xref: /openbmc/linux/drivers/ptp/ptp_ocp.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2020 Facebook */
3 
4 #include <linux/bits.h>
5 #include <linux/err.h>
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/debugfs.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/serial_8250.h>
12 #include <linux/clkdev.h>
13 #include <linux/clk-provider.h>
14 #include <linux/platform_device.h>
15 #include <linux/platform_data/i2c-xiic.h>
16 #include <linux/platform_data/i2c-ocores.h>
17 #include <linux/ptp_clock_kernel.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/xilinx_spi.h>
20 #include <linux/spi/altera.h>
21 #include <net/devlink.h>
22 #include <linux/i2c.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/nvmem-consumer.h>
25 #include <linux/crc16.h>
26 
27 #define PCI_VENDOR_ID_FACEBOOK			0x1d9b
28 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD		0x0400
29 
30 #define PCI_VENDOR_ID_CELESTICA			0x18d4
31 #define PCI_DEVICE_ID_CELESTICA_TIMECARD	0x1008
32 
33 #define PCI_VENDOR_ID_OROLIA			0x1ad7
34 #define PCI_DEVICE_ID_OROLIA_ARTCARD		0xa000
35 
36 static struct class timecard_class = {
37 	.owner		= THIS_MODULE,
38 	.name		= "timecard",
39 };
40 
41 struct ocp_reg {
42 	u32	ctrl;
43 	u32	status;
44 	u32	select;
45 	u32	version;
46 	u32	time_ns;
47 	u32	time_sec;
48 	u32	__pad0[2];
49 	u32	adjust_ns;
50 	u32	adjust_sec;
51 	u32	__pad1[2];
52 	u32	offset_ns;
53 	u32	offset_window_ns;
54 	u32	__pad2[2];
55 	u32	drift_ns;
56 	u32	drift_window_ns;
57 	u32	__pad3[6];
58 	u32	servo_offset_p;
59 	u32	servo_offset_i;
60 	u32	servo_drift_p;
61 	u32	servo_drift_i;
62 	u32	status_offset;
63 	u32	status_drift;
64 };
65 
66 #define OCP_CTRL_ENABLE		BIT(0)
67 #define OCP_CTRL_ADJUST_TIME	BIT(1)
68 #define OCP_CTRL_ADJUST_OFFSET	BIT(2)
69 #define OCP_CTRL_ADJUST_DRIFT	BIT(3)
70 #define OCP_CTRL_ADJUST_SERVO	BIT(8)
71 #define OCP_CTRL_READ_TIME_REQ	BIT(30)
72 #define OCP_CTRL_READ_TIME_DONE	BIT(31)
73 
74 #define OCP_STATUS_IN_SYNC	BIT(0)
75 #define OCP_STATUS_IN_HOLDOVER	BIT(1)
76 
77 #define OCP_SELECT_CLK_NONE	0
78 #define OCP_SELECT_CLK_REG	0xfe
79 
80 struct tod_reg {
81 	u32	ctrl;
82 	u32	status;
83 	u32	uart_polarity;
84 	u32	version;
85 	u32	adj_sec;
86 	u32	__pad0[3];
87 	u32	uart_baud;
88 	u32	__pad1[3];
89 	u32	utc_status;
90 	u32	leap;
91 };
92 
93 #define TOD_CTRL_PROTOCOL	BIT(28)
94 #define TOD_CTRL_DISABLE_FMT_A	BIT(17)
95 #define TOD_CTRL_DISABLE_FMT_B	BIT(16)
96 #define TOD_CTRL_ENABLE		BIT(0)
97 #define TOD_CTRL_GNSS_MASK	GENMASK(3, 0)
98 #define TOD_CTRL_GNSS_SHIFT	24
99 
100 #define TOD_STATUS_UTC_MASK		GENMASK(7, 0)
101 #define TOD_STATUS_UTC_VALID		BIT(8)
102 #define TOD_STATUS_LEAP_ANNOUNCE	BIT(12)
103 #define TOD_STATUS_LEAP_VALID		BIT(16)
104 
105 struct ts_reg {
106 	u32	enable;
107 	u32	error;
108 	u32	polarity;
109 	u32	version;
110 	u32	__pad0[4];
111 	u32	cable_delay;
112 	u32	__pad1[3];
113 	u32	intr;
114 	u32	intr_mask;
115 	u32	event_count;
116 	u32	__pad2[1];
117 	u32	ts_count;
118 	u32	time_ns;
119 	u32	time_sec;
120 	u32	data_width;
121 	u32	data;
122 };
123 
124 struct pps_reg {
125 	u32	ctrl;
126 	u32	status;
127 	u32	__pad0[6];
128 	u32	cable_delay;
129 };
130 
131 #define PPS_STATUS_FILTER_ERR	BIT(0)
132 #define PPS_STATUS_SUPERV_ERR	BIT(1)
133 
134 struct img_reg {
135 	u32	version;
136 };
137 
138 struct gpio_reg {
139 	u32	gpio1;
140 	u32	__pad0;
141 	u32	gpio2;
142 	u32	__pad1;
143 };
144 
145 struct irig_master_reg {
146 	u32	ctrl;
147 	u32	status;
148 	u32	__pad0;
149 	u32	version;
150 	u32	adj_sec;
151 	u32	mode_ctrl;
152 };
153 
154 #define IRIG_M_CTRL_ENABLE	BIT(0)
155 
156 struct irig_slave_reg {
157 	u32	ctrl;
158 	u32	status;
159 	u32	__pad0;
160 	u32	version;
161 	u32	adj_sec;
162 	u32	mode_ctrl;
163 };
164 
165 #define IRIG_S_CTRL_ENABLE	BIT(0)
166 
167 struct dcf_master_reg {
168 	u32	ctrl;
169 	u32	status;
170 	u32	__pad0;
171 	u32	version;
172 	u32	adj_sec;
173 };
174 
175 #define DCF_M_CTRL_ENABLE	BIT(0)
176 
177 struct dcf_slave_reg {
178 	u32	ctrl;
179 	u32	status;
180 	u32	__pad0;
181 	u32	version;
182 	u32	adj_sec;
183 };
184 
185 #define DCF_S_CTRL_ENABLE	BIT(0)
186 
187 struct signal_reg {
188 	u32	enable;
189 	u32	status;
190 	u32	polarity;
191 	u32	version;
192 	u32	__pad0[4];
193 	u32	cable_delay;
194 	u32	__pad1[3];
195 	u32	intr;
196 	u32	intr_mask;
197 	u32	__pad2[2];
198 	u32	start_ns;
199 	u32	start_sec;
200 	u32	pulse_ns;
201 	u32	pulse_sec;
202 	u32	period_ns;
203 	u32	period_sec;
204 	u32	repeat_count;
205 };
206 
207 struct frequency_reg {
208 	u32	ctrl;
209 	u32	status;
210 };
211 
212 struct board_config_reg {
213 	u32 mro50_serial_activate;
214 };
215 
216 #define FREQ_STATUS_VALID	BIT(31)
217 #define FREQ_STATUS_ERROR	BIT(30)
218 #define FREQ_STATUS_OVERRUN	BIT(29)
219 #define FREQ_STATUS_MASK	GENMASK(23, 0)
220 
221 struct ptp_ocp_flash_info {
222 	const char *name;
223 	int pci_offset;
224 	int data_size;
225 	void *data;
226 };
227 
228 struct ptp_ocp_firmware_header {
229 	char magic[4];
230 	__be16 pci_vendor_id;
231 	__be16 pci_device_id;
232 	__be32 image_size;
233 	__be16 hw_revision;
234 	__be16 crc;
235 };
236 
237 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
238 
239 struct ptp_ocp_i2c_info {
240 	const char *name;
241 	unsigned long fixed_rate;
242 	size_t data_size;
243 	void *data;
244 };
245 
246 struct ptp_ocp_ext_info {
247 	int index;
248 	irqreturn_t (*irq_fcn)(int irq, void *priv);
249 	int (*enable)(void *priv, u32 req, bool enable);
250 };
251 
252 struct ptp_ocp_ext_src {
253 	void __iomem		*mem;
254 	struct ptp_ocp		*bp;
255 	struct ptp_ocp_ext_info	*info;
256 	int			irq_vec;
257 };
258 
259 enum ptp_ocp_sma_mode {
260 	SMA_MODE_IN,
261 	SMA_MODE_OUT,
262 };
263 
264 struct ptp_ocp_sma_connector {
265 	enum	ptp_ocp_sma_mode mode;
266 	bool	fixed_fcn;
267 	bool	fixed_dir;
268 	bool	disabled;
269 	u8	default_fcn;
270 };
271 
272 struct ocp_attr_group {
273 	u64 cap;
274 	const struct attribute_group *group;
275 };
276 
277 #define OCP_CAP_BASIC	BIT(0)
278 #define OCP_CAP_SIGNAL	BIT(1)
279 #define OCP_CAP_FREQ	BIT(2)
280 
281 struct ptp_ocp_signal {
282 	ktime_t		period;
283 	ktime_t		pulse;
284 	ktime_t		phase;
285 	ktime_t		start;
286 	int		duty;
287 	bool		polarity;
288 	bool		running;
289 };
290 
291 struct ptp_ocp_serial_port {
292 	int line;
293 	int baud;
294 };
295 
296 #define OCP_BOARD_ID_LEN		13
297 #define OCP_SERIAL_LEN			6
298 
299 struct ptp_ocp {
300 	struct pci_dev		*pdev;
301 	struct device		dev;
302 	spinlock_t		lock;
303 	struct ocp_reg __iomem	*reg;
304 	struct tod_reg __iomem	*tod;
305 	struct pps_reg __iomem	*pps_to_ext;
306 	struct pps_reg __iomem	*pps_to_clk;
307 	struct board_config_reg __iomem	*board_config;
308 	struct gpio_reg __iomem	*pps_select;
309 	struct gpio_reg __iomem	*sma_map1;
310 	struct gpio_reg __iomem	*sma_map2;
311 	struct irig_master_reg	__iomem *irig_out;
312 	struct irig_slave_reg	__iomem *irig_in;
313 	struct dcf_master_reg	__iomem *dcf_out;
314 	struct dcf_slave_reg	__iomem *dcf_in;
315 	struct tod_reg		__iomem *nmea_out;
316 	struct frequency_reg	__iomem *freq_in[4];
317 	struct ptp_ocp_ext_src	*signal_out[4];
318 	struct ptp_ocp_ext_src	*pps;
319 	struct ptp_ocp_ext_src	*ts0;
320 	struct ptp_ocp_ext_src	*ts1;
321 	struct ptp_ocp_ext_src	*ts2;
322 	struct ptp_ocp_ext_src	*ts3;
323 	struct ptp_ocp_ext_src	*ts4;
324 	struct ocp_art_gpio_reg __iomem *art_sma;
325 	struct img_reg __iomem	*image;
326 	struct ptp_clock	*ptp;
327 	struct ptp_clock_info	ptp_info;
328 	struct platform_device	*i2c_ctrl;
329 	struct platform_device	*spi_flash;
330 	struct clk_hw		*i2c_clk;
331 	struct timer_list	watchdog;
332 	const struct attribute_group **attr_group;
333 	const struct ptp_ocp_eeprom_map *eeprom_map;
334 	struct dentry		*debug_root;
335 	time64_t		gnss_lost;
336 	int			id;
337 	int			n_irqs;
338 	struct ptp_ocp_serial_port	gnss_port;
339 	struct ptp_ocp_serial_port	gnss2_port;
340 	struct ptp_ocp_serial_port	mac_port;   /* miniature atomic clock */
341 	struct ptp_ocp_serial_port	nmea_port;
342 	bool			fw_loader;
343 	u8			fw_tag;
344 	u16			fw_version;
345 	u8			board_id[OCP_BOARD_ID_LEN];
346 	u8			serial[OCP_SERIAL_LEN];
347 	bool			has_eeprom_data;
348 	u32			pps_req_map;
349 	int			flash_start;
350 	u32			utc_tai_offset;
351 	u32			ts_window_adjust;
352 	u64			fw_cap;
353 	struct ptp_ocp_signal	signal[4];
354 	struct ptp_ocp_sma_connector sma[4];
355 	const struct ocp_sma_op *sma_op;
356 };
357 
358 #define OCP_REQ_TIMESTAMP	BIT(0)
359 #define OCP_REQ_PPS		BIT(1)
360 
361 struct ocp_resource {
362 	unsigned long offset;
363 	int size;
364 	int irq_vec;
365 	int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
366 	void *extra;
367 	unsigned long bp_offset;
368 	const char * const name;
369 };
370 
371 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
372 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
373 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
374 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
375 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
376 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
377 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
378 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
379 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
380 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
381 				      struct ptp_perout_request *req);
382 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
383 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
384 
385 static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
386 
387 static const struct ocp_attr_group fb_timecard_groups[];
388 
389 static const struct ocp_attr_group art_timecard_groups[];
390 
391 struct ptp_ocp_eeprom_map {
392 	u16	off;
393 	u16	len;
394 	u32	bp_offset;
395 	const void * const tag;
396 };
397 
398 #define EEPROM_ENTRY(addr, member)				\
399 	.off = addr,						\
400 	.len = sizeof_field(struct ptp_ocp, member),		\
401 	.bp_offset = offsetof(struct ptp_ocp, member)
402 
403 #define BP_MAP_ENTRY_ADDR(bp, map) ({				\
404 	(void *)((uintptr_t)(bp) + (map)->bp_offset);		\
405 })
406 
407 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
408 	{ EEPROM_ENTRY(0x43, board_id) },
409 	{ EEPROM_ENTRY(0x00, serial), .tag = "mac" },
410 	{ }
411 };
412 
413 static struct ptp_ocp_eeprom_map art_eeprom_map[] = {
414 	{ EEPROM_ENTRY(0x200 + 0x43, board_id) },
415 	{ EEPROM_ENTRY(0x200 + 0x63, serial) },
416 	{ }
417 };
418 
419 #define bp_assign_entry(bp, res, val) ({				\
420 	uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset;		\
421 	*(typeof(val) *)addr = val;					\
422 })
423 
424 #define OCP_RES_LOCATION(member) \
425 	.name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
426 
427 #define OCP_MEM_RESOURCE(member) \
428 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
429 
430 #define OCP_SERIAL_RESOURCE(member) \
431 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
432 
433 #define OCP_I2C_RESOURCE(member) \
434 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
435 
436 #define OCP_SPI_RESOURCE(member) \
437 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
438 
439 #define OCP_EXT_RESOURCE(member) \
440 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
441 
442 /* This is the MSI vector mapping used.
443  * 0: PPS (TS5)
444  * 1: TS0
445  * 2: TS1
446  * 3: GNSS1
447  * 4: GNSS2
448  * 5: MAC
449  * 6: TS2
450  * 7: I2C controller
451  * 8: HWICAP (notused)
452  * 9: SPI Flash
453  * 10: NMEA
454  * 11: Signal Generator 1
455  * 12: Signal Generator 2
456  * 13: Signal Generator 3
457  * 14: Signal Generator 4
458  * 15: TS3
459  * 16: TS4
460  --
461  * 8: Orolia TS1
462  * 10: Orolia TS2
463  * 11: Orolia TS0 (GNSS)
464  * 12: Orolia PPS
465  * 14: Orolia TS3
466  * 15: Orolia TS4
467  */
468 
469 static struct ocp_resource ocp_fb_resource[] = {
470 	{
471 		OCP_MEM_RESOURCE(reg),
472 		.offset = 0x01000000, .size = 0x10000,
473 	},
474 	{
475 		OCP_EXT_RESOURCE(ts0),
476 		.offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
477 		.extra = &(struct ptp_ocp_ext_info) {
478 			.index = 0,
479 			.irq_fcn = ptp_ocp_ts_irq,
480 			.enable = ptp_ocp_ts_enable,
481 		},
482 	},
483 	{
484 		OCP_EXT_RESOURCE(ts1),
485 		.offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
486 		.extra = &(struct ptp_ocp_ext_info) {
487 			.index = 1,
488 			.irq_fcn = ptp_ocp_ts_irq,
489 			.enable = ptp_ocp_ts_enable,
490 		},
491 	},
492 	{
493 		OCP_EXT_RESOURCE(ts2),
494 		.offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
495 		.extra = &(struct ptp_ocp_ext_info) {
496 			.index = 2,
497 			.irq_fcn = ptp_ocp_ts_irq,
498 			.enable = ptp_ocp_ts_enable,
499 		},
500 	},
501 	{
502 		OCP_EXT_RESOURCE(ts3),
503 		.offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
504 		.extra = &(struct ptp_ocp_ext_info) {
505 			.index = 3,
506 			.irq_fcn = ptp_ocp_ts_irq,
507 			.enable = ptp_ocp_ts_enable,
508 		},
509 	},
510 	{
511 		OCP_EXT_RESOURCE(ts4),
512 		.offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
513 		.extra = &(struct ptp_ocp_ext_info) {
514 			.index = 4,
515 			.irq_fcn = ptp_ocp_ts_irq,
516 			.enable = ptp_ocp_ts_enable,
517 		},
518 	},
519 	/* Timestamp for PHC and/or PPS generator */
520 	{
521 		OCP_EXT_RESOURCE(pps),
522 		.offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
523 		.extra = &(struct ptp_ocp_ext_info) {
524 			.index = 5,
525 			.irq_fcn = ptp_ocp_ts_irq,
526 			.enable = ptp_ocp_ts_enable,
527 		},
528 	},
529 	{
530 		OCP_EXT_RESOURCE(signal_out[0]),
531 		.offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
532 		.extra = &(struct ptp_ocp_ext_info) {
533 			.index = 1,
534 			.irq_fcn = ptp_ocp_signal_irq,
535 			.enable = ptp_ocp_signal_enable,
536 		},
537 	},
538 	{
539 		OCP_EXT_RESOURCE(signal_out[1]),
540 		.offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
541 		.extra = &(struct ptp_ocp_ext_info) {
542 			.index = 2,
543 			.irq_fcn = ptp_ocp_signal_irq,
544 			.enable = ptp_ocp_signal_enable,
545 		},
546 	},
547 	{
548 		OCP_EXT_RESOURCE(signal_out[2]),
549 		.offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
550 		.extra = &(struct ptp_ocp_ext_info) {
551 			.index = 3,
552 			.irq_fcn = ptp_ocp_signal_irq,
553 			.enable = ptp_ocp_signal_enable,
554 		},
555 	},
556 	{
557 		OCP_EXT_RESOURCE(signal_out[3]),
558 		.offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
559 		.extra = &(struct ptp_ocp_ext_info) {
560 			.index = 4,
561 			.irq_fcn = ptp_ocp_signal_irq,
562 			.enable = ptp_ocp_signal_enable,
563 		},
564 	},
565 	{
566 		OCP_MEM_RESOURCE(pps_to_ext),
567 		.offset = 0x01030000, .size = 0x10000,
568 	},
569 	{
570 		OCP_MEM_RESOURCE(pps_to_clk),
571 		.offset = 0x01040000, .size = 0x10000,
572 	},
573 	{
574 		OCP_MEM_RESOURCE(tod),
575 		.offset = 0x01050000, .size = 0x10000,
576 	},
577 	{
578 		OCP_MEM_RESOURCE(irig_in),
579 		.offset = 0x01070000, .size = 0x10000,
580 	},
581 	{
582 		OCP_MEM_RESOURCE(irig_out),
583 		.offset = 0x01080000, .size = 0x10000,
584 	},
585 	{
586 		OCP_MEM_RESOURCE(dcf_in),
587 		.offset = 0x01090000, .size = 0x10000,
588 	},
589 	{
590 		OCP_MEM_RESOURCE(dcf_out),
591 		.offset = 0x010A0000, .size = 0x10000,
592 	},
593 	{
594 		OCP_MEM_RESOURCE(nmea_out),
595 		.offset = 0x010B0000, .size = 0x10000,
596 	},
597 	{
598 		OCP_MEM_RESOURCE(image),
599 		.offset = 0x00020000, .size = 0x1000,
600 	},
601 	{
602 		OCP_MEM_RESOURCE(pps_select),
603 		.offset = 0x00130000, .size = 0x1000,
604 	},
605 	{
606 		OCP_MEM_RESOURCE(sma_map1),
607 		.offset = 0x00140000, .size = 0x1000,
608 	},
609 	{
610 		OCP_MEM_RESOURCE(sma_map2),
611 		.offset = 0x00220000, .size = 0x1000,
612 	},
613 	{
614 		OCP_I2C_RESOURCE(i2c_ctrl),
615 		.offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
616 		.extra = &(struct ptp_ocp_i2c_info) {
617 			.name = "xiic-i2c",
618 			.fixed_rate = 50000000,
619 			.data_size = sizeof(struct xiic_i2c_platform_data),
620 			.data = &(struct xiic_i2c_platform_data) {
621 				.num_devices = 2,
622 				.devices = (struct i2c_board_info[]) {
623 					{ I2C_BOARD_INFO("24c02", 0x50) },
624 					{ I2C_BOARD_INFO("24mac402", 0x58),
625 					  .platform_data = "mac" },
626 				},
627 			},
628 		},
629 	},
630 	{
631 		OCP_SERIAL_RESOURCE(gnss_port),
632 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
633 		.extra = &(struct ptp_ocp_serial_port) {
634 			.baud = 115200,
635 		},
636 	},
637 	{
638 		OCP_SERIAL_RESOURCE(gnss2_port),
639 		.offset = 0x00170000 + 0x1000, .irq_vec = 4,
640 		.extra = &(struct ptp_ocp_serial_port) {
641 			.baud = 115200,
642 		},
643 	},
644 	{
645 		OCP_SERIAL_RESOURCE(mac_port),
646 		.offset = 0x00180000 + 0x1000, .irq_vec = 5,
647 		.extra = &(struct ptp_ocp_serial_port) {
648 			.baud = 57600,
649 		},
650 	},
651 	{
652 		OCP_SERIAL_RESOURCE(nmea_port),
653 		.offset = 0x00190000 + 0x1000, .irq_vec = 10,
654 	},
655 	{
656 		OCP_SPI_RESOURCE(spi_flash),
657 		.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
658 		.extra = &(struct ptp_ocp_flash_info) {
659 			.name = "xilinx_spi", .pci_offset = 0,
660 			.data_size = sizeof(struct xspi_platform_data),
661 			.data = &(struct xspi_platform_data) {
662 				.num_chipselect = 1,
663 				.bits_per_word = 8,
664 				.num_devices = 1,
665 				.devices = &(struct spi_board_info) {
666 					.modalias = "spi-nor",
667 				},
668 			},
669 		},
670 	},
671 	{
672 		OCP_MEM_RESOURCE(freq_in[0]),
673 		.offset = 0x01200000, .size = 0x10000,
674 	},
675 	{
676 		OCP_MEM_RESOURCE(freq_in[1]),
677 		.offset = 0x01210000, .size = 0x10000,
678 	},
679 	{
680 		OCP_MEM_RESOURCE(freq_in[2]),
681 		.offset = 0x01220000, .size = 0x10000,
682 	},
683 	{
684 		OCP_MEM_RESOURCE(freq_in[3]),
685 		.offset = 0x01230000, .size = 0x10000,
686 	},
687 	{
688 		.setup = ptp_ocp_fb_board_init,
689 	},
690 	{ }
691 };
692 
693 #define OCP_ART_CONFIG_SIZE		144
694 #define OCP_ART_TEMP_TABLE_SIZE		368
695 
696 struct ocp_art_gpio_reg {
697 	struct {
698 		u32	gpio;
699 		u32	__pad[3];
700 	} map[4];
701 };
702 
703 static struct ocp_resource ocp_art_resource[] = {
704 	{
705 		OCP_MEM_RESOURCE(reg),
706 		.offset = 0x01000000, .size = 0x10000,
707 	},
708 	{
709 		OCP_SERIAL_RESOURCE(gnss_port),
710 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
711 		.extra = &(struct ptp_ocp_serial_port) {
712 			.baud = 115200,
713 		},
714 	},
715 	{
716 		OCP_MEM_RESOURCE(art_sma),
717 		.offset = 0x003C0000, .size = 0x1000,
718 	},
719 	/* Timestamp associated with GNSS1 receiver PPS */
720 	{
721 		OCP_EXT_RESOURCE(ts0),
722 		.offset = 0x360000, .size = 0x20, .irq_vec = 12,
723 		.extra = &(struct ptp_ocp_ext_info) {
724 			.index = 0,
725 			.irq_fcn = ptp_ocp_ts_irq,
726 			.enable = ptp_ocp_ts_enable,
727 		},
728 	},
729 	{
730 		OCP_EXT_RESOURCE(ts1),
731 		.offset = 0x380000, .size = 0x20, .irq_vec = 8,
732 		.extra = &(struct ptp_ocp_ext_info) {
733 			.index = 1,
734 			.irq_fcn = ptp_ocp_ts_irq,
735 			.enable = ptp_ocp_ts_enable,
736 		},
737 	},
738 	{
739 		OCP_EXT_RESOURCE(ts2),
740 		.offset = 0x390000, .size = 0x20, .irq_vec = 10,
741 		.extra = &(struct ptp_ocp_ext_info) {
742 			.index = 2,
743 			.irq_fcn = ptp_ocp_ts_irq,
744 			.enable = ptp_ocp_ts_enable,
745 		},
746 	},
747 	{
748 		OCP_EXT_RESOURCE(ts3),
749 		.offset = 0x3A0000, .size = 0x20, .irq_vec = 14,
750 		.extra = &(struct ptp_ocp_ext_info) {
751 			.index = 3,
752 			.irq_fcn = ptp_ocp_ts_irq,
753 			.enable = ptp_ocp_ts_enable,
754 		},
755 	},
756 	{
757 		OCP_EXT_RESOURCE(ts4),
758 		.offset = 0x3B0000, .size = 0x20, .irq_vec = 15,
759 		.extra = &(struct ptp_ocp_ext_info) {
760 			.index = 4,
761 			.irq_fcn = ptp_ocp_ts_irq,
762 			.enable = ptp_ocp_ts_enable,
763 		},
764 	},
765 	/* Timestamp associated with Internal PPS of the card */
766 	{
767 		OCP_EXT_RESOURCE(pps),
768 		.offset = 0x00330000, .size = 0x20, .irq_vec = 11,
769 		.extra = &(struct ptp_ocp_ext_info) {
770 			.index = 5,
771 			.irq_fcn = ptp_ocp_ts_irq,
772 			.enable = ptp_ocp_ts_enable,
773 		},
774 	},
775 	{
776 		OCP_SPI_RESOURCE(spi_flash),
777 		.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
778 		.extra = &(struct ptp_ocp_flash_info) {
779 			.name = "spi_altera", .pci_offset = 0,
780 			.data_size = sizeof(struct altera_spi_platform_data),
781 			.data = &(struct altera_spi_platform_data) {
782 				.num_chipselect = 1,
783 				.num_devices = 1,
784 				.devices = &(struct spi_board_info) {
785 					.modalias = "spi-nor",
786 				},
787 			},
788 		},
789 	},
790 	{
791 		OCP_I2C_RESOURCE(i2c_ctrl),
792 		.offset = 0x350000, .size = 0x100, .irq_vec = 4,
793 		.extra = &(struct ptp_ocp_i2c_info) {
794 			.name = "ocores-i2c",
795 			.fixed_rate = 400000,
796 			.data_size = sizeof(struct ocores_i2c_platform_data),
797 			.data = &(struct ocores_i2c_platform_data) {
798 				.clock_khz = 125000,
799 				.bus_khz = 400,
800 				.num_devices = 1,
801 				.devices = &(struct i2c_board_info) {
802 					I2C_BOARD_INFO("24c08", 0x50),
803 				},
804 			},
805 		},
806 	},
807 	{
808 		OCP_SERIAL_RESOURCE(mac_port),
809 		.offset = 0x00190000, .irq_vec = 7,
810 		.extra = &(struct ptp_ocp_serial_port) {
811 			.baud = 9600,
812 		},
813 	},
814 	{
815 		OCP_MEM_RESOURCE(board_config),
816 		.offset = 0x210000, .size = 0x1000,
817 	},
818 	{
819 		.setup = ptp_ocp_art_board_init,
820 	},
821 	{ }
822 };
823 
824 static const struct pci_device_id ptp_ocp_pcidev_id[] = {
825 	{ PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
826 	{ PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
827 	{ PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) },
828 	{ }
829 };
830 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
831 
832 static DEFINE_MUTEX(ptp_ocp_lock);
833 static DEFINE_IDR(ptp_ocp_idr);
834 
835 struct ocp_selector {
836 	const char *name;
837 	int value;
838 };
839 
840 static const struct ocp_selector ptp_ocp_clock[] = {
841 	{ .name = "NONE",	.value = 0 },
842 	{ .name = "TOD",	.value = 1 },
843 	{ .name = "IRIG",	.value = 2 },
844 	{ .name = "PPS",	.value = 3 },
845 	{ .name = "PTP",	.value = 4 },
846 	{ .name = "RTC",	.value = 5 },
847 	{ .name = "DCF",	.value = 6 },
848 	{ .name = "REGS",	.value = 0xfe },
849 	{ .name = "EXT",	.value = 0xff },
850 	{ }
851 };
852 
853 #define SMA_DISABLE		BIT(16)
854 #define SMA_ENABLE		BIT(15)
855 #define SMA_SELECT_MASK		GENMASK(14, 0)
856 
857 static const struct ocp_selector ptp_ocp_sma_in[] = {
858 	{ .name = "10Mhz",	.value = 0x0000 },
859 	{ .name = "PPS1",	.value = 0x0001 },
860 	{ .name = "PPS2",	.value = 0x0002 },
861 	{ .name = "TS1",	.value = 0x0004 },
862 	{ .name = "TS2",	.value = 0x0008 },
863 	{ .name = "IRIG",	.value = 0x0010 },
864 	{ .name = "DCF",	.value = 0x0020 },
865 	{ .name = "TS3",	.value = 0x0040 },
866 	{ .name = "TS4",	.value = 0x0080 },
867 	{ .name = "FREQ1",	.value = 0x0100 },
868 	{ .name = "FREQ2",	.value = 0x0200 },
869 	{ .name = "FREQ3",	.value = 0x0400 },
870 	{ .name = "FREQ4",	.value = 0x0800 },
871 	{ .name = "None",	.value = SMA_DISABLE },
872 	{ }
873 };
874 
875 static const struct ocp_selector ptp_ocp_sma_out[] = {
876 	{ .name = "10Mhz",	.value = 0x0000 },
877 	{ .name = "PHC",	.value = 0x0001 },
878 	{ .name = "MAC",	.value = 0x0002 },
879 	{ .name = "GNSS1",	.value = 0x0004 },
880 	{ .name = "GNSS2",	.value = 0x0008 },
881 	{ .name = "IRIG",	.value = 0x0010 },
882 	{ .name = "DCF",	.value = 0x0020 },
883 	{ .name = "GEN1",	.value = 0x0040 },
884 	{ .name = "GEN2",	.value = 0x0080 },
885 	{ .name = "GEN3",	.value = 0x0100 },
886 	{ .name = "GEN4",	.value = 0x0200 },
887 	{ .name = "GND",	.value = 0x2000 },
888 	{ .name = "VCC",	.value = 0x4000 },
889 	{ }
890 };
891 
892 static const struct ocp_selector ptp_ocp_art_sma_in[] = {
893 	{ .name = "PPS1",	.value = 0x0001 },
894 	{ .name = "10Mhz",	.value = 0x0008 },
895 	{ }
896 };
897 
898 static const struct ocp_selector ptp_ocp_art_sma_out[] = {
899 	{ .name = "PHC",	.value = 0x0002 },
900 	{ .name = "GNSS",	.value = 0x0004 },
901 	{ .name = "10Mhz",	.value = 0x0010 },
902 	{ }
903 };
904 
905 struct ocp_sma_op {
906 	const struct ocp_selector *tbl[2];
907 	void (*init)(struct ptp_ocp *bp);
908 	u32 (*get)(struct ptp_ocp *bp, int sma_nr);
909 	int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
910 	int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
911 };
912 
913 static void
914 ptp_ocp_sma_init(struct ptp_ocp *bp)
915 {
916 	return bp->sma_op->init(bp);
917 }
918 
919 static u32
920 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
921 {
922 	return bp->sma_op->get(bp, sma_nr);
923 }
924 
925 static int
926 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
927 {
928 	return bp->sma_op->set_inputs(bp, sma_nr, val);
929 }
930 
931 static int
932 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
933 {
934 	return bp->sma_op->set_output(bp, sma_nr, val);
935 }
936 
937 static const char *
938 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
939 {
940 	int i;
941 
942 	for (i = 0; tbl[i].name; i++)
943 		if (tbl[i].value == val)
944 			return tbl[i].name;
945 	return NULL;
946 }
947 
948 static int
949 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
950 {
951 	const char *select;
952 	int i;
953 
954 	for (i = 0; tbl[i].name; i++) {
955 		select = tbl[i].name;
956 		if (!strncasecmp(name, select, strlen(select)))
957 			return tbl[i].value;
958 	}
959 	return -EINVAL;
960 }
961 
962 static ssize_t
963 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
964 {
965 	ssize_t count;
966 	int i;
967 
968 	count = 0;
969 	for (i = 0; tbl[i].name; i++)
970 		count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
971 	if (count)
972 		count--;
973 	count += sysfs_emit_at(buf, count, "\n");
974 	return count;
975 }
976 
977 static int
978 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
979 			 struct ptp_system_timestamp *sts)
980 {
981 	u32 ctrl, time_sec, time_ns;
982 	int i;
983 
984 	ptp_read_system_prets(sts);
985 
986 	ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
987 	iowrite32(ctrl, &bp->reg->ctrl);
988 
989 	for (i = 0; i < 100; i++) {
990 		ctrl = ioread32(&bp->reg->ctrl);
991 		if (ctrl & OCP_CTRL_READ_TIME_DONE)
992 			break;
993 	}
994 	ptp_read_system_postts(sts);
995 
996 	if (sts && bp->ts_window_adjust) {
997 		s64 ns = timespec64_to_ns(&sts->post_ts);
998 
999 		sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
1000 	}
1001 
1002 	time_ns = ioread32(&bp->reg->time_ns);
1003 	time_sec = ioread32(&bp->reg->time_sec);
1004 
1005 	ts->tv_sec = time_sec;
1006 	ts->tv_nsec = time_ns;
1007 
1008 	return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
1009 }
1010 
1011 static int
1012 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
1013 		 struct ptp_system_timestamp *sts)
1014 {
1015 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1016 	unsigned long flags;
1017 	int err;
1018 
1019 	spin_lock_irqsave(&bp->lock, flags);
1020 	err = __ptp_ocp_gettime_locked(bp, ts, sts);
1021 	spin_unlock_irqrestore(&bp->lock, flags);
1022 
1023 	return err;
1024 }
1025 
1026 static void
1027 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
1028 {
1029 	u32 ctrl, time_sec, time_ns;
1030 	u32 select;
1031 
1032 	time_ns = ts->tv_nsec;
1033 	time_sec = ts->tv_sec;
1034 
1035 	select = ioread32(&bp->reg->select);
1036 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1037 
1038 	iowrite32(time_ns, &bp->reg->adjust_ns);
1039 	iowrite32(time_sec, &bp->reg->adjust_sec);
1040 
1041 	ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
1042 	iowrite32(ctrl, &bp->reg->ctrl);
1043 
1044 	/* restore clock selection */
1045 	iowrite32(select >> 16, &bp->reg->select);
1046 }
1047 
1048 static int
1049 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
1050 {
1051 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1052 	unsigned long flags;
1053 
1054 	spin_lock_irqsave(&bp->lock, flags);
1055 	__ptp_ocp_settime_locked(bp, ts);
1056 	spin_unlock_irqrestore(&bp->lock, flags);
1057 
1058 	return 0;
1059 }
1060 
1061 static void
1062 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
1063 {
1064 	u32 select, ctrl;
1065 
1066 	select = ioread32(&bp->reg->select);
1067 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1068 
1069 	iowrite32(adj_val, &bp->reg->offset_ns);
1070 	iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
1071 
1072 	ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
1073 	iowrite32(ctrl, &bp->reg->ctrl);
1074 
1075 	/* restore clock selection */
1076 	iowrite32(select >> 16, &bp->reg->select);
1077 }
1078 
1079 static void
1080 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
1081 {
1082 	struct timespec64 ts;
1083 	unsigned long flags;
1084 	int err;
1085 
1086 	spin_lock_irqsave(&bp->lock, flags);
1087 	err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
1088 	if (likely(!err)) {
1089 		set_normalized_timespec64(&ts, ts.tv_sec,
1090 					  ts.tv_nsec + delta_ns);
1091 		__ptp_ocp_settime_locked(bp, &ts);
1092 	}
1093 	spin_unlock_irqrestore(&bp->lock, flags);
1094 }
1095 
1096 static int
1097 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
1098 {
1099 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1100 	unsigned long flags;
1101 	u32 adj_ns, sign;
1102 
1103 	if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
1104 		ptp_ocp_adjtime_coarse(bp, delta_ns);
1105 		return 0;
1106 	}
1107 
1108 	sign = delta_ns < 0 ? BIT(31) : 0;
1109 	adj_ns = sign ? -delta_ns : delta_ns;
1110 
1111 	spin_lock_irqsave(&bp->lock, flags);
1112 	__ptp_ocp_adjtime_locked(bp, sign | adj_ns);
1113 	spin_unlock_irqrestore(&bp->lock, flags);
1114 
1115 	return 0;
1116 }
1117 
1118 static int
1119 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
1120 {
1121 	if (scaled_ppm == 0)
1122 		return 0;
1123 
1124 	return -EOPNOTSUPP;
1125 }
1126 
1127 static int
1128 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
1129 {
1130 	return -EOPNOTSUPP;
1131 }
1132 
1133 static int
1134 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
1135 	       int on)
1136 {
1137 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1138 	struct ptp_ocp_ext_src *ext = NULL;
1139 	u32 req;
1140 	int err;
1141 
1142 	switch (rq->type) {
1143 	case PTP_CLK_REQ_EXTTS:
1144 		req = OCP_REQ_TIMESTAMP;
1145 		switch (rq->extts.index) {
1146 		case 0:
1147 			ext = bp->ts0;
1148 			break;
1149 		case 1:
1150 			ext = bp->ts1;
1151 			break;
1152 		case 2:
1153 			ext = bp->ts2;
1154 			break;
1155 		case 3:
1156 			ext = bp->ts3;
1157 			break;
1158 		case 4:
1159 			ext = bp->ts4;
1160 			break;
1161 		case 5:
1162 			ext = bp->pps;
1163 			break;
1164 		}
1165 		break;
1166 	case PTP_CLK_REQ_PPS:
1167 		req = OCP_REQ_PPS;
1168 		ext = bp->pps;
1169 		break;
1170 	case PTP_CLK_REQ_PEROUT:
1171 		switch (rq->perout.index) {
1172 		case 0:
1173 			/* This is a request for 1PPS on an output SMA.
1174 			 * Allow, but assume manual configuration.
1175 			 */
1176 			if (on && (rq->perout.period.sec != 1 ||
1177 				   rq->perout.period.nsec != 0))
1178 				return -EINVAL;
1179 			return 0;
1180 		case 1:
1181 		case 2:
1182 		case 3:
1183 		case 4:
1184 			req = rq->perout.index - 1;
1185 			ext = bp->signal_out[req];
1186 			err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
1187 			if (err)
1188 				return err;
1189 			break;
1190 		}
1191 		break;
1192 	default:
1193 		return -EOPNOTSUPP;
1194 	}
1195 
1196 	err = -ENXIO;
1197 	if (ext)
1198 		err = ext->info->enable(ext, req, on);
1199 
1200 	return err;
1201 }
1202 
1203 static int
1204 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
1205 	       enum ptp_pin_function func, unsigned chan)
1206 {
1207 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1208 	char buf[16];
1209 
1210 	switch (func) {
1211 	case PTP_PF_NONE:
1212 		snprintf(buf, sizeof(buf), "IN: None");
1213 		break;
1214 	case PTP_PF_EXTTS:
1215 		/* Allow timestamps, but require sysfs configuration. */
1216 		return 0;
1217 	case PTP_PF_PEROUT:
1218 		/* channel 0 is 1PPS from PHC.
1219 		 * channels 1..4 are the frequency generators.
1220 		 */
1221 		if (chan)
1222 			snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
1223 		else
1224 			snprintf(buf, sizeof(buf), "OUT: PHC");
1225 		break;
1226 	default:
1227 		return -EOPNOTSUPP;
1228 	}
1229 
1230 	return ptp_ocp_sma_store(bp, buf, pin + 1);
1231 }
1232 
1233 static const struct ptp_clock_info ptp_ocp_clock_info = {
1234 	.owner		= THIS_MODULE,
1235 	.name		= KBUILD_MODNAME,
1236 	.max_adj	= 100000000,
1237 	.gettimex64	= ptp_ocp_gettimex,
1238 	.settime64	= ptp_ocp_settime,
1239 	.adjtime	= ptp_ocp_adjtime,
1240 	.adjfine	= ptp_ocp_null_adjfine,
1241 	.adjphase	= ptp_ocp_null_adjphase,
1242 	.enable		= ptp_ocp_enable,
1243 	.verify		= ptp_ocp_verify,
1244 	.pps		= true,
1245 	.n_ext_ts	= 6,
1246 	.n_per_out	= 5,
1247 };
1248 
1249 static void
1250 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
1251 {
1252 	u32 ctrl, select;
1253 
1254 	select = ioread32(&bp->reg->select);
1255 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1256 
1257 	iowrite32(0, &bp->reg->drift_ns);
1258 
1259 	ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
1260 	iowrite32(ctrl, &bp->reg->ctrl);
1261 
1262 	/* restore clock selection */
1263 	iowrite32(select >> 16, &bp->reg->select);
1264 }
1265 
1266 static void
1267 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
1268 {
1269 	unsigned long flags;
1270 
1271 	spin_lock_irqsave(&bp->lock, flags);
1272 
1273 	bp->utc_tai_offset = val;
1274 
1275 	if (bp->irig_out)
1276 		iowrite32(val, &bp->irig_out->adj_sec);
1277 	if (bp->dcf_out)
1278 		iowrite32(val, &bp->dcf_out->adj_sec);
1279 	if (bp->nmea_out)
1280 		iowrite32(val, &bp->nmea_out->adj_sec);
1281 
1282 	spin_unlock_irqrestore(&bp->lock, flags);
1283 }
1284 
1285 static void
1286 ptp_ocp_watchdog(struct timer_list *t)
1287 {
1288 	struct ptp_ocp *bp = from_timer(bp, t, watchdog);
1289 	unsigned long flags;
1290 	u32 status, utc_offset;
1291 
1292 	status = ioread32(&bp->pps_to_clk->status);
1293 
1294 	if (status & PPS_STATUS_SUPERV_ERR) {
1295 		iowrite32(status, &bp->pps_to_clk->status);
1296 		if (!bp->gnss_lost) {
1297 			spin_lock_irqsave(&bp->lock, flags);
1298 			__ptp_ocp_clear_drift_locked(bp);
1299 			spin_unlock_irqrestore(&bp->lock, flags);
1300 			bp->gnss_lost = ktime_get_real_seconds();
1301 		}
1302 
1303 	} else if (bp->gnss_lost) {
1304 		bp->gnss_lost = 0;
1305 	}
1306 
1307 	/* if GNSS provides correct data we can rely on
1308 	 * it to get leap second information
1309 	 */
1310 	if (bp->tod) {
1311 		status = ioread32(&bp->tod->utc_status);
1312 		utc_offset = status & TOD_STATUS_UTC_MASK;
1313 		if (status & TOD_STATUS_UTC_VALID &&
1314 		    utc_offset != bp->utc_tai_offset)
1315 			ptp_ocp_utc_distribute(bp, utc_offset);
1316 	}
1317 
1318 	mod_timer(&bp->watchdog, jiffies + HZ);
1319 }
1320 
1321 static void
1322 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
1323 {
1324 	ktime_t start, end;
1325 	ktime_t delay;
1326 	u32 ctrl;
1327 
1328 	ctrl = ioread32(&bp->reg->ctrl);
1329 	ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1330 
1331 	iowrite32(ctrl, &bp->reg->ctrl);
1332 
1333 	start = ktime_get_ns();
1334 
1335 	ctrl = ioread32(&bp->reg->ctrl);
1336 
1337 	end = ktime_get_ns();
1338 
1339 	delay = end - start;
1340 	bp->ts_window_adjust = (delay >> 5) * 3;
1341 }
1342 
1343 static int
1344 ptp_ocp_init_clock(struct ptp_ocp *bp)
1345 {
1346 	struct timespec64 ts;
1347 	bool sync;
1348 	u32 ctrl;
1349 
1350 	ctrl = OCP_CTRL_ENABLE;
1351 	iowrite32(ctrl, &bp->reg->ctrl);
1352 
1353 	/* NO DRIFT Correction */
1354 	/* offset_p:i 1/8, offset_i: 1/16, drift_p: 0, drift_i: 0 */
1355 	iowrite32(0x2000, &bp->reg->servo_offset_p);
1356 	iowrite32(0x1000, &bp->reg->servo_offset_i);
1357 	iowrite32(0,	  &bp->reg->servo_drift_p);
1358 	iowrite32(0,	  &bp->reg->servo_drift_i);
1359 
1360 	/* latch servo values */
1361 	ctrl |= OCP_CTRL_ADJUST_SERVO;
1362 	iowrite32(ctrl, &bp->reg->ctrl);
1363 
1364 	if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
1365 		dev_err(&bp->pdev->dev, "clock not enabled\n");
1366 		return -ENODEV;
1367 	}
1368 
1369 	ptp_ocp_estimate_pci_timing(bp);
1370 
1371 	sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
1372 	if (!sync) {
1373 		ktime_get_clocktai_ts64(&ts);
1374 		ptp_ocp_settime(&bp->ptp_info, &ts);
1375 	}
1376 
1377 	/* If there is a clock supervisor, then enable the watchdog */
1378 	if (bp->pps_to_clk) {
1379 		timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
1380 		mod_timer(&bp->watchdog, jiffies + HZ);
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 static void
1387 ptp_ocp_tod_init(struct ptp_ocp *bp)
1388 {
1389 	u32 ctrl, reg;
1390 
1391 	ctrl = ioread32(&bp->tod->ctrl);
1392 	ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
1393 	ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
1394 	iowrite32(ctrl, &bp->tod->ctrl);
1395 
1396 	reg = ioread32(&bp->tod->utc_status);
1397 	if (reg & TOD_STATUS_UTC_VALID)
1398 		ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
1399 }
1400 
1401 static const char *
1402 ptp_ocp_tod_proto_name(const int idx)
1403 {
1404 	static const char * const proto_name[] = {
1405 		"NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
1406 		"UBX", "UBX_UTC", "UBX_LS", "UBX_none"
1407 	};
1408 	return proto_name[idx];
1409 }
1410 
1411 static const char *
1412 ptp_ocp_tod_gnss_name(int idx)
1413 {
1414 	static const char * const gnss_name[] = {
1415 		"ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
1416 		"Unknown"
1417 	};
1418 	if (idx >= ARRAY_SIZE(gnss_name))
1419 		idx = ARRAY_SIZE(gnss_name) - 1;
1420 	return gnss_name[idx];
1421 }
1422 
1423 struct ptp_ocp_nvmem_match_info {
1424 	struct ptp_ocp *bp;
1425 	const void * const tag;
1426 };
1427 
1428 static int
1429 ptp_ocp_nvmem_match(struct device *dev, const void *data)
1430 {
1431 	const struct ptp_ocp_nvmem_match_info *info = data;
1432 
1433 	dev = dev->parent;
1434 	if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
1435 		return 0;
1436 
1437 	while ((dev = dev->parent))
1438 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
1439 			return info->bp == dev_get_drvdata(dev);
1440 	return 0;
1441 }
1442 
1443 static inline struct nvmem_device *
1444 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
1445 {
1446 	struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
1447 
1448 	return nvmem_device_find(&info, ptp_ocp_nvmem_match);
1449 }
1450 
1451 static inline void
1452 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
1453 {
1454 	if (!IS_ERR_OR_NULL(*nvmemp))
1455 		nvmem_device_put(*nvmemp);
1456 	*nvmemp = NULL;
1457 }
1458 
1459 static void
1460 ptp_ocp_read_eeprom(struct ptp_ocp *bp)
1461 {
1462 	const struct ptp_ocp_eeprom_map *map;
1463 	struct nvmem_device *nvmem;
1464 	const void *tag;
1465 	int ret;
1466 
1467 	if (!bp->i2c_ctrl)
1468 		return;
1469 
1470 	tag = NULL;
1471 	nvmem = NULL;
1472 
1473 	for (map = bp->eeprom_map; map->len; map++) {
1474 		if (map->tag != tag) {
1475 			tag = map->tag;
1476 			ptp_ocp_nvmem_device_put(&nvmem);
1477 		}
1478 		if (!nvmem) {
1479 			nvmem = ptp_ocp_nvmem_device_get(bp, tag);
1480 			if (IS_ERR(nvmem)) {
1481 				ret = PTR_ERR(nvmem);
1482 				goto fail;
1483 			}
1484 		}
1485 		ret = nvmem_device_read(nvmem, map->off, map->len,
1486 					BP_MAP_ENTRY_ADDR(bp, map));
1487 		if (ret != map->len)
1488 			goto fail;
1489 	}
1490 
1491 	bp->has_eeprom_data = true;
1492 
1493 out:
1494 	ptp_ocp_nvmem_device_put(&nvmem);
1495 	return;
1496 
1497 fail:
1498 	dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
1499 	goto out;
1500 }
1501 
1502 static struct device *
1503 ptp_ocp_find_flash(struct ptp_ocp *bp)
1504 {
1505 	struct device *dev, *last;
1506 
1507 	last = NULL;
1508 	dev = &bp->spi_flash->dev;
1509 
1510 	while ((dev = device_find_any_child(dev))) {
1511 		if (!strcmp("mtd", dev_bus_name(dev)))
1512 			break;
1513 		put_device(last);
1514 		last = dev;
1515 	}
1516 	put_device(last);
1517 
1518 	return dev;
1519 }
1520 
1521 static int
1522 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
1523 			 const u8 **data, size_t *size)
1524 {
1525 	struct ptp_ocp *bp = devlink_priv(devlink);
1526 	const struct ptp_ocp_firmware_header *hdr;
1527 	size_t offset, length;
1528 	u16 crc;
1529 
1530 	hdr = (const struct ptp_ocp_firmware_header *)fw->data;
1531 	if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
1532 		devlink_flash_update_status_notify(devlink,
1533 			"No firmware header found, cancel firmware upgrade",
1534 			NULL, 0, 0);
1535 		return -EINVAL;
1536 	}
1537 
1538 	if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
1539 	    be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
1540 		devlink_flash_update_status_notify(devlink,
1541 			"Firmware image compatibility check failed",
1542 			NULL, 0, 0);
1543 		return -EINVAL;
1544 	}
1545 
1546 	offset = sizeof(*hdr);
1547 	length = be32_to_cpu(hdr->image_size);
1548 	if (length != (fw->size - offset)) {
1549 		devlink_flash_update_status_notify(devlink,
1550 			"Firmware image size check failed",
1551 			NULL, 0, 0);
1552 		return -EINVAL;
1553 	}
1554 
1555 	crc = crc16(0xffff, &fw->data[offset], length);
1556 	if (be16_to_cpu(hdr->crc) != crc) {
1557 		devlink_flash_update_status_notify(devlink,
1558 			"Firmware image CRC check failed",
1559 			NULL, 0, 0);
1560 		return -EINVAL;
1561 	}
1562 
1563 	*data = &fw->data[offset];
1564 	*size = length;
1565 
1566 	return 0;
1567 }
1568 
1569 static int
1570 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
1571 		      const struct firmware *fw)
1572 {
1573 	struct mtd_info *mtd = dev_get_drvdata(dev);
1574 	struct ptp_ocp *bp = devlink_priv(devlink);
1575 	size_t off, len, size, resid, wrote;
1576 	struct erase_info erase;
1577 	size_t base, blksz;
1578 	const u8 *data;
1579 	int err;
1580 
1581 	err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
1582 	if (err)
1583 		goto out;
1584 
1585 	off = 0;
1586 	base = bp->flash_start;
1587 	blksz = 4096;
1588 	resid = size;
1589 
1590 	while (resid) {
1591 		devlink_flash_update_status_notify(devlink, "Flashing",
1592 						   NULL, off, size);
1593 
1594 		len = min_t(size_t, resid, blksz);
1595 		erase.addr = base + off;
1596 		erase.len = blksz;
1597 
1598 		err = mtd_erase(mtd, &erase);
1599 		if (err)
1600 			goto out;
1601 
1602 		err = mtd_write(mtd, base + off, len, &wrote, data + off);
1603 		if (err)
1604 			goto out;
1605 
1606 		off += blksz;
1607 		resid -= len;
1608 	}
1609 out:
1610 	return err;
1611 }
1612 
1613 static int
1614 ptp_ocp_devlink_flash_update(struct devlink *devlink,
1615 			     struct devlink_flash_update_params *params,
1616 			     struct netlink_ext_ack *extack)
1617 {
1618 	struct ptp_ocp *bp = devlink_priv(devlink);
1619 	struct device *dev;
1620 	const char *msg;
1621 	int err;
1622 
1623 	dev = ptp_ocp_find_flash(bp);
1624 	if (!dev) {
1625 		dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
1626 		return -ENODEV;
1627 	}
1628 
1629 	devlink_flash_update_status_notify(devlink, "Preparing to flash",
1630 					   NULL, 0, 0);
1631 
1632 	err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
1633 
1634 	msg = err ? "Flash error" : "Flash complete";
1635 	devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
1636 
1637 	put_device(dev);
1638 	return err;
1639 }
1640 
1641 static int
1642 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
1643 			 struct netlink_ext_ack *extack)
1644 {
1645 	struct ptp_ocp *bp = devlink_priv(devlink);
1646 	const char *fw_image;
1647 	char buf[32];
1648 	int err;
1649 
1650 	fw_image = bp->fw_loader ? "loader" : "fw";
1651 	sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
1652 	err = devlink_info_version_running_put(req, fw_image, buf);
1653 	if (err)
1654 		return err;
1655 
1656 	if (!bp->has_eeprom_data) {
1657 		ptp_ocp_read_eeprom(bp);
1658 		if (!bp->has_eeprom_data)
1659 			return 0;
1660 	}
1661 
1662 	sprintf(buf, "%pM", bp->serial);
1663 	err = devlink_info_serial_number_put(req, buf);
1664 	if (err)
1665 		return err;
1666 
1667 	err = devlink_info_version_fixed_put(req,
1668 			DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
1669 			bp->board_id);
1670 	if (err)
1671 		return err;
1672 
1673 	return 0;
1674 }
1675 
1676 static const struct devlink_ops ptp_ocp_devlink_ops = {
1677 	.flash_update = ptp_ocp_devlink_flash_update,
1678 	.info_get = ptp_ocp_devlink_info_get,
1679 };
1680 
1681 static void __iomem *
1682 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
1683 {
1684 	struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
1685 
1686 	return devm_ioremap_resource(&bp->pdev->dev, &res);
1687 }
1688 
1689 static void __iomem *
1690 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1691 {
1692 	resource_size_t start;
1693 
1694 	start = pci_resource_start(bp->pdev, 0) + r->offset;
1695 	return __ptp_ocp_get_mem(bp, start, r->size);
1696 }
1697 
1698 static void
1699 ptp_ocp_set_irq_resource(struct resource *res, int irq)
1700 {
1701 	struct resource r = DEFINE_RES_IRQ(irq);
1702 	*res = r;
1703 }
1704 
1705 static void
1706 ptp_ocp_set_mem_resource(struct resource *res, resource_size_t start, int size)
1707 {
1708 	struct resource r = DEFINE_RES_MEM(start, size);
1709 	*res = r;
1710 }
1711 
1712 static int
1713 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
1714 {
1715 	struct ptp_ocp_flash_info *info;
1716 	struct pci_dev *pdev = bp->pdev;
1717 	struct platform_device *p;
1718 	struct resource res[2];
1719 	resource_size_t start;
1720 	int id;
1721 
1722 	start = pci_resource_start(pdev, 0) + r->offset;
1723 	ptp_ocp_set_mem_resource(&res[0], start, r->size);
1724 	ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1725 
1726 	info = r->extra;
1727 	id = pci_dev_id(pdev) << 1;
1728 	id += info->pci_offset;
1729 
1730 	p = platform_device_register_resndata(&pdev->dev, info->name, id,
1731 					      res, 2, info->data,
1732 					      info->data_size);
1733 	if (IS_ERR(p))
1734 		return PTR_ERR(p);
1735 
1736 	bp_assign_entry(bp, r, p);
1737 
1738 	return 0;
1739 }
1740 
1741 static struct platform_device *
1742 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
1743 {
1744 	struct ptp_ocp_i2c_info *info;
1745 	struct resource res[2];
1746 	resource_size_t start;
1747 
1748 	info = r->extra;
1749 	start = pci_resource_start(pdev, 0) + r->offset;
1750 	ptp_ocp_set_mem_resource(&res[0], start, r->size);
1751 	ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1752 
1753 	return platform_device_register_resndata(&pdev->dev, info->name,
1754 						 id, res, 2,
1755 						 info->data, info->data_size);
1756 }
1757 
1758 static int
1759 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
1760 {
1761 	struct pci_dev *pdev = bp->pdev;
1762 	struct ptp_ocp_i2c_info *info;
1763 	struct platform_device *p;
1764 	struct clk_hw *clk;
1765 	char buf[32];
1766 	int id;
1767 
1768 	info = r->extra;
1769 	id = pci_dev_id(bp->pdev);
1770 
1771 	sprintf(buf, "AXI.%d", id);
1772 	clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
1773 					 info->fixed_rate);
1774 	if (IS_ERR(clk))
1775 		return PTR_ERR(clk);
1776 	bp->i2c_clk = clk;
1777 
1778 	sprintf(buf, "%s.%d", info->name, id);
1779 	devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
1780 	p = ptp_ocp_i2c_bus(bp->pdev, r, id);
1781 	if (IS_ERR(p))
1782 		return PTR_ERR(p);
1783 
1784 	bp_assign_entry(bp, r, p);
1785 
1786 	return 0;
1787 }
1788 
1789 /* The expectation is that this is triggered only on error. */
1790 static irqreturn_t
1791 ptp_ocp_signal_irq(int irq, void *priv)
1792 {
1793 	struct ptp_ocp_ext_src *ext = priv;
1794 	struct signal_reg __iomem *reg = ext->mem;
1795 	struct ptp_ocp *bp = ext->bp;
1796 	u32 enable, status;
1797 	int gen;
1798 
1799 	gen = ext->info->index - 1;
1800 
1801 	enable = ioread32(&reg->enable);
1802 	status = ioread32(&reg->status);
1803 
1804 	/* disable generator on error */
1805 	if (status || !enable) {
1806 		iowrite32(0, &reg->intr_mask);
1807 		iowrite32(0, &reg->enable);
1808 		bp->signal[gen].running = false;
1809 	}
1810 
1811 	iowrite32(0, &reg->intr);	/* ack interrupt */
1812 
1813 	return IRQ_HANDLED;
1814 }
1815 
1816 static int
1817 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
1818 {
1819 	struct ptp_system_timestamp sts;
1820 	struct timespec64 ts;
1821 	ktime_t start_ns;
1822 	int err;
1823 
1824 	if (!s->period)
1825 		return 0;
1826 
1827 	if (!s->pulse)
1828 		s->pulse = ktime_divns(s->period * s->duty, 100);
1829 
1830 	err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
1831 	if (err)
1832 		return err;
1833 
1834 	start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
1835 	if (!s->start) {
1836 		/* roundup() does not work on 32-bit systems */
1837 		s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
1838 		s->start = ktime_add(s->start, s->phase);
1839 	}
1840 
1841 	if (s->duty < 1 || s->duty > 99)
1842 		return -EINVAL;
1843 
1844 	if (s->pulse < 1 || s->pulse > s->period)
1845 		return -EINVAL;
1846 
1847 	if (s->start < start_ns)
1848 		return -EINVAL;
1849 
1850 	bp->signal[gen] = *s;
1851 
1852 	return 0;
1853 }
1854 
1855 static int
1856 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
1857 			   struct ptp_perout_request *req)
1858 {
1859 	struct ptp_ocp_signal s = { };
1860 
1861 	s.polarity = bp->signal[gen].polarity;
1862 	s.period = ktime_set(req->period.sec, req->period.nsec);
1863 	if (!s.period)
1864 		return 0;
1865 
1866 	if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
1867 		s.pulse = ktime_set(req->on.sec, req->on.nsec);
1868 		s.duty = ktime_divns(s.pulse * 100, s.period);
1869 	}
1870 
1871 	if (req->flags & PTP_PEROUT_PHASE)
1872 		s.phase = ktime_set(req->phase.sec, req->phase.nsec);
1873 	else
1874 		s.start = ktime_set(req->start.sec, req->start.nsec);
1875 
1876 	return ptp_ocp_signal_set(bp, gen, &s);
1877 }
1878 
1879 static int
1880 ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
1881 {
1882 	struct ptp_ocp_ext_src *ext = priv;
1883 	struct signal_reg __iomem *reg = ext->mem;
1884 	struct ptp_ocp *bp = ext->bp;
1885 	struct timespec64 ts;
1886 	int gen;
1887 
1888 	gen = ext->info->index - 1;
1889 
1890 	iowrite32(0, &reg->intr_mask);
1891 	iowrite32(0, &reg->enable);
1892 	bp->signal[gen].running = false;
1893 	if (!enable)
1894 		return 0;
1895 
1896 	ts = ktime_to_timespec64(bp->signal[gen].start);
1897 	iowrite32(ts.tv_sec, &reg->start_sec);
1898 	iowrite32(ts.tv_nsec, &reg->start_ns);
1899 
1900 	ts = ktime_to_timespec64(bp->signal[gen].period);
1901 	iowrite32(ts.tv_sec, &reg->period_sec);
1902 	iowrite32(ts.tv_nsec, &reg->period_ns);
1903 
1904 	ts = ktime_to_timespec64(bp->signal[gen].pulse);
1905 	iowrite32(ts.tv_sec, &reg->pulse_sec);
1906 	iowrite32(ts.tv_nsec, &reg->pulse_ns);
1907 
1908 	iowrite32(bp->signal[gen].polarity, &reg->polarity);
1909 	iowrite32(0, &reg->repeat_count);
1910 
1911 	iowrite32(0, &reg->intr);		/* clear interrupt state */
1912 	iowrite32(1, &reg->intr_mask);		/* enable interrupt */
1913 	iowrite32(3, &reg->enable);		/* valid & enable */
1914 
1915 	bp->signal[gen].running = true;
1916 
1917 	return 0;
1918 }
1919 
1920 static irqreturn_t
1921 ptp_ocp_ts_irq(int irq, void *priv)
1922 {
1923 	struct ptp_ocp_ext_src *ext = priv;
1924 	struct ts_reg __iomem *reg = ext->mem;
1925 	struct ptp_clock_event ev;
1926 	u32 sec, nsec;
1927 
1928 	if (ext == ext->bp->pps) {
1929 		if (ext->bp->pps_req_map & OCP_REQ_PPS) {
1930 			ev.type = PTP_CLOCK_PPS;
1931 			ptp_clock_event(ext->bp->ptp, &ev);
1932 		}
1933 
1934 		if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
1935 			goto out;
1936 	}
1937 
1938 	/* XXX should fix API - this converts s/ns -> ts -> s/ns */
1939 	sec = ioread32(&reg->time_sec);
1940 	nsec = ioread32(&reg->time_ns);
1941 
1942 	ev.type = PTP_CLOCK_EXTTS;
1943 	ev.index = ext->info->index;
1944 	ev.timestamp = sec * NSEC_PER_SEC + nsec;
1945 
1946 	ptp_clock_event(ext->bp->ptp, &ev);
1947 
1948 out:
1949 	iowrite32(1, &reg->intr);	/* write 1 to ack */
1950 
1951 	return IRQ_HANDLED;
1952 }
1953 
1954 static int
1955 ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
1956 {
1957 	struct ptp_ocp_ext_src *ext = priv;
1958 	struct ts_reg __iomem *reg = ext->mem;
1959 	struct ptp_ocp *bp = ext->bp;
1960 
1961 	if (ext == bp->pps) {
1962 		u32 old_map = bp->pps_req_map;
1963 
1964 		if (enable)
1965 			bp->pps_req_map |= req;
1966 		else
1967 			bp->pps_req_map &= ~req;
1968 
1969 		/* if no state change, just return */
1970 		if ((!!old_map ^ !!bp->pps_req_map) == 0)
1971 			return 0;
1972 	}
1973 
1974 	if (enable) {
1975 		iowrite32(1, &reg->enable);
1976 		iowrite32(1, &reg->intr_mask);
1977 		iowrite32(1, &reg->intr);
1978 	} else {
1979 		iowrite32(0, &reg->intr_mask);
1980 		iowrite32(0, &reg->enable);
1981 	}
1982 
1983 	return 0;
1984 }
1985 
1986 static void
1987 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
1988 {
1989 	ext->info->enable(ext, ~0, false);
1990 	pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
1991 	kfree(ext);
1992 }
1993 
1994 static int
1995 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
1996 {
1997 	struct pci_dev *pdev = bp->pdev;
1998 	struct ptp_ocp_ext_src *ext;
1999 	int err;
2000 
2001 	ext = kzalloc(sizeof(*ext), GFP_KERNEL);
2002 	if (!ext)
2003 		return -ENOMEM;
2004 
2005 	ext->mem = ptp_ocp_get_mem(bp, r);
2006 	if (IS_ERR(ext->mem)) {
2007 		err = PTR_ERR(ext->mem);
2008 		goto out;
2009 	}
2010 
2011 	ext->bp = bp;
2012 	ext->info = r->extra;
2013 	ext->irq_vec = r->irq_vec;
2014 
2015 	err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
2016 			      ext, "ocp%d.%s", bp->id, r->name);
2017 	if (err) {
2018 		dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
2019 		goto out;
2020 	}
2021 
2022 	bp_assign_entry(bp, r, ext);
2023 
2024 	return 0;
2025 
2026 out:
2027 	kfree(ext);
2028 	return err;
2029 }
2030 
2031 static int
2032 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
2033 {
2034 	struct pci_dev *pdev = bp->pdev;
2035 	struct uart_8250_port uart;
2036 
2037 	/* Setting UPF_IOREMAP and leaving port.membase unspecified lets
2038 	 * the serial port device claim and release the pci resource.
2039 	 */
2040 	memset(&uart, 0, sizeof(uart));
2041 	uart.port.dev = &pdev->dev;
2042 	uart.port.iotype = UPIO_MEM;
2043 	uart.port.regshift = 2;
2044 	uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
2045 	uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
2046 	uart.port.uartclk = 50000000;
2047 	uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
2048 	uart.port.type = PORT_16550A;
2049 
2050 	return serial8250_register_8250_port(&uart);
2051 }
2052 
2053 static int
2054 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
2055 {
2056 	struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra;
2057 	struct ptp_ocp_serial_port port = {};
2058 
2059 	port.line = ptp_ocp_serial_line(bp, r);
2060 	if (port.line < 0)
2061 		return port.line;
2062 
2063 	if (p)
2064 		port.baud = p->baud;
2065 
2066 	bp_assign_entry(bp, r, port);
2067 
2068 	return 0;
2069 }
2070 
2071 static int
2072 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
2073 {
2074 	void __iomem *mem;
2075 
2076 	mem = ptp_ocp_get_mem(bp, r);
2077 	if (IS_ERR(mem))
2078 		return PTR_ERR(mem);
2079 
2080 	bp_assign_entry(bp, r, mem);
2081 
2082 	return 0;
2083 }
2084 
2085 static void
2086 ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
2087 {
2088 	if (!bp->nmea_out)
2089 		return;
2090 
2091 	iowrite32(0, &bp->nmea_out->ctrl);		/* disable */
2092 	iowrite32(7, &bp->nmea_out->uart_baud);		/* 115200 */
2093 	iowrite32(1, &bp->nmea_out->ctrl);		/* enable */
2094 }
2095 
2096 static void
2097 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
2098 {
2099 	u32 val;
2100 
2101 	iowrite32(0, &reg->enable);		/* disable */
2102 
2103 	val = ioread32(&reg->polarity);
2104 	s->polarity = val ? true : false;
2105 	s->duty = 50;
2106 }
2107 
2108 static void
2109 ptp_ocp_signal_init(struct ptp_ocp *bp)
2110 {
2111 	int i;
2112 
2113 	for (i = 0; i < 4; i++)
2114 		if (bp->signal_out[i])
2115 			_ptp_ocp_signal_init(&bp->signal[i],
2116 					     bp->signal_out[i]->mem);
2117 }
2118 
2119 static void
2120 ptp_ocp_attr_group_del(struct ptp_ocp *bp)
2121 {
2122 	sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
2123 	kfree(bp->attr_group);
2124 }
2125 
2126 static int
2127 ptp_ocp_attr_group_add(struct ptp_ocp *bp,
2128 		       const struct ocp_attr_group *attr_tbl)
2129 {
2130 	int count, i;
2131 	int err;
2132 
2133 	count = 0;
2134 	for (i = 0; attr_tbl[i].cap; i++)
2135 		if (attr_tbl[i].cap & bp->fw_cap)
2136 			count++;
2137 
2138 	bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *),
2139 				 GFP_KERNEL);
2140 	if (!bp->attr_group)
2141 		return -ENOMEM;
2142 
2143 	count = 0;
2144 	for (i = 0; attr_tbl[i].cap; i++)
2145 		if (attr_tbl[i].cap & bp->fw_cap)
2146 			bp->attr_group[count++] = attr_tbl[i].group;
2147 
2148 	err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
2149 	if (err)
2150 		bp->attr_group[0] = NULL;
2151 
2152 	return err;
2153 }
2154 
2155 static void
2156 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
2157 {
2158 	u32 ctrl;
2159 	bool on;
2160 
2161 	ctrl = ioread32(reg);
2162 	on = ctrl & bit;
2163 	if (on ^ enable) {
2164 		ctrl &= ~bit;
2165 		ctrl |= enable ? bit : 0;
2166 		iowrite32(ctrl, reg);
2167 	}
2168 }
2169 
2170 static void
2171 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
2172 {
2173 	return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
2174 				   IRIG_M_CTRL_ENABLE, enable);
2175 }
2176 
2177 static void
2178 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
2179 {
2180 	return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
2181 				   IRIG_S_CTRL_ENABLE, enable);
2182 }
2183 
2184 static void
2185 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
2186 {
2187 	return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
2188 				   DCF_M_CTRL_ENABLE, enable);
2189 }
2190 
2191 static void
2192 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
2193 {
2194 	return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
2195 				   DCF_S_CTRL_ENABLE, enable);
2196 }
2197 
2198 static void
2199 __handle_signal_outputs(struct ptp_ocp *bp, u32 val)
2200 {
2201 	ptp_ocp_irig_out(bp, val & 0x00100010);
2202 	ptp_ocp_dcf_out(bp, val & 0x00200020);
2203 }
2204 
2205 static void
2206 __handle_signal_inputs(struct ptp_ocp *bp, u32 val)
2207 {
2208 	ptp_ocp_irig_in(bp, val & 0x00100010);
2209 	ptp_ocp_dcf_in(bp, val & 0x00200020);
2210 }
2211 
2212 static u32
2213 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
2214 {
2215 	u32 __iomem *gpio;
2216 	u32 shift;
2217 
2218 	if (bp->sma[sma_nr - 1].fixed_fcn)
2219 		return (sma_nr - 1) & 1;
2220 
2221 	if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
2222 		gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2223 	else
2224 		gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2225 	shift = sma_nr & 1 ? 0 : 16;
2226 
2227 	return (ioread32(gpio) >> shift) & 0xffff;
2228 }
2229 
2230 static int
2231 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2232 {
2233 	u32 reg, mask, shift;
2234 	unsigned long flags;
2235 	u32 __iomem *gpio;
2236 
2237 	gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2238 	shift = sma_nr & 1 ? 0 : 16;
2239 
2240 	mask = 0xffff << (16 - shift);
2241 
2242 	spin_lock_irqsave(&bp->lock, flags);
2243 
2244 	reg = ioread32(gpio);
2245 	reg = (reg & mask) | (val << shift);
2246 
2247 	__handle_signal_outputs(bp, reg);
2248 
2249 	iowrite32(reg, gpio);
2250 
2251 	spin_unlock_irqrestore(&bp->lock, flags);
2252 
2253 	return 0;
2254 }
2255 
2256 static int
2257 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2258 {
2259 	u32 reg, mask, shift;
2260 	unsigned long flags;
2261 	u32 __iomem *gpio;
2262 
2263 	gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2264 	shift = sma_nr & 1 ? 0 : 16;
2265 
2266 	mask = 0xffff << (16 - shift);
2267 
2268 	spin_lock_irqsave(&bp->lock, flags);
2269 
2270 	reg = ioread32(gpio);
2271 	reg = (reg & mask) | (val << shift);
2272 
2273 	__handle_signal_inputs(bp, reg);
2274 
2275 	iowrite32(reg, gpio);
2276 
2277 	spin_unlock_irqrestore(&bp->lock, flags);
2278 
2279 	return 0;
2280 }
2281 
2282 static void
2283 ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
2284 {
2285 	u32 reg;
2286 	int i;
2287 
2288 	/* defaults */
2289 	bp->sma[0].mode = SMA_MODE_IN;
2290 	bp->sma[1].mode = SMA_MODE_IN;
2291 	bp->sma[2].mode = SMA_MODE_OUT;
2292 	bp->sma[3].mode = SMA_MODE_OUT;
2293 	for (i = 0; i < 4; i++)
2294 		bp->sma[i].default_fcn = i & 1;
2295 
2296 	/* If no SMA1 map, the pin functions and directions are fixed. */
2297 	if (!bp->sma_map1) {
2298 		for (i = 0; i < 4; i++) {
2299 			bp->sma[i].fixed_fcn = true;
2300 			bp->sma[i].fixed_dir = true;
2301 		}
2302 		return;
2303 	}
2304 
2305 	/* If SMA2 GPIO output map is all 1, it is not present.
2306 	 * This indicates the firmware has fixed direction SMA pins.
2307 	 */
2308 	reg = ioread32(&bp->sma_map2->gpio2);
2309 	if (reg == 0xffffffff) {
2310 		for (i = 0; i < 4; i++)
2311 			bp->sma[i].fixed_dir = true;
2312 	} else {
2313 		reg = ioread32(&bp->sma_map1->gpio1);
2314 		bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
2315 		bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
2316 
2317 		reg = ioread32(&bp->sma_map1->gpio2);
2318 		bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
2319 		bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
2320 	}
2321 }
2322 
2323 static const struct ocp_sma_op ocp_fb_sma_op = {
2324 	.tbl		= { ptp_ocp_sma_in, ptp_ocp_sma_out },
2325 	.init		= ptp_ocp_sma_fb_init,
2326 	.get		= ptp_ocp_sma_fb_get,
2327 	.set_inputs	= ptp_ocp_sma_fb_set_inputs,
2328 	.set_output	= ptp_ocp_sma_fb_set_output,
2329 };
2330 
2331 static int
2332 ptp_ocp_fb_set_pins(struct ptp_ocp *bp)
2333 {
2334 	struct ptp_pin_desc *config;
2335 	int i;
2336 
2337 	config = kcalloc(4, sizeof(*config), GFP_KERNEL);
2338 	if (!config)
2339 		return -ENOMEM;
2340 
2341 	for (i = 0; i < 4; i++) {
2342 		sprintf(config[i].name, "sma%d", i + 1);
2343 		config[i].index = i;
2344 	}
2345 
2346 	bp->ptp_info.n_pins = 4;
2347 	bp->ptp_info.pin_config = config;
2348 
2349 	return 0;
2350 }
2351 
2352 static void
2353 ptp_ocp_fb_set_version(struct ptp_ocp *bp)
2354 {
2355 	u64 cap = OCP_CAP_BASIC;
2356 	u32 version;
2357 
2358 	version = ioread32(&bp->image->version);
2359 
2360 	/* if lower 16 bits are empty, this is the fw loader. */
2361 	if ((version & 0xffff) == 0) {
2362 		version = version >> 16;
2363 		bp->fw_loader = true;
2364 	}
2365 
2366 	bp->fw_tag = version >> 15;
2367 	bp->fw_version = version & 0x7fff;
2368 
2369 	if (bp->fw_tag) {
2370 		/* FPGA firmware */
2371 		if (version >= 5)
2372 			cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2373 	} else {
2374 		/* SOM firmware */
2375 		if (version >= 19)
2376 			cap |= OCP_CAP_SIGNAL;
2377 		if (version >= 20)
2378 			cap |= OCP_CAP_FREQ;
2379 	}
2380 
2381 	bp->fw_cap = cap;
2382 }
2383 
2384 /* FB specific board initializers; last "resource" registered. */
2385 static int
2386 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2387 {
2388 	int err;
2389 
2390 	bp->flash_start = 1024 * 4096;
2391 	bp->eeprom_map = fb_eeprom_map;
2392 	bp->fw_version = ioread32(&bp->image->version);
2393 	bp->sma_op = &ocp_fb_sma_op;
2394 
2395 	ptp_ocp_fb_set_version(bp);
2396 
2397 	ptp_ocp_tod_init(bp);
2398 	ptp_ocp_nmea_out_init(bp);
2399 	ptp_ocp_sma_init(bp);
2400 	ptp_ocp_signal_init(bp);
2401 
2402 	err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
2403 	if (err)
2404 		return err;
2405 
2406 	err = ptp_ocp_fb_set_pins(bp);
2407 	if (err)
2408 		return err;
2409 
2410 	return ptp_ocp_init_clock(bp);
2411 }
2412 
2413 static bool
2414 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
2415 {
2416 	bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
2417 
2418 	if (!allow)
2419 		dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
2420 			r->irq_vec, r->name);
2421 	return allow;
2422 }
2423 
2424 static int
2425 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
2426 {
2427 	struct ocp_resource *r, *table;
2428 	int err = 0;
2429 
2430 	table = (struct ocp_resource *)driver_data;
2431 	for (r = table; r->setup; r++) {
2432 		if (!ptp_ocp_allow_irq(bp, r))
2433 			continue;
2434 		err = r->setup(bp, r);
2435 		if (err) {
2436 			dev_err(&bp->pdev->dev,
2437 				"Could not register %s: err %d\n",
2438 				r->name, err);
2439 			break;
2440 		}
2441 	}
2442 	return err;
2443 }
2444 
2445 static void
2446 ptp_ocp_art_sma_init(struct ptp_ocp *bp)
2447 {
2448 	u32 reg;
2449 	int i;
2450 
2451 	/* defaults */
2452 	bp->sma[0].mode = SMA_MODE_IN;
2453 	bp->sma[1].mode = SMA_MODE_IN;
2454 	bp->sma[2].mode = SMA_MODE_OUT;
2455 	bp->sma[3].mode = SMA_MODE_OUT;
2456 
2457 	bp->sma[0].default_fcn = 0x08;	/* IN: 10Mhz */
2458 	bp->sma[1].default_fcn = 0x01;	/* IN: PPS1 */
2459 	bp->sma[2].default_fcn = 0x10;	/* OUT: 10Mhz */
2460 	bp->sma[3].default_fcn = 0x02;	/* OUT: PHC */
2461 
2462 	/* If no SMA map, the pin functions and directions are fixed. */
2463 	if (!bp->art_sma) {
2464 		for (i = 0; i < 4; i++) {
2465 			bp->sma[i].fixed_fcn = true;
2466 			bp->sma[i].fixed_dir = true;
2467 		}
2468 		return;
2469 	}
2470 
2471 	for (i = 0; i < 4; i++) {
2472 		reg = ioread32(&bp->art_sma->map[i].gpio);
2473 
2474 		switch (reg & 0xff) {
2475 		case 0:
2476 			bp->sma[i].fixed_fcn = true;
2477 			bp->sma[i].fixed_dir = true;
2478 			break;
2479 		case 1:
2480 		case 8:
2481 			bp->sma[i].mode = SMA_MODE_IN;
2482 			break;
2483 		default:
2484 			bp->sma[i].mode = SMA_MODE_OUT;
2485 			break;
2486 		}
2487 	}
2488 }
2489 
2490 static u32
2491 ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr)
2492 {
2493 	if (bp->sma[sma_nr - 1].fixed_fcn)
2494 		return bp->sma[sma_nr - 1].default_fcn;
2495 
2496 	return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff;
2497 }
2498 
2499 /* note: store 0 is considered invalid. */
2500 static int
2501 ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val)
2502 {
2503 	unsigned long flags;
2504 	u32 __iomem *gpio;
2505 	int err = 0;
2506 	u32 reg;
2507 
2508 	val &= SMA_SELECT_MASK;
2509 	if (hweight32(val) > 1)
2510 		return -EINVAL;
2511 
2512 	gpio = &bp->art_sma->map[sma_nr - 1].gpio;
2513 
2514 	spin_lock_irqsave(&bp->lock, flags);
2515 	reg = ioread32(gpio);
2516 	if (((reg >> 16) & val) == 0) {
2517 		err = -EOPNOTSUPP;
2518 	} else {
2519 		reg = (reg & 0xff00) | (val & 0xff);
2520 		iowrite32(reg, gpio);
2521 	}
2522 	spin_unlock_irqrestore(&bp->lock, flags);
2523 
2524 	return err;
2525 }
2526 
2527 static const struct ocp_sma_op ocp_art_sma_op = {
2528 	.tbl		= { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out },
2529 	.init		= ptp_ocp_art_sma_init,
2530 	.get		= ptp_ocp_art_sma_get,
2531 	.set_inputs	= ptp_ocp_art_sma_set,
2532 	.set_output	= ptp_ocp_art_sma_set,
2533 };
2534 
2535 /* ART specific board initializers; last "resource" registered. */
2536 static int
2537 ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2538 {
2539 	int err;
2540 
2541 	bp->flash_start = 0x1000000;
2542 	bp->eeprom_map = art_eeprom_map;
2543 	bp->fw_cap = OCP_CAP_BASIC;
2544 	bp->fw_version = ioread32(&bp->reg->version);
2545 	bp->fw_tag = 2;
2546 	bp->sma_op = &ocp_art_sma_op;
2547 
2548 	/* Enable MAC serial port during initialisation */
2549 	iowrite32(1, &bp->board_config->mro50_serial_activate);
2550 
2551 	ptp_ocp_sma_init(bp);
2552 
2553 	err = ptp_ocp_attr_group_add(bp, art_timecard_groups);
2554 	if (err)
2555 		return err;
2556 
2557 	return ptp_ocp_init_clock(bp);
2558 }
2559 
2560 static ssize_t
2561 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
2562 		    int def_val)
2563 {
2564 	const char *name;
2565 	ssize_t count;
2566 
2567 	count = sysfs_emit(buf, "OUT: ");
2568 	name = ptp_ocp_select_name_from_val(tbl, val);
2569 	if (!name)
2570 		name = ptp_ocp_select_name_from_val(tbl, def_val);
2571 	count += sysfs_emit_at(buf, count, "%s\n", name);
2572 	return count;
2573 }
2574 
2575 static ssize_t
2576 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
2577 		    int def_val)
2578 {
2579 	const char *name;
2580 	ssize_t count;
2581 	int i;
2582 
2583 	count = sysfs_emit(buf, "IN: ");
2584 	for (i = 0; tbl[i].name; i++) {
2585 		if (val & tbl[i].value) {
2586 			name = tbl[i].name;
2587 			count += sysfs_emit_at(buf, count, "%s ", name);
2588 		}
2589 	}
2590 	if (!val && def_val >= 0) {
2591 		name = ptp_ocp_select_name_from_val(tbl, def_val);
2592 		count += sysfs_emit_at(buf, count, "%s ", name);
2593 	}
2594 	if (count)
2595 		count--;
2596 	count += sysfs_emit_at(buf, count, "\n");
2597 	return count;
2598 }
2599 
2600 static int
2601 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
2602 		 enum ptp_ocp_sma_mode *mode)
2603 {
2604 	int idx, count, dir;
2605 	char **argv;
2606 	int ret;
2607 
2608 	argv = argv_split(GFP_KERNEL, buf, &count);
2609 	if (!argv)
2610 		return -ENOMEM;
2611 
2612 	ret = -EINVAL;
2613 	if (!count)
2614 		goto out;
2615 
2616 	idx = 0;
2617 	dir = *mode == SMA_MODE_IN ? 0 : 1;
2618 	if (!strcasecmp("IN:", argv[0])) {
2619 		dir = 0;
2620 		idx++;
2621 	}
2622 	if (!strcasecmp("OUT:", argv[0])) {
2623 		dir = 1;
2624 		idx++;
2625 	}
2626 	*mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
2627 
2628 	ret = 0;
2629 	for (; idx < count; idx++)
2630 		ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
2631 	if (ret < 0)
2632 		ret = -EINVAL;
2633 
2634 out:
2635 	argv_free(argv);
2636 	return ret;
2637 }
2638 
2639 static ssize_t
2640 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
2641 		 int default_in_val, int default_out_val)
2642 {
2643 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2644 	const struct ocp_selector * const *tbl;
2645 	u32 val;
2646 
2647 	tbl = bp->sma_op->tbl;
2648 	val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
2649 
2650 	if (sma->mode == SMA_MODE_IN) {
2651 		if (sma->disabled)
2652 			val = SMA_DISABLE;
2653 		return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
2654 	}
2655 
2656 	return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
2657 }
2658 
2659 static ssize_t
2660 sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
2661 {
2662 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2663 
2664 	return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
2665 }
2666 
2667 static ssize_t
2668 sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
2669 {
2670 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2671 
2672 	return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
2673 }
2674 
2675 static ssize_t
2676 sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
2677 {
2678 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2679 
2680 	return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
2681 }
2682 
2683 static ssize_t
2684 sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
2685 {
2686 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2687 
2688 	return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
2689 }
2690 
2691 static int
2692 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
2693 {
2694 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2695 	enum ptp_ocp_sma_mode mode;
2696 	int val;
2697 
2698 	mode = sma->mode;
2699 	val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
2700 	if (val < 0)
2701 		return val;
2702 
2703 	if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
2704 		return -EOPNOTSUPP;
2705 
2706 	if (sma->fixed_fcn) {
2707 		if (val != sma->default_fcn)
2708 			return -EOPNOTSUPP;
2709 		return 0;
2710 	}
2711 
2712 	sma->disabled = !!(val & SMA_DISABLE);
2713 
2714 	if (mode != sma->mode) {
2715 		if (mode == SMA_MODE_IN)
2716 			ptp_ocp_sma_set_output(bp, sma_nr, 0);
2717 		else
2718 			ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
2719 		sma->mode = mode;
2720 	}
2721 
2722 	if (!sma->fixed_dir)
2723 		val |= SMA_ENABLE;		/* add enable bit */
2724 
2725 	if (sma->disabled)
2726 		val = 0;
2727 
2728 	if (mode == SMA_MODE_IN)
2729 		val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
2730 	else
2731 		val = ptp_ocp_sma_set_output(bp, sma_nr, val);
2732 
2733 	return val;
2734 }
2735 
2736 static ssize_t
2737 sma1_store(struct device *dev, struct device_attribute *attr,
2738 	   const char *buf, size_t count)
2739 {
2740 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2741 	int err;
2742 
2743 	err = ptp_ocp_sma_store(bp, buf, 1);
2744 	return err ? err : count;
2745 }
2746 
2747 static ssize_t
2748 sma2_store(struct device *dev, struct device_attribute *attr,
2749 	   const char *buf, size_t count)
2750 {
2751 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2752 	int err;
2753 
2754 	err = ptp_ocp_sma_store(bp, buf, 2);
2755 	return err ? err : count;
2756 }
2757 
2758 static ssize_t
2759 sma3_store(struct device *dev, struct device_attribute *attr,
2760 	   const char *buf, size_t count)
2761 {
2762 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2763 	int err;
2764 
2765 	err = ptp_ocp_sma_store(bp, buf, 3);
2766 	return err ? err : count;
2767 }
2768 
2769 static ssize_t
2770 sma4_store(struct device *dev, struct device_attribute *attr,
2771 	   const char *buf, size_t count)
2772 {
2773 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2774 	int err;
2775 
2776 	err = ptp_ocp_sma_store(bp, buf, 4);
2777 	return err ? err : count;
2778 }
2779 static DEVICE_ATTR_RW(sma1);
2780 static DEVICE_ATTR_RW(sma2);
2781 static DEVICE_ATTR_RW(sma3);
2782 static DEVICE_ATTR_RW(sma4);
2783 
2784 static ssize_t
2785 available_sma_inputs_show(struct device *dev,
2786 			  struct device_attribute *attr, char *buf)
2787 {
2788 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2789 
2790 	return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
2791 }
2792 static DEVICE_ATTR_RO(available_sma_inputs);
2793 
2794 static ssize_t
2795 available_sma_outputs_show(struct device *dev,
2796 			   struct device_attribute *attr, char *buf)
2797 {
2798 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2799 
2800 	return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
2801 }
2802 static DEVICE_ATTR_RO(available_sma_outputs);
2803 
2804 #define EXT_ATTR_RO(_group, _name, _val)				\
2805 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
2806 		{ __ATTR_RO(_name), (void *)_val }
2807 #define EXT_ATTR_RW(_group, _name, _val)				\
2808 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
2809 		{ __ATTR_RW(_name), (void *)_val }
2810 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2811 
2812 /* period [duty [phase [polarity]]] */
2813 static ssize_t
2814 signal_store(struct device *dev, struct device_attribute *attr,
2815 	     const char *buf, size_t count)
2816 {
2817 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2818 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2819 	struct ptp_ocp_signal s = { };
2820 	int gen = (uintptr_t)ea->var;
2821 	int argc, err;
2822 	char **argv;
2823 
2824 	argv = argv_split(GFP_KERNEL, buf, &argc);
2825 	if (!argv)
2826 		return -ENOMEM;
2827 
2828 	err = -EINVAL;
2829 	s.duty = bp->signal[gen].duty;
2830 	s.phase = bp->signal[gen].phase;
2831 	s.period = bp->signal[gen].period;
2832 	s.polarity = bp->signal[gen].polarity;
2833 
2834 	switch (argc) {
2835 	case 4:
2836 		argc--;
2837 		err = kstrtobool(argv[argc], &s.polarity);
2838 		if (err)
2839 			goto out;
2840 		fallthrough;
2841 	case 3:
2842 		argc--;
2843 		err = kstrtou64(argv[argc], 0, &s.phase);
2844 		if (err)
2845 			goto out;
2846 		fallthrough;
2847 	case 2:
2848 		argc--;
2849 		err = kstrtoint(argv[argc], 0, &s.duty);
2850 		if (err)
2851 			goto out;
2852 		fallthrough;
2853 	case 1:
2854 		argc--;
2855 		err = kstrtou64(argv[argc], 0, &s.period);
2856 		if (err)
2857 			goto out;
2858 		break;
2859 	default:
2860 		goto out;
2861 	}
2862 
2863 	err = ptp_ocp_signal_set(bp, gen, &s);
2864 	if (err)
2865 		goto out;
2866 
2867 	err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
2868 
2869 out:
2870 	argv_free(argv);
2871 	return err ? err : count;
2872 }
2873 
2874 static ssize_t
2875 signal_show(struct device *dev, struct device_attribute *attr, char *buf)
2876 {
2877 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2878 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2879 	struct ptp_ocp_signal *signal;
2880 	struct timespec64 ts;
2881 	ssize_t count;
2882 	int i;
2883 
2884 	i = (uintptr_t)ea->var;
2885 	signal = &bp->signal[i];
2886 
2887 	count = sysfs_emit(buf, "%llu %d %llu %d", signal->period,
2888 			   signal->duty, signal->phase, signal->polarity);
2889 
2890 	ts = ktime_to_timespec64(signal->start);
2891 	count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts);
2892 
2893 	return count;
2894 }
2895 static EXT_ATTR_RW(signal, signal, 0);
2896 static EXT_ATTR_RW(signal, signal, 1);
2897 static EXT_ATTR_RW(signal, signal, 2);
2898 static EXT_ATTR_RW(signal, signal, 3);
2899 
2900 static ssize_t
2901 duty_show(struct device *dev, struct device_attribute *attr, char *buf)
2902 {
2903 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2904 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2905 	int i = (uintptr_t)ea->var;
2906 
2907 	return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
2908 }
2909 static EXT_ATTR_RO(signal, duty, 0);
2910 static EXT_ATTR_RO(signal, duty, 1);
2911 static EXT_ATTR_RO(signal, duty, 2);
2912 static EXT_ATTR_RO(signal, duty, 3);
2913 
2914 static ssize_t
2915 period_show(struct device *dev, struct device_attribute *attr, char *buf)
2916 {
2917 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2918 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2919 	int i = (uintptr_t)ea->var;
2920 
2921 	return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
2922 }
2923 static EXT_ATTR_RO(signal, period, 0);
2924 static EXT_ATTR_RO(signal, period, 1);
2925 static EXT_ATTR_RO(signal, period, 2);
2926 static EXT_ATTR_RO(signal, period, 3);
2927 
2928 static ssize_t
2929 phase_show(struct device *dev, struct device_attribute *attr, char *buf)
2930 {
2931 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2932 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2933 	int i = (uintptr_t)ea->var;
2934 
2935 	return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
2936 }
2937 static EXT_ATTR_RO(signal, phase, 0);
2938 static EXT_ATTR_RO(signal, phase, 1);
2939 static EXT_ATTR_RO(signal, phase, 2);
2940 static EXT_ATTR_RO(signal, phase, 3);
2941 
2942 static ssize_t
2943 polarity_show(struct device *dev, struct device_attribute *attr,
2944 	      char *buf)
2945 {
2946 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2947 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2948 	int i = (uintptr_t)ea->var;
2949 
2950 	return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
2951 }
2952 static EXT_ATTR_RO(signal, polarity, 0);
2953 static EXT_ATTR_RO(signal, polarity, 1);
2954 static EXT_ATTR_RO(signal, polarity, 2);
2955 static EXT_ATTR_RO(signal, polarity, 3);
2956 
2957 static ssize_t
2958 running_show(struct device *dev, struct device_attribute *attr, char *buf)
2959 {
2960 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2961 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2962 	int i = (uintptr_t)ea->var;
2963 
2964 	return sysfs_emit(buf, "%d\n", bp->signal[i].running);
2965 }
2966 static EXT_ATTR_RO(signal, running, 0);
2967 static EXT_ATTR_RO(signal, running, 1);
2968 static EXT_ATTR_RO(signal, running, 2);
2969 static EXT_ATTR_RO(signal, running, 3);
2970 
2971 static ssize_t
2972 start_show(struct device *dev, struct device_attribute *attr, char *buf)
2973 {
2974 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2975 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2976 	int i = (uintptr_t)ea->var;
2977 	struct timespec64 ts;
2978 
2979 	ts = ktime_to_timespec64(bp->signal[i].start);
2980 	return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
2981 }
2982 static EXT_ATTR_RO(signal, start, 0);
2983 static EXT_ATTR_RO(signal, start, 1);
2984 static EXT_ATTR_RO(signal, start, 2);
2985 static EXT_ATTR_RO(signal, start, 3);
2986 
2987 static ssize_t
2988 seconds_store(struct device *dev, struct device_attribute *attr,
2989 	      const char *buf, size_t count)
2990 {
2991 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2992 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2993 	int idx = (uintptr_t)ea->var;
2994 	u32 val;
2995 	int err;
2996 
2997 	err = kstrtou32(buf, 0, &val);
2998 	if (err)
2999 		return err;
3000 	if (val > 0xff)
3001 		return -EINVAL;
3002 
3003 	if (val)
3004 		val = (val << 8) | 0x1;
3005 
3006 	iowrite32(val, &bp->freq_in[idx]->ctrl);
3007 
3008 	return count;
3009 }
3010 
3011 static ssize_t
3012 seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
3013 {
3014 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3015 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3016 	int idx = (uintptr_t)ea->var;
3017 	u32 val;
3018 
3019 	val = ioread32(&bp->freq_in[idx]->ctrl);
3020 	if (val & 1)
3021 		val = (val >> 8) & 0xff;
3022 	else
3023 		val = 0;
3024 
3025 	return sysfs_emit(buf, "%u\n", val);
3026 }
3027 static EXT_ATTR_RW(freq, seconds, 0);
3028 static EXT_ATTR_RW(freq, seconds, 1);
3029 static EXT_ATTR_RW(freq, seconds, 2);
3030 static EXT_ATTR_RW(freq, seconds, 3);
3031 
3032 static ssize_t
3033 frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
3034 {
3035 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3036 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3037 	int idx = (uintptr_t)ea->var;
3038 	u32 val;
3039 
3040 	val = ioread32(&bp->freq_in[idx]->status);
3041 	if (val & FREQ_STATUS_ERROR)
3042 		return sysfs_emit(buf, "error\n");
3043 	if (val & FREQ_STATUS_OVERRUN)
3044 		return sysfs_emit(buf, "overrun\n");
3045 	if (val & FREQ_STATUS_VALID)
3046 		return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
3047 	return 0;
3048 }
3049 static EXT_ATTR_RO(freq, frequency, 0);
3050 static EXT_ATTR_RO(freq, frequency, 1);
3051 static EXT_ATTR_RO(freq, frequency, 2);
3052 static EXT_ATTR_RO(freq, frequency, 3);
3053 
3054 static ssize_t
3055 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
3056 {
3057 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3058 
3059 	if (!bp->has_eeprom_data)
3060 		ptp_ocp_read_eeprom(bp);
3061 
3062 	return sysfs_emit(buf, "%pM\n", bp->serial);
3063 }
3064 static DEVICE_ATTR_RO(serialnum);
3065 
3066 static ssize_t
3067 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
3068 {
3069 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3070 	ssize_t ret;
3071 
3072 	if (bp->gnss_lost)
3073 		ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
3074 	else
3075 		ret = sysfs_emit(buf, "SYNC\n");
3076 
3077 	return ret;
3078 }
3079 static DEVICE_ATTR_RO(gnss_sync);
3080 
3081 static ssize_t
3082 utc_tai_offset_show(struct device *dev,
3083 		    struct device_attribute *attr, char *buf)
3084 {
3085 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3086 
3087 	return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
3088 }
3089 
3090 static ssize_t
3091 utc_tai_offset_store(struct device *dev,
3092 		     struct device_attribute *attr,
3093 		     const char *buf, size_t count)
3094 {
3095 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3096 	int err;
3097 	u32 val;
3098 
3099 	err = kstrtou32(buf, 0, &val);
3100 	if (err)
3101 		return err;
3102 
3103 	ptp_ocp_utc_distribute(bp, val);
3104 
3105 	return count;
3106 }
3107 static DEVICE_ATTR_RW(utc_tai_offset);
3108 
3109 static ssize_t
3110 ts_window_adjust_show(struct device *dev,
3111 		      struct device_attribute *attr, char *buf)
3112 {
3113 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3114 
3115 	return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
3116 }
3117 
3118 static ssize_t
3119 ts_window_adjust_store(struct device *dev,
3120 		       struct device_attribute *attr,
3121 		       const char *buf, size_t count)
3122 {
3123 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3124 	int err;
3125 	u32 val;
3126 
3127 	err = kstrtou32(buf, 0, &val);
3128 	if (err)
3129 		return err;
3130 
3131 	bp->ts_window_adjust = val;
3132 
3133 	return count;
3134 }
3135 static DEVICE_ATTR_RW(ts_window_adjust);
3136 
3137 static ssize_t
3138 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
3139 {
3140 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3141 	u32 val;
3142 
3143 	val = ioread32(&bp->irig_out->ctrl);
3144 	val = (val >> 16) & 0x07;
3145 	return sysfs_emit(buf, "%d\n", val);
3146 }
3147 
3148 static ssize_t
3149 irig_b_mode_store(struct device *dev,
3150 		  struct device_attribute *attr,
3151 		  const char *buf, size_t count)
3152 {
3153 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3154 	unsigned long flags;
3155 	int err;
3156 	u32 reg;
3157 	u8 val;
3158 
3159 	err = kstrtou8(buf, 0, &val);
3160 	if (err)
3161 		return err;
3162 	if (val > 7)
3163 		return -EINVAL;
3164 
3165 	reg = ((val & 0x7) << 16);
3166 
3167 	spin_lock_irqsave(&bp->lock, flags);
3168 	iowrite32(0, &bp->irig_out->ctrl);		/* disable */
3169 	iowrite32(reg, &bp->irig_out->ctrl);		/* change mode */
3170 	iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
3171 	spin_unlock_irqrestore(&bp->lock, flags);
3172 
3173 	return count;
3174 }
3175 static DEVICE_ATTR_RW(irig_b_mode);
3176 
3177 static ssize_t
3178 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
3179 {
3180 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3181 	const char *p;
3182 	u32 select;
3183 
3184 	select = ioread32(&bp->reg->select);
3185 	p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
3186 
3187 	return sysfs_emit(buf, "%s\n", p);
3188 }
3189 
3190 static ssize_t
3191 clock_source_store(struct device *dev, struct device_attribute *attr,
3192 		   const char *buf, size_t count)
3193 {
3194 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3195 	unsigned long flags;
3196 	int val;
3197 
3198 	val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
3199 	if (val < 0)
3200 		return val;
3201 
3202 	spin_lock_irqsave(&bp->lock, flags);
3203 	iowrite32(val, &bp->reg->select);
3204 	spin_unlock_irqrestore(&bp->lock, flags);
3205 
3206 	return count;
3207 }
3208 static DEVICE_ATTR_RW(clock_source);
3209 
3210 static ssize_t
3211 available_clock_sources_show(struct device *dev,
3212 			     struct device_attribute *attr, char *buf)
3213 {
3214 	return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
3215 }
3216 static DEVICE_ATTR_RO(available_clock_sources);
3217 
3218 static ssize_t
3219 clock_status_drift_show(struct device *dev,
3220 			struct device_attribute *attr, char *buf)
3221 {
3222 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3223 	u32 val;
3224 	int res;
3225 
3226 	val = ioread32(&bp->reg->status_drift);
3227 	res = (val & ~INT_MAX) ? -1 : 1;
3228 	res *= (val & INT_MAX);
3229 	return sysfs_emit(buf, "%d\n", res);
3230 }
3231 static DEVICE_ATTR_RO(clock_status_drift);
3232 
3233 static ssize_t
3234 clock_status_offset_show(struct device *dev,
3235 			 struct device_attribute *attr, char *buf)
3236 {
3237 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3238 	u32 val;
3239 	int res;
3240 
3241 	val = ioread32(&bp->reg->status_offset);
3242 	res = (val & ~INT_MAX) ? -1 : 1;
3243 	res *= (val & INT_MAX);
3244 	return sysfs_emit(buf, "%d\n", res);
3245 }
3246 static DEVICE_ATTR_RO(clock_status_offset);
3247 
3248 static ssize_t
3249 tod_correction_show(struct device *dev,
3250 		    struct device_attribute *attr, char *buf)
3251 {
3252 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3253 	u32 val;
3254 	int res;
3255 
3256 	val = ioread32(&bp->tod->adj_sec);
3257 	res = (val & ~INT_MAX) ? -1 : 1;
3258 	res *= (val & INT_MAX);
3259 	return sysfs_emit(buf, "%d\n", res);
3260 }
3261 
3262 static ssize_t
3263 tod_correction_store(struct device *dev, struct device_attribute *attr,
3264 		     const char *buf, size_t count)
3265 {
3266 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3267 	unsigned long flags;
3268 	int err, res;
3269 	u32 val = 0;
3270 
3271 	err = kstrtos32(buf, 0, &res);
3272 	if (err)
3273 		return err;
3274 	if (res < 0) {
3275 		res *= -1;
3276 		val |= BIT(31);
3277 	}
3278 	val |= res;
3279 
3280 	spin_lock_irqsave(&bp->lock, flags);
3281 	iowrite32(val, &bp->tod->adj_sec);
3282 	spin_unlock_irqrestore(&bp->lock, flags);
3283 
3284 	return count;
3285 }
3286 static DEVICE_ATTR_RW(tod_correction);
3287 
3288 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr)					\
3289 	static struct attribute *fb_timecard_signal##_nr##_attrs[] = {	\
3290 		&dev_attr_signal##_nr##_signal.attr.attr,		\
3291 		&dev_attr_signal##_nr##_duty.attr.attr,			\
3292 		&dev_attr_signal##_nr##_phase.attr.attr,		\
3293 		&dev_attr_signal##_nr##_period.attr.attr,		\
3294 		&dev_attr_signal##_nr##_polarity.attr.attr,		\
3295 		&dev_attr_signal##_nr##_running.attr.attr,		\
3296 		&dev_attr_signal##_nr##_start.attr.attr,		\
3297 		NULL,							\
3298 	}
3299 
3300 #define DEVICE_SIGNAL_GROUP(_name, _nr)					\
3301 	_DEVICE_SIGNAL_GROUP_ATTRS(_nr);				\
3302 	static const struct attribute_group				\
3303 			fb_timecard_signal##_nr##_group = {		\
3304 		.name = #_name,						\
3305 		.attrs = fb_timecard_signal##_nr##_attrs,		\
3306 }
3307 
3308 DEVICE_SIGNAL_GROUP(gen1, 0);
3309 DEVICE_SIGNAL_GROUP(gen2, 1);
3310 DEVICE_SIGNAL_GROUP(gen3, 2);
3311 DEVICE_SIGNAL_GROUP(gen4, 3);
3312 
3313 #define _DEVICE_FREQ_GROUP_ATTRS(_nr)					\
3314 	static struct attribute *fb_timecard_freq##_nr##_attrs[] = {	\
3315 		&dev_attr_freq##_nr##_seconds.attr.attr,		\
3316 		&dev_attr_freq##_nr##_frequency.attr.attr,		\
3317 		NULL,							\
3318 	}
3319 
3320 #define DEVICE_FREQ_GROUP(_name, _nr)					\
3321 	_DEVICE_FREQ_GROUP_ATTRS(_nr);					\
3322 	static const struct attribute_group				\
3323 			fb_timecard_freq##_nr##_group = {		\
3324 		.name = #_name,						\
3325 		.attrs = fb_timecard_freq##_nr##_attrs,			\
3326 }
3327 
3328 DEVICE_FREQ_GROUP(freq1, 0);
3329 DEVICE_FREQ_GROUP(freq2, 1);
3330 DEVICE_FREQ_GROUP(freq3, 2);
3331 DEVICE_FREQ_GROUP(freq4, 3);
3332 
3333 static ssize_t
3334 disciplining_config_read(struct file *filp, struct kobject *kobj,
3335 			 struct bin_attribute *bin_attr, char *buf,
3336 			 loff_t off, size_t count)
3337 {
3338 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3339 	size_t size = OCP_ART_CONFIG_SIZE;
3340 	struct nvmem_device *nvmem;
3341 	ssize_t err;
3342 
3343 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3344 	if (IS_ERR(nvmem))
3345 		return PTR_ERR(nvmem);
3346 
3347 	if (off > size) {
3348 		err = 0;
3349 		goto out;
3350 	}
3351 
3352 	if (off + count > size)
3353 		count = size - off;
3354 
3355 	// the configuration is in the very beginning of the EEPROM
3356 	err = nvmem_device_read(nvmem, off, count, buf);
3357 	if (err != count) {
3358 		err = -EFAULT;
3359 		goto out;
3360 	}
3361 
3362 out:
3363 	ptp_ocp_nvmem_device_put(&nvmem);
3364 
3365 	return err;
3366 }
3367 
3368 static ssize_t
3369 disciplining_config_write(struct file *filp, struct kobject *kobj,
3370 			  struct bin_attribute *bin_attr, char *buf,
3371 			  loff_t off, size_t count)
3372 {
3373 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3374 	struct nvmem_device *nvmem;
3375 	ssize_t err;
3376 
3377 	/* Allow write of the whole area only */
3378 	if (off || count != OCP_ART_CONFIG_SIZE)
3379 		return -EFAULT;
3380 
3381 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3382 	if (IS_ERR(nvmem))
3383 		return PTR_ERR(nvmem);
3384 
3385 	err = nvmem_device_write(nvmem, 0x00, count, buf);
3386 	if (err != count)
3387 		err = -EFAULT;
3388 
3389 	ptp_ocp_nvmem_device_put(&nvmem);
3390 
3391 	return err;
3392 }
3393 static BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE);
3394 
3395 static ssize_t
3396 temperature_table_read(struct file *filp, struct kobject *kobj,
3397 		       struct bin_attribute *bin_attr, char *buf,
3398 		       loff_t off, size_t count)
3399 {
3400 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3401 	size_t size = OCP_ART_TEMP_TABLE_SIZE;
3402 	struct nvmem_device *nvmem;
3403 	ssize_t err;
3404 
3405 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3406 	if (IS_ERR(nvmem))
3407 		return PTR_ERR(nvmem);
3408 
3409 	if (off > size) {
3410 		err = 0;
3411 		goto out;
3412 	}
3413 
3414 	if (off + count > size)
3415 		count = size - off;
3416 
3417 	// the configuration is in the very beginning of the EEPROM
3418 	err = nvmem_device_read(nvmem, 0x90 + off, count, buf);
3419 	if (err != count) {
3420 		err = -EFAULT;
3421 		goto out;
3422 	}
3423 
3424 out:
3425 	ptp_ocp_nvmem_device_put(&nvmem);
3426 
3427 	return err;
3428 }
3429 
3430 static ssize_t
3431 temperature_table_write(struct file *filp, struct kobject *kobj,
3432 			struct bin_attribute *bin_attr, char *buf,
3433 			loff_t off, size_t count)
3434 {
3435 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3436 	struct nvmem_device *nvmem;
3437 	ssize_t err;
3438 
3439 	/* Allow write of the whole area only */
3440 	if (off || count != OCP_ART_TEMP_TABLE_SIZE)
3441 		return -EFAULT;
3442 
3443 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3444 	if (IS_ERR(nvmem))
3445 		return PTR_ERR(nvmem);
3446 
3447 	err = nvmem_device_write(nvmem, 0x90, count, buf);
3448 	if (err != count)
3449 		err = -EFAULT;
3450 
3451 	ptp_ocp_nvmem_device_put(&nvmem);
3452 
3453 	return err;
3454 }
3455 static BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE);
3456 
3457 static struct attribute *fb_timecard_attrs[] = {
3458 	&dev_attr_serialnum.attr,
3459 	&dev_attr_gnss_sync.attr,
3460 	&dev_attr_clock_source.attr,
3461 	&dev_attr_available_clock_sources.attr,
3462 	&dev_attr_sma1.attr,
3463 	&dev_attr_sma2.attr,
3464 	&dev_attr_sma3.attr,
3465 	&dev_attr_sma4.attr,
3466 	&dev_attr_available_sma_inputs.attr,
3467 	&dev_attr_available_sma_outputs.attr,
3468 	&dev_attr_clock_status_drift.attr,
3469 	&dev_attr_clock_status_offset.attr,
3470 	&dev_attr_irig_b_mode.attr,
3471 	&dev_attr_utc_tai_offset.attr,
3472 	&dev_attr_ts_window_adjust.attr,
3473 	&dev_attr_tod_correction.attr,
3474 	NULL,
3475 };
3476 
3477 static const struct attribute_group fb_timecard_group = {
3478 	.attrs = fb_timecard_attrs,
3479 };
3480 
3481 static const struct ocp_attr_group fb_timecard_groups[] = {
3482 	{ .cap = OCP_CAP_BASIC,	    .group = &fb_timecard_group },
3483 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal0_group },
3484 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal1_group },
3485 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal2_group },
3486 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal3_group },
3487 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq0_group },
3488 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq1_group },
3489 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq2_group },
3490 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq3_group },
3491 	{ },
3492 };
3493 
3494 static struct attribute *art_timecard_attrs[] = {
3495 	&dev_attr_serialnum.attr,
3496 	&dev_attr_clock_source.attr,
3497 	&dev_attr_available_clock_sources.attr,
3498 	&dev_attr_utc_tai_offset.attr,
3499 	&dev_attr_ts_window_adjust.attr,
3500 	&dev_attr_sma1.attr,
3501 	&dev_attr_sma2.attr,
3502 	&dev_attr_sma3.attr,
3503 	&dev_attr_sma4.attr,
3504 	&dev_attr_available_sma_inputs.attr,
3505 	&dev_attr_available_sma_outputs.attr,
3506 	NULL,
3507 };
3508 
3509 static struct bin_attribute *bin_art_timecard_attrs[] = {
3510 	&bin_attr_disciplining_config,
3511 	&bin_attr_temperature_table,
3512 	NULL,
3513 };
3514 
3515 static const struct attribute_group art_timecard_group = {
3516 	.attrs = art_timecard_attrs,
3517 	.bin_attrs = bin_art_timecard_attrs,
3518 };
3519 
3520 static const struct ocp_attr_group art_timecard_groups[] = {
3521 	{ .cap = OCP_CAP_BASIC,	    .group = &art_timecard_group },
3522 	{ },
3523 };
3524 
3525 static void
3526 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
3527 	       const char *def)
3528 {
3529 	int i;
3530 
3531 	for (i = 0; i < 4; i++) {
3532 		if (bp->sma[i].mode != SMA_MODE_IN)
3533 			continue;
3534 		if (map[i][0] & (1 << bit)) {
3535 			sprintf(buf, "sma%d", i + 1);
3536 			return;
3537 		}
3538 	}
3539 	if (!def)
3540 		def = "----";
3541 	strcpy(buf, def);
3542 }
3543 
3544 static void
3545 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
3546 {
3547 	char *ans = buf;
3548 	int i;
3549 
3550 	strcpy(ans, "----");
3551 	for (i = 0; i < 4; i++) {
3552 		if (bp->sma[i].mode != SMA_MODE_OUT)
3553 			continue;
3554 		if (map[i][1] & (1 << bit))
3555 			ans += sprintf(ans, "sma%d ", i + 1);
3556 	}
3557 }
3558 
3559 static void
3560 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
3561 {
3562 	struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
3563 	struct ptp_ocp_signal *signal = &bp->signal[nr];
3564 	char label[8];
3565 	bool on;
3566 	u32 val;
3567 
3568 	if (!signal)
3569 		return;
3570 
3571 	on = signal->running;
3572 	sprintf(label, "GEN%d", nr + 1);
3573 	seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
3574 		   label, on ? " ON" : "OFF",
3575 		   signal->period, signal->duty, signal->phase,
3576 		   signal->polarity);
3577 
3578 	val = ioread32(&reg->enable);
3579 	seq_printf(s, " [%x", val);
3580 	val = ioread32(&reg->status);
3581 	seq_printf(s, " %x]", val);
3582 
3583 	seq_printf(s, " start:%llu\n", signal->start);
3584 }
3585 
3586 static void
3587 _frequency_summary_show(struct seq_file *s, int nr,
3588 			struct frequency_reg __iomem *reg)
3589 {
3590 	char label[8];
3591 	bool on;
3592 	u32 val;
3593 
3594 	if (!reg)
3595 		return;
3596 
3597 	sprintf(label, "FREQ%d", nr + 1);
3598 	val = ioread32(&reg->ctrl);
3599 	on = val & 1;
3600 	val = (val >> 8) & 0xff;
3601 	seq_printf(s, "%7s: %s, sec:%u",
3602 		   label,
3603 		   on ? " ON" : "OFF",
3604 		   val);
3605 
3606 	val = ioread32(&reg->status);
3607 	if (val & FREQ_STATUS_ERROR)
3608 		seq_printf(s, ", error");
3609 	if (val & FREQ_STATUS_OVERRUN)
3610 		seq_printf(s, ", overrun");
3611 	if (val & FREQ_STATUS_VALID)
3612 		seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
3613 	seq_printf(s, "  reg:%x\n", val);
3614 }
3615 
3616 static int
3617 ptp_ocp_summary_show(struct seq_file *s, void *data)
3618 {
3619 	struct device *dev = s->private;
3620 	struct ptp_system_timestamp sts;
3621 	struct ts_reg __iomem *ts_reg;
3622 	char *buf, *src, *mac_src;
3623 	struct timespec64 ts;
3624 	struct ptp_ocp *bp;
3625 	u16 sma_val[4][2];
3626 	u32 ctrl, val;
3627 	bool on, map;
3628 	int i;
3629 
3630 	buf = (char *)__get_free_page(GFP_KERNEL);
3631 	if (!buf)
3632 		return -ENOMEM;
3633 
3634 	bp = dev_get_drvdata(dev);
3635 
3636 	seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
3637 	if (bp->gnss_port.line != -1)
3638 		seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS1",
3639 			   bp->gnss_port.line);
3640 	if (bp->gnss2_port.line != -1)
3641 		seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS2",
3642 			   bp->gnss2_port.line);
3643 	if (bp->mac_port.line != -1)
3644 		seq_printf(s, "%7s: /dev/ttyS%d\n", "MAC", bp->mac_port.line);
3645 	if (bp->nmea_port.line != -1)
3646 		seq_printf(s, "%7s: /dev/ttyS%d\n", "NMEA", bp->nmea_port.line);
3647 
3648 	memset(sma_val, 0xff, sizeof(sma_val));
3649 	if (bp->sma_map1) {
3650 		u32 reg;
3651 
3652 		reg = ioread32(&bp->sma_map1->gpio1);
3653 		sma_val[0][0] = reg & 0xffff;
3654 		sma_val[1][0] = reg >> 16;
3655 
3656 		reg = ioread32(&bp->sma_map1->gpio2);
3657 		sma_val[2][1] = reg & 0xffff;
3658 		sma_val[3][1] = reg >> 16;
3659 
3660 		reg = ioread32(&bp->sma_map2->gpio1);
3661 		sma_val[2][0] = reg & 0xffff;
3662 		sma_val[3][0] = reg >> 16;
3663 
3664 		reg = ioread32(&bp->sma_map2->gpio2);
3665 		sma_val[0][1] = reg & 0xffff;
3666 		sma_val[1][1] = reg >> 16;
3667 	}
3668 
3669 	sma1_show(dev, NULL, buf);
3670 	seq_printf(s, "   sma1: %04x,%04x %s",
3671 		   sma_val[0][0], sma_val[0][1], buf);
3672 
3673 	sma2_show(dev, NULL, buf);
3674 	seq_printf(s, "   sma2: %04x,%04x %s",
3675 		   sma_val[1][0], sma_val[1][1], buf);
3676 
3677 	sma3_show(dev, NULL, buf);
3678 	seq_printf(s, "   sma3: %04x,%04x %s",
3679 		   sma_val[2][0], sma_val[2][1], buf);
3680 
3681 	sma4_show(dev, NULL, buf);
3682 	seq_printf(s, "   sma4: %04x,%04x %s",
3683 		   sma_val[3][0], sma_val[3][1], buf);
3684 
3685 	if (bp->ts0) {
3686 		ts_reg = bp->ts0->mem;
3687 		on = ioread32(&ts_reg->enable);
3688 		src = "GNSS1";
3689 		seq_printf(s, "%7s: %s, src: %s\n", "TS0",
3690 			   on ? " ON" : "OFF", src);
3691 	}
3692 
3693 	if (bp->ts1) {
3694 		ts_reg = bp->ts1->mem;
3695 		on = ioread32(&ts_reg->enable);
3696 		gpio_input_map(buf, bp, sma_val, 2, NULL);
3697 		seq_printf(s, "%7s: %s, src: %s\n", "TS1",
3698 			   on ? " ON" : "OFF", buf);
3699 	}
3700 
3701 	if (bp->ts2) {
3702 		ts_reg = bp->ts2->mem;
3703 		on = ioread32(&ts_reg->enable);
3704 		gpio_input_map(buf, bp, sma_val, 3, NULL);
3705 		seq_printf(s, "%7s: %s, src: %s\n", "TS2",
3706 			   on ? " ON" : "OFF", buf);
3707 	}
3708 
3709 	if (bp->ts3) {
3710 		ts_reg = bp->ts3->mem;
3711 		on = ioread32(&ts_reg->enable);
3712 		gpio_input_map(buf, bp, sma_val, 6, NULL);
3713 		seq_printf(s, "%7s: %s, src: %s\n", "TS3",
3714 			   on ? " ON" : "OFF", buf);
3715 	}
3716 
3717 	if (bp->ts4) {
3718 		ts_reg = bp->ts4->mem;
3719 		on = ioread32(&ts_reg->enable);
3720 		gpio_input_map(buf, bp, sma_val, 7, NULL);
3721 		seq_printf(s, "%7s: %s, src: %s\n", "TS4",
3722 			   on ? " ON" : "OFF", buf);
3723 	}
3724 
3725 	if (bp->pps) {
3726 		ts_reg = bp->pps->mem;
3727 		src = "PHC";
3728 		on = ioread32(&ts_reg->enable);
3729 		map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
3730 		seq_printf(s, "%7s: %s, src: %s\n", "TS5",
3731 			   on && map ? " ON" : "OFF", src);
3732 
3733 		map = !!(bp->pps_req_map & OCP_REQ_PPS);
3734 		seq_printf(s, "%7s: %s, src: %s\n", "PPS",
3735 			   on && map ? " ON" : "OFF", src);
3736 	}
3737 
3738 	if (bp->fw_cap & OCP_CAP_SIGNAL)
3739 		for (i = 0; i < 4; i++)
3740 			_signal_summary_show(s, bp, i);
3741 
3742 	if (bp->fw_cap & OCP_CAP_FREQ)
3743 		for (i = 0; i < 4; i++)
3744 			_frequency_summary_show(s, i, bp->freq_in[i]);
3745 
3746 	if (bp->irig_out) {
3747 		ctrl = ioread32(&bp->irig_out->ctrl);
3748 		on = ctrl & IRIG_M_CTRL_ENABLE;
3749 		val = ioread32(&bp->irig_out->status);
3750 		gpio_output_map(buf, bp, sma_val, 4);
3751 		seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
3752 			   on ? " ON" : "OFF", val, (ctrl >> 16), buf);
3753 	}
3754 
3755 	if (bp->irig_in) {
3756 		on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
3757 		val = ioread32(&bp->irig_in->status);
3758 		gpio_input_map(buf, bp, sma_val, 4, NULL);
3759 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
3760 			   on ? " ON" : "OFF", val, buf);
3761 	}
3762 
3763 	if (bp->dcf_out) {
3764 		on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
3765 		val = ioread32(&bp->dcf_out->status);
3766 		gpio_output_map(buf, bp, sma_val, 5);
3767 		seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
3768 			   on ? " ON" : "OFF", val, buf);
3769 	}
3770 
3771 	if (bp->dcf_in) {
3772 		on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
3773 		val = ioread32(&bp->dcf_in->status);
3774 		gpio_input_map(buf, bp, sma_val, 5, NULL);
3775 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
3776 			   on ? " ON" : "OFF", val, buf);
3777 	}
3778 
3779 	if (bp->nmea_out) {
3780 		on = ioread32(&bp->nmea_out->ctrl) & 1;
3781 		val = ioread32(&bp->nmea_out->status);
3782 		seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
3783 			   on ? " ON" : "OFF", val);
3784 	}
3785 
3786 	/* compute src for PPS1, used below. */
3787 	if (bp->pps_select) {
3788 		val = ioread32(&bp->pps_select->gpio1);
3789 		src = &buf[80];
3790 		mac_src = "GNSS1";
3791 		if (val & 0x01) {
3792 			gpio_input_map(src, bp, sma_val, 0, NULL);
3793 			mac_src = src;
3794 		} else if (val & 0x02) {
3795 			src = "MAC";
3796 		} else if (val & 0x04) {
3797 			src = "GNSS1";
3798 		} else {
3799 			src = "----";
3800 			mac_src = src;
3801 		}
3802 	} else {
3803 		src = "?";
3804 		mac_src = src;
3805 	}
3806 	seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
3807 
3808 	gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
3809 	seq_printf(s, "MAC PPS2 src: %s\n", buf);
3810 
3811 	/* assumes automatic switchover/selection */
3812 	val = ioread32(&bp->reg->select);
3813 	switch (val >> 16) {
3814 	case 0:
3815 		sprintf(buf, "----");
3816 		break;
3817 	case 2:
3818 		sprintf(buf, "IRIG");
3819 		break;
3820 	case 3:
3821 		sprintf(buf, "%s via PPS1", src);
3822 		break;
3823 	case 6:
3824 		sprintf(buf, "DCF");
3825 		break;
3826 	default:
3827 		strcpy(buf, "unknown");
3828 		break;
3829 	}
3830 	val = ioread32(&bp->reg->status);
3831 	seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
3832 		   val & OCP_STATUS_IN_SYNC ? "sync" : "unsynced");
3833 
3834 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
3835 		struct timespec64 sys_ts;
3836 		s64 pre_ns, post_ns, ns;
3837 
3838 		pre_ns = timespec64_to_ns(&sts.pre_ts);
3839 		post_ns = timespec64_to_ns(&sts.post_ts);
3840 		ns = (pre_ns + post_ns) / 2;
3841 		ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
3842 		sys_ts = ns_to_timespec64(ns);
3843 
3844 		seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
3845 			   ts.tv_sec, ts.tv_nsec, &ts);
3846 		seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
3847 			   sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
3848 			   bp->utc_tai_offset);
3849 		seq_printf(s, "%7s: PHC:SYS offset: %lld  window: %lld\n", "",
3850 			   timespec64_to_ns(&ts) - ns,
3851 			   post_ns - pre_ns);
3852 	}
3853 
3854 	free_page((unsigned long)buf);
3855 	return 0;
3856 }
3857 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
3858 
3859 static int
3860 ptp_ocp_tod_status_show(struct seq_file *s, void *data)
3861 {
3862 	struct device *dev = s->private;
3863 	struct ptp_ocp *bp;
3864 	u32 val;
3865 	int idx;
3866 
3867 	bp = dev_get_drvdata(dev);
3868 
3869 	val = ioread32(&bp->tod->ctrl);
3870 	if (!(val & TOD_CTRL_ENABLE)) {
3871 		seq_printf(s, "TOD Slave disabled\n");
3872 		return 0;
3873 	}
3874 	seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
3875 
3876 	idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
3877 	idx += (val >> 16) & 3;
3878 	seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
3879 
3880 	idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
3881 	seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
3882 
3883 	val = ioread32(&bp->tod->version);
3884 	seq_printf(s, "TOD Version %d.%d.%d\n",
3885 		val >> 24, (val >> 16) & 0xff, val & 0xffff);
3886 
3887 	val = ioread32(&bp->tod->status);
3888 	seq_printf(s, "Status register: 0x%08X\n", val);
3889 
3890 	val = ioread32(&bp->tod->adj_sec);
3891 	idx = (val & ~INT_MAX) ? -1 : 1;
3892 	idx *= (val & INT_MAX);
3893 	seq_printf(s, "Correction seconds: %d\n", idx);
3894 
3895 	val = ioread32(&bp->tod->utc_status);
3896 	seq_printf(s, "UTC status register: 0x%08X\n", val);
3897 	seq_printf(s, "UTC offset: %ld  valid:%d\n",
3898 		val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
3899 	seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
3900 		val & TOD_STATUS_LEAP_VALID ? 1 : 0,
3901 		val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
3902 
3903 	val = ioread32(&bp->tod->leap);
3904 	seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
3905 
3906 	return 0;
3907 }
3908 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
3909 
3910 static struct dentry *ptp_ocp_debugfs_root;
3911 
3912 static void
3913 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
3914 {
3915 	struct dentry *d;
3916 
3917 	d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
3918 	bp->debug_root = d;
3919 	debugfs_create_file("summary", 0444, bp->debug_root,
3920 			    &bp->dev, &ptp_ocp_summary_fops);
3921 	if (bp->tod)
3922 		debugfs_create_file("tod_status", 0444, bp->debug_root,
3923 				    &bp->dev, &ptp_ocp_tod_status_fops);
3924 }
3925 
3926 static void
3927 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
3928 {
3929 	debugfs_remove_recursive(bp->debug_root);
3930 }
3931 
3932 static void
3933 ptp_ocp_debugfs_init(void)
3934 {
3935 	ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
3936 }
3937 
3938 static void
3939 ptp_ocp_debugfs_fini(void)
3940 {
3941 	debugfs_remove_recursive(ptp_ocp_debugfs_root);
3942 }
3943 
3944 static void
3945 ptp_ocp_dev_release(struct device *dev)
3946 {
3947 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3948 
3949 	mutex_lock(&ptp_ocp_lock);
3950 	idr_remove(&ptp_ocp_idr, bp->id);
3951 	mutex_unlock(&ptp_ocp_lock);
3952 }
3953 
3954 static int
3955 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
3956 {
3957 	int err;
3958 
3959 	mutex_lock(&ptp_ocp_lock);
3960 	err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
3961 	mutex_unlock(&ptp_ocp_lock);
3962 	if (err < 0) {
3963 		dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
3964 		return err;
3965 	}
3966 	bp->id = err;
3967 
3968 	bp->ptp_info = ptp_ocp_clock_info;
3969 	spin_lock_init(&bp->lock);
3970 	bp->gnss_port.line = -1;
3971 	bp->gnss2_port.line = -1;
3972 	bp->mac_port.line = -1;
3973 	bp->nmea_port.line = -1;
3974 	bp->pdev = pdev;
3975 
3976 	device_initialize(&bp->dev);
3977 	dev_set_name(&bp->dev, "ocp%d", bp->id);
3978 	bp->dev.class = &timecard_class;
3979 	bp->dev.parent = &pdev->dev;
3980 	bp->dev.release = ptp_ocp_dev_release;
3981 	dev_set_drvdata(&bp->dev, bp);
3982 
3983 	err = device_add(&bp->dev);
3984 	if (err) {
3985 		dev_err(&bp->dev, "device add failed: %d\n", err);
3986 		goto out;
3987 	}
3988 
3989 	pci_set_drvdata(pdev, bp);
3990 
3991 	return 0;
3992 
3993 out:
3994 	ptp_ocp_dev_release(&bp->dev);
3995 	put_device(&bp->dev);
3996 	return err;
3997 }
3998 
3999 static void
4000 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
4001 {
4002 	struct device *dev = &bp->dev;
4003 
4004 	if (sysfs_create_link(&dev->kobj, &child->kobj, link))
4005 		dev_err(dev, "%s symlink failed\n", link);
4006 }
4007 
4008 static void
4009 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
4010 {
4011 	struct device *dev, *child;
4012 
4013 	dev = &bp->pdev->dev;
4014 
4015 	child = device_find_child_by_name(dev, name);
4016 	if (!child) {
4017 		dev_err(dev, "Could not find device %s\n", name);
4018 		return;
4019 	}
4020 
4021 	ptp_ocp_symlink(bp, child, link);
4022 	put_device(child);
4023 }
4024 
4025 static int
4026 ptp_ocp_complete(struct ptp_ocp *bp)
4027 {
4028 	struct pps_device *pps;
4029 	char buf[32];
4030 
4031 	if (bp->gnss_port.line != -1) {
4032 		sprintf(buf, "ttyS%d", bp->gnss_port.line);
4033 		ptp_ocp_link_child(bp, buf, "ttyGNSS");
4034 	}
4035 	if (bp->gnss2_port.line != -1) {
4036 		sprintf(buf, "ttyS%d", bp->gnss2_port.line);
4037 		ptp_ocp_link_child(bp, buf, "ttyGNSS2");
4038 	}
4039 	if (bp->mac_port.line != -1) {
4040 		sprintf(buf, "ttyS%d", bp->mac_port.line);
4041 		ptp_ocp_link_child(bp, buf, "ttyMAC");
4042 	}
4043 	if (bp->nmea_port.line != -1) {
4044 		sprintf(buf, "ttyS%d", bp->nmea_port.line);
4045 		ptp_ocp_link_child(bp, buf, "ttyNMEA");
4046 	}
4047 	sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
4048 	ptp_ocp_link_child(bp, buf, "ptp");
4049 
4050 	pps = pps_lookup_dev(bp->ptp);
4051 	if (pps)
4052 		ptp_ocp_symlink(bp, pps->dev, "pps");
4053 
4054 	ptp_ocp_debugfs_add_device(bp);
4055 
4056 	return 0;
4057 }
4058 
4059 static void
4060 ptp_ocp_phc_info(struct ptp_ocp *bp)
4061 {
4062 	struct timespec64 ts;
4063 	u32 version, select;
4064 	bool sync;
4065 
4066 	version = ioread32(&bp->reg->version);
4067 	select = ioread32(&bp->reg->select);
4068 	dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
4069 		 version >> 24, (version >> 16) & 0xff, version & 0xffff,
4070 		 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
4071 		 ptp_clock_index(bp->ptp));
4072 
4073 	sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
4074 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
4075 		dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
4076 			 ts.tv_sec, ts.tv_nsec,
4077 			 sync ? "in-sync" : "UNSYNCED");
4078 }
4079 
4080 static void
4081 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
4082 {
4083 	if (port != -1)
4084 		dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
4085 }
4086 
4087 static void
4088 ptp_ocp_info(struct ptp_ocp *bp)
4089 {
4090 	static int nmea_baud[] = {
4091 		1200, 2400, 4800, 9600, 19200, 38400,
4092 		57600, 115200, 230400, 460800, 921600,
4093 		1000000, 2000000
4094 	};
4095 	struct device *dev = &bp->pdev->dev;
4096 	u32 reg;
4097 
4098 	ptp_ocp_phc_info(bp);
4099 
4100 	ptp_ocp_serial_info(dev, "GNSS", bp->gnss_port.line,
4101 			    bp->gnss_port.baud);
4102 	ptp_ocp_serial_info(dev, "GNSS2", bp->gnss2_port.line,
4103 			    bp->gnss2_port.baud);
4104 	ptp_ocp_serial_info(dev, "MAC", bp->mac_port.line, bp->mac_port.baud);
4105 	if (bp->nmea_out && bp->nmea_port.line != -1) {
4106 		bp->nmea_port.baud = -1;
4107 
4108 		reg = ioread32(&bp->nmea_out->uart_baud);
4109 		if (reg < ARRAY_SIZE(nmea_baud))
4110 			bp->nmea_port.baud = nmea_baud[reg];
4111 
4112 		ptp_ocp_serial_info(dev, "NMEA", bp->nmea_port.line,
4113 				    bp->nmea_port.baud);
4114 	}
4115 }
4116 
4117 static void
4118 ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
4119 {
4120 	struct device *dev = &bp->dev;
4121 
4122 	sysfs_remove_link(&dev->kobj, "ttyGNSS");
4123 	sysfs_remove_link(&dev->kobj, "ttyGNSS2");
4124 	sysfs_remove_link(&dev->kobj, "ttyMAC");
4125 	sysfs_remove_link(&dev->kobj, "ptp");
4126 	sysfs_remove_link(&dev->kobj, "pps");
4127 }
4128 
4129 static void
4130 ptp_ocp_detach(struct ptp_ocp *bp)
4131 {
4132 	int i;
4133 
4134 	ptp_ocp_debugfs_remove_device(bp);
4135 	ptp_ocp_detach_sysfs(bp);
4136 	ptp_ocp_attr_group_del(bp);
4137 	if (timer_pending(&bp->watchdog))
4138 		del_timer_sync(&bp->watchdog);
4139 	if (bp->ts0)
4140 		ptp_ocp_unregister_ext(bp->ts0);
4141 	if (bp->ts1)
4142 		ptp_ocp_unregister_ext(bp->ts1);
4143 	if (bp->ts2)
4144 		ptp_ocp_unregister_ext(bp->ts2);
4145 	if (bp->ts3)
4146 		ptp_ocp_unregister_ext(bp->ts3);
4147 	if (bp->ts4)
4148 		ptp_ocp_unregister_ext(bp->ts4);
4149 	if (bp->pps)
4150 		ptp_ocp_unregister_ext(bp->pps);
4151 	for (i = 0; i < 4; i++)
4152 		if (bp->signal_out[i])
4153 			ptp_ocp_unregister_ext(bp->signal_out[i]);
4154 	if (bp->gnss_port.line != -1)
4155 		serial8250_unregister_port(bp->gnss_port.line);
4156 	if (bp->gnss2_port.line != -1)
4157 		serial8250_unregister_port(bp->gnss2_port.line);
4158 	if (bp->mac_port.line != -1)
4159 		serial8250_unregister_port(bp->mac_port.line);
4160 	if (bp->nmea_port.line != -1)
4161 		serial8250_unregister_port(bp->nmea_port.line);
4162 	platform_device_unregister(bp->spi_flash);
4163 	platform_device_unregister(bp->i2c_ctrl);
4164 	if (bp->i2c_clk)
4165 		clk_hw_unregister_fixed_rate(bp->i2c_clk);
4166 	if (bp->n_irqs)
4167 		pci_free_irq_vectors(bp->pdev);
4168 	if (bp->ptp)
4169 		ptp_clock_unregister(bp->ptp);
4170 	kfree(bp->ptp_info.pin_config);
4171 	device_unregister(&bp->dev);
4172 }
4173 
4174 static int
4175 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
4176 {
4177 	struct devlink *devlink;
4178 	struct ptp_ocp *bp;
4179 	int err;
4180 
4181 	devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
4182 	if (!devlink) {
4183 		dev_err(&pdev->dev, "devlink_alloc failed\n");
4184 		return -ENOMEM;
4185 	}
4186 
4187 	err = pci_enable_device(pdev);
4188 	if (err) {
4189 		dev_err(&pdev->dev, "pci_enable_device\n");
4190 		goto out_free;
4191 	}
4192 
4193 	bp = devlink_priv(devlink);
4194 	err = ptp_ocp_device_init(bp, pdev);
4195 	if (err)
4196 		goto out_disable;
4197 
4198 	/* compat mode.
4199 	 * Older FPGA firmware only returns 2 irq's.
4200 	 * allow this - if not all of the IRQ's are returned, skip the
4201 	 * extra devices and just register the clock.
4202 	 */
4203 	err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
4204 	if (err < 0) {
4205 		dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
4206 		goto out;
4207 	}
4208 	bp->n_irqs = err;
4209 	pci_set_master(pdev);
4210 
4211 	err = ptp_ocp_register_resources(bp, id->driver_data);
4212 	if (err)
4213 		goto out;
4214 
4215 	bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
4216 	if (IS_ERR(bp->ptp)) {
4217 		err = PTR_ERR(bp->ptp);
4218 		dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
4219 		bp->ptp = NULL;
4220 		goto out;
4221 	}
4222 
4223 	err = ptp_ocp_complete(bp);
4224 	if (err)
4225 		goto out;
4226 
4227 	ptp_ocp_info(bp);
4228 	devlink_register(devlink);
4229 	return 0;
4230 
4231 out:
4232 	ptp_ocp_detach(bp);
4233 out_disable:
4234 	pci_disable_device(pdev);
4235 out_free:
4236 	devlink_free(devlink);
4237 	return err;
4238 }
4239 
4240 static void
4241 ptp_ocp_remove(struct pci_dev *pdev)
4242 {
4243 	struct ptp_ocp *bp = pci_get_drvdata(pdev);
4244 	struct devlink *devlink = priv_to_devlink(bp);
4245 
4246 	devlink_unregister(devlink);
4247 	ptp_ocp_detach(bp);
4248 	pci_disable_device(pdev);
4249 
4250 	devlink_free(devlink);
4251 }
4252 
4253 static struct pci_driver ptp_ocp_driver = {
4254 	.name		= KBUILD_MODNAME,
4255 	.id_table	= ptp_ocp_pcidev_id,
4256 	.probe		= ptp_ocp_probe,
4257 	.remove		= ptp_ocp_remove,
4258 };
4259 
4260 static int
4261 ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
4262 			  unsigned long action, void *data)
4263 {
4264 	struct device *dev, *child = data;
4265 	struct ptp_ocp *bp;
4266 	bool add;
4267 
4268 	switch (action) {
4269 	case BUS_NOTIFY_ADD_DEVICE:
4270 	case BUS_NOTIFY_DEL_DEVICE:
4271 		add = action == BUS_NOTIFY_ADD_DEVICE;
4272 		break;
4273 	default:
4274 		return 0;
4275 	}
4276 
4277 	if (!i2c_verify_adapter(child))
4278 		return 0;
4279 
4280 	dev = child;
4281 	while ((dev = dev->parent))
4282 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
4283 			goto found;
4284 	return 0;
4285 
4286 found:
4287 	bp = dev_get_drvdata(dev);
4288 	if (add)
4289 		ptp_ocp_symlink(bp, child, "i2c");
4290 	else
4291 		sysfs_remove_link(&bp->dev.kobj, "i2c");
4292 
4293 	return 0;
4294 }
4295 
4296 static struct notifier_block ptp_ocp_i2c_notifier = {
4297 	.notifier_call = ptp_ocp_i2c_notifier_call,
4298 };
4299 
4300 static int __init
4301 ptp_ocp_init(void)
4302 {
4303 	const char *what;
4304 	int err;
4305 
4306 	ptp_ocp_debugfs_init();
4307 
4308 	what = "timecard class";
4309 	err = class_register(&timecard_class);
4310 	if (err)
4311 		goto out;
4312 
4313 	what = "i2c notifier";
4314 	err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4315 	if (err)
4316 		goto out_notifier;
4317 
4318 	what = "ptp_ocp driver";
4319 	err = pci_register_driver(&ptp_ocp_driver);
4320 	if (err)
4321 		goto out_register;
4322 
4323 	return 0;
4324 
4325 out_register:
4326 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4327 out_notifier:
4328 	class_unregister(&timecard_class);
4329 out:
4330 	ptp_ocp_debugfs_fini();
4331 	pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
4332 	return err;
4333 }
4334 
4335 static void __exit
4336 ptp_ocp_fini(void)
4337 {
4338 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4339 	pci_unregister_driver(&ptp_ocp_driver);
4340 	class_unregister(&timecard_class);
4341 	ptp_ocp_debugfs_fini();
4342 }
4343 
4344 module_init(ptp_ocp_init);
4345 module_exit(ptp_ocp_fini);
4346 
4347 MODULE_DESCRIPTION("OpenCompute TimeCard driver");
4348 MODULE_LICENSE("GPL v2");
4349