parameter. 672 * 673 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 674 * error code on failure. 675 */ 676 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np, 677 const char *con_id) 678 { 679 struct pwm_device *pwm = NULL; 680 struct of_phandle_args args; 681 struct device_link *dl; 682 struct pwm_chip *pc; 683 int index = 0; 684 int err; 685 686 if (con_id) { 687 index = of_property_match_string(np, "pwm-names", con_id); 688 if (index < 0) 689 return ERR_PTR(index); 690 } 691 692 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index, 693 &args); 694 if (err) { 695 pr_err("%s(): can't parse \"pwms\" property\n", __func__); 696 return ERR_PTR(err); 697 } 698 699 pc = of_node_to_pwmchip(args.np); 700 if (IS_ERR(pc)) { 701 if (PTR_ERR(pc) != -EPROBE_DEFER) 702 pr_err("%s(): PWM chip not found\n", __func__); 703 704 pwm = ERR_CAST(pc); 705 goto put; 706 } 707 708 pwm = pc->of_xlate(pc, &args); 709 if (IS_ERR(pwm)) 710 goto put; 711 712 dl = pwm_device_link_add(dev, pwm); 713 if (IS_ERR(dl)) { 714 /* of_xlate ended up calling pwm_request_from_chip() */ 715 pwm_free(pwm); 716 pwm = ERR_CAST(dl); 717 goto put; 718 } 719 720 /* 721 * If a consumer name was not given, try to look it up from the 722 * "pwm-names" property if it exists. Otherwise use the name of 723 * the user device node. 724 */ 725 if (!con_id) { 726 err = of_property_read_string_index(np, "pwm-names", index, 727 &con_id); 728 if (err < 0) 729 con_id = np->name; 730 } 731 732 pwm->label = con_id; 733 734 put: 735 of_node_put(args.np); 736 737 return pwm; 738 } 739 EXPORT_SYMBOL_GPL(of_pwm_get); 740 741 #if IS_ENABLED(CONFIG_ACPI) 742 static struct pwm_chip *device_to_pwmchip(struct device *dev) 743 { 744 struct pwm_chip *chip; 745 746 mutex_lock(&pwm_lock); 747 748 list_for_each_entry(chip, &pwm_chips, list) { 749 struct acpi_device *adev = ACPI_COMPANION(chip->dev); 750 751 if ((chip->dev == dev) || (adev && &adev->dev == dev)) { 752 mutex_unlock(&pwm_lock); 753 return chip; 754 } 755 } 756 757 mutex_unlock(&pwm_lock); 758 759 return ERR_PTR(-EPROBE_DEFER); 760 } 761 #endif 762 763 /** 764 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI 765 * @fwnode: firmware node to get the "pwm" property from 766 * 767 * Returns the PWM device parsed from the fwnode and index specified in the 768 * "pwms" property or a negative error-code on failure. 769 * Values parsed from the device tree are stored in the returned PWM device 770 * object. 771 * 772 * This is analogous to of_pwm_get() except con_id is not yet supported. 773 * ACPI entries must look like 774 * Package () {"pwms", Package () 775 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}} 776 * 777 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 778 * error code on failure. 779 */ 780 static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode) 781 { 782 struct pwm_device *pwm = ERR_PTR(-ENODEV); 783 #if IS_ENABLED(CONFIG_ACPI) 784 struct fwnode_reference_args args; 785 struct acpi_device *acpi; 786 struct pwm_chip *chip; 787 int ret; 788 789 memset(&args, 0, sizeof(args)); 790 791 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args); 792 if (ret < 0) 793 return ERR_PTR(ret); 794 795 acpi = to_acpi_device_node(args.fwnode); 796 if (!acpi) 797 return ERR_PTR(-EINVAL); 798 799 if (args.nargs < 2) 800 return ERR_PTR(-EPROTO); 801 802 chip = device_to_pwmchip(&acpi->dev); 803 if (IS_ERR(chip)) 804 return ERR_CAST(chip); 805 806 pwm = pwm_request_from_chip(chip, args.args[0], NULL); 807 if (IS_ERR(pwm)) 808 return pwm; 809 810 pwm->args.period = args.args[1]; 811 pwm->args.polarity = PWM_POLARITY_NORMAL; 812 813 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED) 814 pwm->args.polarity = PWM_POLARITY_INVERSED; 815 #endif 816 817 return pwm; 818 } 819 820 /** 821 * pwm_add_table() - register PWM device consumers 822 * @table: array of consumers to register 823 * @num: number of consumers in table 824 */ 825 void pwm_add_table(struct pwm_lookup *table, size_t num) 826 { 827 mutex_lock(&pwm_lookup_lock); 828 829 while (num--) { 830 list_add_tail(&table->list, &pwm_lookup_list); 831 table++; 832 } 833 834 mutex_unlock(&pwm_lookup_lock); 835 } 836 837 /** 838 * pwm_remove_table() - unregister PWM device consumers 839 * @table: array of consumers to unregister 840 * @num: number of consumers in table 841 */ 842 void pwm_remove_table(struct pwm_lookup *table, size_t num) 843 { 844 mutex_lock(&pwm_lookup_lock); 845 846 while (num--) { 847 list_del(&table->list); 848 table++; 849 } 850 851 mutex_unlock(&pwm_lookup_lock); 852 } 853 854 /** 855 * pwm_get() - look up and request a PWM device 856 * @dev: device for PWM consumer 857 * @con_id: consumer name 858 * 859 * Lookup is first attempted using DT. If the device was not instantiated from 860 * a device tree, a PWM chip and a relative index is looked up via a table 861 * supplied by board setup code (see pwm_add_table()). 862 * 863 * Once a PWM chip has been found the specified PWM device will be requested 864 * and is ready to be used. 865 * 866 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 867 * error code on failure. 868 */ 869 struct pwm_device *pwm_get(struct device *dev, const char *con_id) 870 { 871 const char *dev_id = dev ? dev_name(dev) : NULL; 872 struct pwm_device *pwm; 873 struct pwm_chip *chip; 874 struct device_link *dl; 875 unsigned int best = 0; 876 struct pwm_lookup *p, *chosen = NULL; 877 unsigned int match; 878 int err; 879 880 /* look up via DT first */ 881 if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node) 882 return of_pwm_get(dev, dev->of_node, con_id); 883 884 /* then lookup via ACPI */ 885 if (dev && is_acpi_node(dev->fwnode)) { 886 pwm = acpi_pwm_get(dev->fwnode); 887 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT) 888 return pwm; 889 } 890 891 /* 892 * We look up the provider in the static table typically provided by 893 * board setup code. We first try to lookup the consumer device by 894 * name. If the consumer device was passed in as NULL or if no match 895 * was found, we try to find the consumer by directly looking it up 896 * by name. 897 * 898 * If a match is found, the provider PWM chip is looked up by name 899 * and a PWM device is requested using the PWM device per-chip index. 900 * 901 * The lookup algorithm was shamelessly taken from the clock 902 * framework: 903 * 904 * We do slightly fuzzy matching here: 905 * An entry with a NULL ID is assumed to be a wildcard. 906 * If an entry has a device ID, it must match 907 * If an entry has a connection ID, it must match 908 * Then we take the most specific entry - with the following order 909 * of precedence: dev+con > dev only > con only. 910 */ 911 mutex_lock(&pwm_lookup_lock); 912 913 list_for_each_entry(p, &pwm_lookup_list, list) { 914 match = 0; 915 916 if (p->dev_id) { 917 if (!dev_id || strcmp(p->dev_id, dev_id)) 918 continue; 919 920 match += 2; 921 } 922 923 if (p->con_id) { 924 if (!con_id || strcmp(p->con_id, con_id)) 925 continue; 926 927 match += 1; 928 } 929 930 if (match > best) { 931 chosen = p; 932 933 if (match != 3) 934 best = match; 935 else 936 break; 937 } 938 } 939 940 mutex_unlock(&pwm_lookup_lock); 941 942 if (!chosen) 943 return ERR_PTR(-ENODEV); 944 945 chip = pwmchip_find_by_name(chosen->provider); 946 947 /* 948 * If the lookup entry specifies a module, load the module and retry 949 * the PWM chip lookup. This can be used to work around driver load 950 * ordering issues if driver's can't be made to properly support the 951 * deferred probe mechanism. 952 */ 953 if (!chip && chosen->module) { 954 err = request_module(chosen->module); 955 if (err == 0) 956 chip = pwmchip_find_by_name(chosen->provider); 957 } 958 959 if (!chip) 960 return ERR_PTR(-EPROBE_DEFER); 961 962 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id); 963 if (IS_ERR(pwm)) 964 return pwm; 965 966 dl = pwm_device_link_add(dev, pwm); 967 if (IS_ERR(dl)) { 968 pwm_free(pwm); 969 return ERR_CAST(dl); 970 } 971 972 pwm->args.period = chosen->period; 973 pwm->args.polarity = chosen->polarity; 974 975 return pwm; 976 } 977 EXPORT_SYMBOL_GPL(pwm_get); 978 979 /** 980 * pwm_put() - release a PWM device 981 * @pwm: PWM device 982 */ 983 void pwm_put(struct pwm_device *pwm) 984 { 985 if (!pwm) 986 return; 987 988 mutex_lock(&pwm_lock); 989 990 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 991 pr_warn("PWM device already freed\n"); 992 goto out; 993 } 994 995 if (pwm->chip->ops->free) 996 pwm->chip->ops->free(pwm->chip, pwm); 997 998 pwm_set_chip_data(pwm, NULL); 999 pwm->label = NULL; 1000 1001 module_put(pwm->chip->ops->owner); 1002 out: 1003 mutex_unlock(&pwm_lock); 1004 } 1005 EXPORT_SYMBOL_GPL(pwm_put); 1006 1007 static void devm_pwm_release(struct device *dev, void *res) 1008 { 1009 pwm_put(*(struct pwm_device **)res); 1010 } 1011 1012 /** 1013 * devm_pwm_get() - resource managed pwm_get() 1014 * @dev: device for PWM consumer 1015 * @con_id: consumer name 1016 * 1017 * This function performs like pwm_get() but the acquired PWM device will 1018 * automatically be released on driver detach. 1019 * 1020 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1021 * error code on failure. 1022 */ 1023 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id) 1024 { 1025 struct pwm_device **ptr, *pwm; 1026 1027 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL); 1028 if (!ptr) 1029 return ERR_PTR(-ENOMEM); 1030 1031 pwm = pwm_get(dev, con_id); 1032 if (!IS_ERR(pwm)) { 1033 *ptr = pwm; 1034 devres_add(dev, ptr); 1035 } else { 1036 devres_free(ptr); 1037 } 1038 1039 return pwm; 1040 } 1041 EXPORT_SYMBOL_GPL(devm_pwm_get); 1042 1043 /** 1044 * devm_of_pwm_get() - resource managed of_pwm_get() 1045 * @dev: device for PWM consumer 1046 * @np: device node to get the PWM from 1047 * @con_id: consumer name 1048 * 1049 * This function performs like of_pwm_get() but the acquired PWM device will 1050 * automatically be released on driver detach. 1051 * 1052 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1053 * error code on failure. 1054 */ 1055 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np, 1056 const char *con_id) 1057 { 1058 struct pwm_device **ptr, *pwm; 1059 1060 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL); 1061 if (!ptr) 1062 return ERR_PTR(-ENOMEM); 1063 1064 pwm = of_pwm_get(dev, np, con_id); 1065 if (!IS_ERR(pwm)) { 1066 *ptr = pwm; 1067 devres_add(dev, ptr); 1068 } else { 1069 devres_free(ptr); 1070 } 1071 1072 return pwm; 1073 } 1074 EXPORT_SYMBOL_GPL(devm_of_pwm_get); 1075 1076 /** 1077 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node 1078 * @dev: device for PWM consumer 1079 * @fwnode: firmware node to get the PWM from 1080 * @con_id: consumer name 1081 * 1082 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and 1083 * acpi_pwm_get() for a detailed description. 1084 * 1085 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1086 * error code on failure. 1087 */ 1088 struct pwm_device *devm_fwnode_pwm_get(struct device *dev, 1089 struct fwnode_handle *fwnode, 1090 const char *con_id) 1091 { 1092 struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV); 1093 1094 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL); 1095 if (!ptr) 1096 return ERR_PTR(-ENOMEM); 1097 1098 if (is_of_node(fwnode)) 1099 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id); 1100 else if (is_acpi_node(fwnode)) 1101 pwm = acpi_pwm_get(fwnode); 1102 1103 if (!IS_ERR(pwm)) { 1104 *ptr = pwm; 1105 devres_add(dev, ptr); 1106 } else { 1107 devres_free(ptr); 1108 } 1109 1110 return pwm; 1111 } 1112 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get); 1113 1114 static int devm_pwm_match(struct device *dev, void *res, void *data) 1115 { 1116 struct pwm_device **p = res; 1117 1118 if (WARN_ON(!p || !*p)) 1119 return 0; 1120 1121 return *p == data; 1122 } 1123 1124 /** 1125 * devm_pwm_put() - resource managed pwm_put() 1126 * @dev: device for PWM consumer 1127 * @pwm: PWM device 1128 * 1129 * Release a PWM previously allocated using devm_pwm_get(). Calling this 1130 * function is usually not needed because devm-allocated resources are 1131 * automatically released on driver detach. 1132 */ 1133 void devm_pwm_put(struct device *dev, struct pwm_device *pwm) 1134 { 1135 WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm)); 1136 } 1137 EXPORT_SYMBOL_GPL(devm_pwm_put); 1138 1139 #ifdef CONFIG_DEBUG_FS 1140 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s) 1141 { 1142 unsigned int i; 1143 1144 for (i = 0; i < chip->npwm; i++) { 1145 struct pwm_device *pwm = &chip->pwms[i]; 1146 struct pwm_state state; 1147 1148 pwm_get_state(pwm, &state); 1149 1150 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label); 1151 1152 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 1153 seq_puts(s, " requested"); 1154 1155 if (state.enabled) 1156 seq_puts(s, " enabled"); 1157 1158 seq_printf(s, " period: %u ns", state.period); 1159 seq_printf(s, " duty: %u ns", state.duty_cycle); 1160 seq_printf(s, " polarity: %s", 1161 state.polarity ? "inverse" : "normal"); 1162 1163 seq_puts(s, "\n"); 1164 } 1165 } 1166 1167 static void *pwm_seq_start(struct seq_file *s, loff_t *pos) 1168 { 1169 mutex_lock(&pwm_lock); 1170 s->private = ""; 1171 1172 return seq_list_start(&pwm_chips, *pos); 1173 } 1174 1175 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos) 1176 { 1177 s->private = "\n"; 1178 1179 return seq_list_next(v, &pwm_chips, pos); 1180 } 1181 1182 static void pwm_seq_stop(struct seq_file *s, void *v) 1183 { 1184 mutex_unlock(&pwm_lock); 1185 } 1186 1187 static int pwm_seq_show(struct seq_file *s, void *v) 1188 { 1189 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list); 1190 1191 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private, 1192 chip->dev->bus ? chip->dev->bus->name : "no-bus", 1193 dev_name(chip->dev), chip->npwm, 1194 (chip->npwm != 1) ? "s" : ""); 1195 1196 pwm_dbg_show(chip, s); 1197 1198 return 0; 1199 } 1200 1201 static const struct seq_operations pwm_seq_ops = { 1202 .start = pwm_seq_start, 1203 .next = pwm_seq_next, 1204 .stop = pwm_seq_stop, 1205 .show = pwm_seq_show, 1206 }; 1207 1208 static int pwm_seq_open(struct inode *inode, struct file *file) 1209 { 1210 return seq_open(file, &pwm_seq_ops); 1211 } 1212 1213 static const struct file_operations pwm_debugfs_ops = { 1214 .owner = THIS_MODULE, 1215 .open = pwm_seq_open, 1216 .read = seq_read, 1217 .llseek = seq_lseek, 1218 .release = seq_release, 1219 }; 1220 1221 static int __init pwm_debugfs_init(void) 1222 { 1223 debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL, 1224 &pwm_debugfs_ops); 1225 1226 return 0; 1227 } 1228 subsys_initcall(pwm_debugfs_init); 1229 #endif /* CONFIG_DEBUG_FS */ 1230