xref: /openbmc/linux/drivers/ptp/ptp_ocp.c (revision a583bf18)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2020 Facebook */
3 
4 #include <linux/err.h>
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/debugfs.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/serial_8250.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/platform_device.h>
14 #include <linux/platform_data/i2c-xiic.h>
15 #include <linux/ptp_clock_kernel.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/xilinx_spi.h>
18 #include <net/devlink.h>
19 #include <linux/i2c.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/nvmem-consumer.h>
22 
23 #ifndef PCI_VENDOR_ID_FACEBOOK
24 #define PCI_VENDOR_ID_FACEBOOK 0x1d9b
25 #endif
26 
27 #ifndef PCI_DEVICE_ID_FACEBOOK_TIMECARD
28 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD 0x0400
29 #endif
30 
31 static struct class timecard_class = {
32 	.owner		= THIS_MODULE,
33 	.name		= "timecard",
34 };
35 
36 struct ocp_reg {
37 	u32	ctrl;
38 	u32	status;
39 	u32	select;
40 	u32	version;
41 	u32	time_ns;
42 	u32	time_sec;
43 	u32	__pad0[2];
44 	u32	adjust_ns;
45 	u32	adjust_sec;
46 	u32	__pad1[2];
47 	u32	offset_ns;
48 	u32	offset_window_ns;
49 	u32	__pad2[2];
50 	u32	drift_ns;
51 	u32	drift_window_ns;
52 	u32	__pad3[6];
53 	u32	servo_offset_p;
54 	u32	servo_offset_i;
55 	u32	servo_drift_p;
56 	u32	servo_drift_i;
57 	u32	status_offset;
58 	u32	status_drift;
59 };
60 
61 #define OCP_CTRL_ENABLE		BIT(0)
62 #define OCP_CTRL_ADJUST_TIME	BIT(1)
63 #define OCP_CTRL_ADJUST_OFFSET	BIT(2)
64 #define OCP_CTRL_ADJUST_DRIFT	BIT(3)
65 #define OCP_CTRL_ADJUST_SERVO	BIT(8)
66 #define OCP_CTRL_READ_TIME_REQ	BIT(30)
67 #define OCP_CTRL_READ_TIME_DONE	BIT(31)
68 
69 #define OCP_STATUS_IN_SYNC	BIT(0)
70 #define OCP_STATUS_IN_HOLDOVER	BIT(1)
71 
72 #define OCP_SELECT_CLK_NONE	0
73 #define OCP_SELECT_CLK_REG	0xfe
74 
75 struct tod_reg {
76 	u32	ctrl;
77 	u32	status;
78 	u32	uart_polarity;
79 	u32	version;
80 	u32	adj_sec;
81 	u32	__pad0[3];
82 	u32	uart_baud;
83 	u32	__pad1[3];
84 	u32	utc_status;
85 	u32	leap;
86 };
87 
88 #define TOD_CTRL_PROTOCOL	BIT(28)
89 #define TOD_CTRL_DISABLE_FMT_A	BIT(17)
90 #define TOD_CTRL_DISABLE_FMT_B	BIT(16)
91 #define TOD_CTRL_ENABLE		BIT(0)
92 #define TOD_CTRL_GNSS_MASK	((1U << 4) - 1)
93 #define TOD_CTRL_GNSS_SHIFT	24
94 
95 #define TOD_STATUS_UTC_MASK		0xff
96 #define TOD_STATUS_UTC_VALID		BIT(8)
97 #define TOD_STATUS_LEAP_ANNOUNCE	BIT(12)
98 #define TOD_STATUS_LEAP_VALID		BIT(16)
99 
100 struct ts_reg {
101 	u32	enable;
102 	u32	error;
103 	u32	polarity;
104 	u32	version;
105 	u32	__pad0[4];
106 	u32	cable_delay;
107 	u32	__pad1[3];
108 	u32	intr;
109 	u32	intr_mask;
110 	u32	event_count;
111 	u32	__pad2[1];
112 	u32	ts_count;
113 	u32	time_ns;
114 	u32	time_sec;
115 	u32	data_width;
116 	u32	data;
117 };
118 
119 struct pps_reg {
120 	u32	ctrl;
121 	u32	status;
122 	u32	__pad0[6];
123 	u32	cable_delay;
124 };
125 
126 #define PPS_STATUS_FILTER_ERR	BIT(0)
127 #define PPS_STATUS_SUPERV_ERR	BIT(1)
128 
129 struct img_reg {
130 	u32	version;
131 };
132 
133 struct gpio_reg {
134 	u32	gpio1;
135 	u32	__pad0;
136 	u32	gpio2;
137 	u32	__pad1;
138 };
139 
140 struct irig_master_reg {
141 	u32	ctrl;
142 	u32	status;
143 	u32	__pad0;
144 	u32	version;
145 	u32	adj_sec;
146 	u32	mode_ctrl;
147 };
148 
149 #define IRIG_M_CTRL_ENABLE	BIT(0)
150 
151 struct irig_slave_reg {
152 	u32	ctrl;
153 	u32	status;
154 	u32	__pad0;
155 	u32	version;
156 	u32	adj_sec;
157 	u32	mode_ctrl;
158 };
159 
160 #define IRIG_S_CTRL_ENABLE	BIT(0)
161 
162 struct dcf_master_reg {
163 	u32	ctrl;
164 	u32	status;
165 	u32	__pad0;
166 	u32	version;
167 	u32	adj_sec;
168 };
169 
170 #define DCF_M_CTRL_ENABLE	BIT(0)
171 
172 struct dcf_slave_reg {
173 	u32	ctrl;
174 	u32	status;
175 	u32	__pad0;
176 	u32	version;
177 	u32	adj_sec;
178 };
179 
180 #define DCF_S_CTRL_ENABLE	BIT(0)
181 
182 struct signal_reg {
183 	u32	enable;
184 	u32	status;
185 	u32	polarity;
186 	u32	version;
187 	u32	__pad0[4];
188 	u32	cable_delay;
189 	u32	__pad1[3];
190 	u32	intr;
191 	u32	intr_mask;
192 	u32	__pad2[2];
193 	u32	start_ns;
194 	u32	start_sec;
195 	u32	pulse_ns;
196 	u32	pulse_sec;
197 	u32	period_ns;
198 	u32	period_sec;
199 	u32	repeat_count;
200 };
201 
202 struct frequency_reg {
203 	u32	ctrl;
204 	u32	status;
205 };
206 #define FREQ_STATUS_VALID	BIT(31)
207 #define FREQ_STATUS_ERROR	BIT(30)
208 #define FREQ_STATUS_OVERRUN	BIT(29)
209 #define FREQ_STATUS_MASK	(BIT(24) - 1)
210 
211 struct ptp_ocp_flash_info {
212 	const char *name;
213 	int pci_offset;
214 	int data_size;
215 	void *data;
216 };
217 
218 struct ptp_ocp_i2c_info {
219 	const char *name;
220 	unsigned long fixed_rate;
221 	size_t data_size;
222 	void *data;
223 };
224 
225 struct ptp_ocp_ext_info {
226 	int index;
227 	irqreturn_t (*irq_fcn)(int irq, void *priv);
228 	int (*enable)(void *priv, u32 req, bool enable);
229 };
230 
231 struct ptp_ocp_ext_src {
232 	void __iomem		*mem;
233 	struct ptp_ocp		*bp;
234 	struct ptp_ocp_ext_info	*info;
235 	int			irq_vec;
236 };
237 
238 enum ptp_ocp_sma_mode {
239 	SMA_MODE_IN,
240 	SMA_MODE_OUT,
241 };
242 
243 struct ptp_ocp_sma_connector {
244 	enum	ptp_ocp_sma_mode mode;
245 	bool	fixed_fcn;
246 	bool	fixed_dir;
247 	bool	disabled;
248 };
249 
250 struct ocp_attr_group {
251 	u64 cap;
252 	const struct attribute_group *group;
253 };
254 
255 #define OCP_CAP_BASIC	BIT(0)
256 #define OCP_CAP_SIGNAL	BIT(1)
257 #define OCP_CAP_FREQ	BIT(2)
258 
259 struct ptp_ocp_signal {
260 	ktime_t		period;
261 	ktime_t		pulse;
262 	ktime_t		phase;
263 	ktime_t		start;
264 	int		duty;
265 	bool		polarity;
266 	bool		running;
267 };
268 
269 #define OCP_BOARD_ID_LEN		13
270 #define OCP_SERIAL_LEN			6
271 
272 struct ptp_ocp {
273 	struct pci_dev		*pdev;
274 	struct device		dev;
275 	spinlock_t		lock;
276 	struct ocp_reg __iomem	*reg;
277 	struct tod_reg __iomem	*tod;
278 	struct pps_reg __iomem	*pps_to_ext;
279 	struct pps_reg __iomem	*pps_to_clk;
280 	struct gpio_reg __iomem	*pps_select;
281 	struct gpio_reg __iomem	*sma_map1;
282 	struct gpio_reg __iomem	*sma_map2;
283 	struct irig_master_reg	__iomem *irig_out;
284 	struct irig_slave_reg	__iomem *irig_in;
285 	struct dcf_master_reg	__iomem *dcf_out;
286 	struct dcf_slave_reg	__iomem *dcf_in;
287 	struct tod_reg		__iomem *nmea_out;
288 	struct frequency_reg	__iomem *freq_in[4];
289 	struct ptp_ocp_ext_src	*signal_out[4];
290 	struct ptp_ocp_ext_src	*pps;
291 	struct ptp_ocp_ext_src	*ts0;
292 	struct ptp_ocp_ext_src	*ts1;
293 	struct ptp_ocp_ext_src	*ts2;
294 	struct ptp_ocp_ext_src	*ts3;
295 	struct ptp_ocp_ext_src	*ts4;
296 	struct img_reg __iomem	*image;
297 	struct ptp_clock	*ptp;
298 	struct ptp_clock_info	ptp_info;
299 	struct platform_device	*i2c_ctrl;
300 	struct platform_device	*spi_flash;
301 	struct clk_hw		*i2c_clk;
302 	struct timer_list	watchdog;
303 	const struct attribute_group **attr_group;
304 	const struct ptp_ocp_eeprom_map *eeprom_map;
305 	struct dentry		*debug_root;
306 	time64_t		gnss_lost;
307 	int			id;
308 	int			n_irqs;
309 	int			gnss_port;
310 	int			gnss2_port;
311 	int			mac_port;	/* miniature atomic clock */
312 	int			nmea_port;
313 	u32			fw_version;
314 	u8			board_id[OCP_BOARD_ID_LEN];
315 	u8			serial[OCP_SERIAL_LEN];
316 	bool			has_eeprom_data;
317 	u32			pps_req_map;
318 	int			flash_start;
319 	u32			utc_tai_offset;
320 	u32			ts_window_adjust;
321 	u64			fw_cap;
322 	struct ptp_ocp_signal	signal[4];
323 	struct ptp_ocp_sma_connector sma[4];
324 };
325 
326 #define OCP_REQ_TIMESTAMP	BIT(0)
327 #define OCP_REQ_PPS		BIT(1)
328 
329 struct ocp_resource {
330 	unsigned long offset;
331 	int size;
332 	int irq_vec;
333 	int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
334 	void *extra;
335 	unsigned long bp_offset;
336 	const char * const name;
337 };
338 
339 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
340 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
341 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
342 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
343 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
344 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
345 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
346 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
347 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
348 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
349 				      struct ptp_perout_request *req);
350 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
351 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
352 
353 static const struct ocp_attr_group fb_timecard_groups[];
354 
355 struct ptp_ocp_eeprom_map {
356 	u16	off;
357 	u16	len;
358 	u32	bp_offset;
359 	const void * const tag;
360 };
361 
362 #define EEPROM_ENTRY(addr, member)				\
363 	.off = addr,						\
364 	.len = sizeof_field(struct ptp_ocp, member),		\
365 	.bp_offset = offsetof(struct ptp_ocp, member)
366 
367 #define BP_MAP_ENTRY_ADDR(bp, map) ({				\
368 	(void *)((uintptr_t)(bp) + (map)->bp_offset);		\
369 })
370 
371 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
372 	{ EEPROM_ENTRY(0x43, board_id) },
373 	{ EEPROM_ENTRY(0x00, serial), .tag = "mac" },
374 	{ }
375 };
376 
377 #define bp_assign_entry(bp, res, val) ({				\
378 	uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset;		\
379 	*(typeof(val) *)addr = val;					\
380 })
381 
382 #define OCP_RES_LOCATION(member) \
383 	.name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
384 
385 #define OCP_MEM_RESOURCE(member) \
386 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
387 
388 #define OCP_SERIAL_RESOURCE(member) \
389 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
390 
391 #define OCP_I2C_RESOURCE(member) \
392 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
393 
394 #define OCP_SPI_RESOURCE(member) \
395 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
396 
397 #define OCP_EXT_RESOURCE(member) \
398 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
399 
400 /* This is the MSI vector mapping used.
401  * 0: PPS (TS5)
402  * 1: TS0
403  * 2: TS1
404  * 3: GNSS1
405  * 4: GNSS2
406  * 5: MAC
407  * 6: TS2
408  * 7: I2C controller
409  * 8: HWICAP (notused)
410  * 9: SPI Flash
411  * 10: NMEA
412  * 11: Signal Generator 1
413  * 12: Signal Generator 2
414  * 13: Signal Generator 3
415  * 14: Signal Generator 4
416  * 15: TS3
417  * 16: TS4
418  */
419 
420 static struct ocp_resource ocp_fb_resource[] = {
421 	{
422 		OCP_MEM_RESOURCE(reg),
423 		.offset = 0x01000000, .size = 0x10000,
424 	},
425 	{
426 		OCP_EXT_RESOURCE(ts0),
427 		.offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
428 		.extra = &(struct ptp_ocp_ext_info) {
429 			.index = 0,
430 			.irq_fcn = ptp_ocp_ts_irq,
431 			.enable = ptp_ocp_ts_enable,
432 		},
433 	},
434 	{
435 		OCP_EXT_RESOURCE(ts1),
436 		.offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
437 		.extra = &(struct ptp_ocp_ext_info) {
438 			.index = 1,
439 			.irq_fcn = ptp_ocp_ts_irq,
440 			.enable = ptp_ocp_ts_enable,
441 		},
442 	},
443 	{
444 		OCP_EXT_RESOURCE(ts2),
445 		.offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
446 		.extra = &(struct ptp_ocp_ext_info) {
447 			.index = 2,
448 			.irq_fcn = ptp_ocp_ts_irq,
449 			.enable = ptp_ocp_ts_enable,
450 		},
451 	},
452 	{
453 		OCP_EXT_RESOURCE(ts3),
454 		.offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
455 		.extra = &(struct ptp_ocp_ext_info) {
456 			.index = 3,
457 			.irq_fcn = ptp_ocp_ts_irq,
458 			.enable = ptp_ocp_ts_enable,
459 		},
460 	},
461 	{
462 		OCP_EXT_RESOURCE(ts4),
463 		.offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
464 		.extra = &(struct ptp_ocp_ext_info) {
465 			.index = 4,
466 			.irq_fcn = ptp_ocp_ts_irq,
467 			.enable = ptp_ocp_ts_enable,
468 		},
469 	},
470 	/* Timestamp for PHC and/or PPS generator */
471 	{
472 		OCP_EXT_RESOURCE(pps),
473 		.offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
474 		.extra = &(struct ptp_ocp_ext_info) {
475 			.index = 5,
476 			.irq_fcn = ptp_ocp_ts_irq,
477 			.enable = ptp_ocp_ts_enable,
478 		},
479 	},
480 	{
481 		OCP_EXT_RESOURCE(signal_out[0]),
482 		.offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
483 		.extra = &(struct ptp_ocp_ext_info) {
484 			.index = 1,
485 			.irq_fcn = ptp_ocp_signal_irq,
486 			.enable = ptp_ocp_signal_enable,
487 		},
488 	},
489 	{
490 		OCP_EXT_RESOURCE(signal_out[1]),
491 		.offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
492 		.extra = &(struct ptp_ocp_ext_info) {
493 			.index = 2,
494 			.irq_fcn = ptp_ocp_signal_irq,
495 			.enable = ptp_ocp_signal_enable,
496 		},
497 	},
498 	{
499 		OCP_EXT_RESOURCE(signal_out[2]),
500 		.offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
501 		.extra = &(struct ptp_ocp_ext_info) {
502 			.index = 3,
503 			.irq_fcn = ptp_ocp_signal_irq,
504 			.enable = ptp_ocp_signal_enable,
505 		},
506 	},
507 	{
508 		OCP_EXT_RESOURCE(signal_out[3]),
509 		.offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
510 		.extra = &(struct ptp_ocp_ext_info) {
511 			.index = 4,
512 			.irq_fcn = ptp_ocp_signal_irq,
513 			.enable = ptp_ocp_signal_enable,
514 		},
515 	},
516 	{
517 		OCP_MEM_RESOURCE(pps_to_ext),
518 		.offset = 0x01030000, .size = 0x10000,
519 	},
520 	{
521 		OCP_MEM_RESOURCE(pps_to_clk),
522 		.offset = 0x01040000, .size = 0x10000,
523 	},
524 	{
525 		OCP_MEM_RESOURCE(tod),
526 		.offset = 0x01050000, .size = 0x10000,
527 	},
528 	{
529 		OCP_MEM_RESOURCE(irig_in),
530 		.offset = 0x01070000, .size = 0x10000,
531 	},
532 	{
533 		OCP_MEM_RESOURCE(irig_out),
534 		.offset = 0x01080000, .size = 0x10000,
535 	},
536 	{
537 		OCP_MEM_RESOURCE(dcf_in),
538 		.offset = 0x01090000, .size = 0x10000,
539 	},
540 	{
541 		OCP_MEM_RESOURCE(dcf_out),
542 		.offset = 0x010A0000, .size = 0x10000,
543 	},
544 	{
545 		OCP_MEM_RESOURCE(nmea_out),
546 		.offset = 0x010B0000, .size = 0x10000,
547 	},
548 	{
549 		OCP_MEM_RESOURCE(image),
550 		.offset = 0x00020000, .size = 0x1000,
551 	},
552 	{
553 		OCP_MEM_RESOURCE(pps_select),
554 		.offset = 0x00130000, .size = 0x1000,
555 	},
556 	{
557 		OCP_MEM_RESOURCE(sma_map1),
558 		.offset = 0x00140000, .size = 0x1000,
559 	},
560 	{
561 		OCP_MEM_RESOURCE(sma_map2),
562 		.offset = 0x00220000, .size = 0x1000,
563 	},
564 	{
565 		OCP_I2C_RESOURCE(i2c_ctrl),
566 		.offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
567 		.extra = &(struct ptp_ocp_i2c_info) {
568 			.name = "xiic-i2c",
569 			.fixed_rate = 50000000,
570 			.data_size = sizeof(struct xiic_i2c_platform_data),
571 			.data = &(struct xiic_i2c_platform_data) {
572 				.num_devices = 2,
573 				.devices = (struct i2c_board_info[]) {
574 					{ I2C_BOARD_INFO("24c02", 0x50) },
575 					{ I2C_BOARD_INFO("24mac402", 0x58),
576 					  .platform_data = "mac" },
577 				},
578 			},
579 		},
580 	},
581 	{
582 		OCP_SERIAL_RESOURCE(gnss_port),
583 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
584 	},
585 	{
586 		OCP_SERIAL_RESOURCE(gnss2_port),
587 		.offset = 0x00170000 + 0x1000, .irq_vec = 4,
588 	},
589 	{
590 		OCP_SERIAL_RESOURCE(mac_port),
591 		.offset = 0x00180000 + 0x1000, .irq_vec = 5,
592 	},
593 	{
594 		OCP_SERIAL_RESOURCE(nmea_port),
595 		.offset = 0x00190000 + 0x1000, .irq_vec = 10,
596 	},
597 	{
598 		OCP_SPI_RESOURCE(spi_flash),
599 		.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
600 		.extra = &(struct ptp_ocp_flash_info) {
601 			.name = "xilinx_spi", .pci_offset = 0,
602 			.data_size = sizeof(struct xspi_platform_data),
603 			.data = &(struct xspi_platform_data) {
604 				.num_chipselect = 1,
605 				.bits_per_word = 8,
606 				.num_devices = 1,
607 				.devices = &(struct spi_board_info) {
608 					.modalias = "spi-nor",
609 				},
610 			},
611 		},
612 	},
613 	{
614 		OCP_MEM_RESOURCE(freq_in[0]),
615 		.offset = 0x01200000, .size = 0x10000,
616 	},
617 	{
618 		OCP_MEM_RESOURCE(freq_in[1]),
619 		.offset = 0x01210000, .size = 0x10000,
620 	},
621 	{
622 		OCP_MEM_RESOURCE(freq_in[2]),
623 		.offset = 0x01220000, .size = 0x10000,
624 	},
625 	{
626 		OCP_MEM_RESOURCE(freq_in[3]),
627 		.offset = 0x01230000, .size = 0x10000,
628 	},
629 	{
630 		.setup = ptp_ocp_fb_board_init,
631 	},
632 	{ }
633 };
634 
635 static const struct pci_device_id ptp_ocp_pcidev_id[] = {
636 	{ PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
637 	{ 0 }
638 };
639 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
640 
641 static DEFINE_MUTEX(ptp_ocp_lock);
642 static DEFINE_IDR(ptp_ocp_idr);
643 
644 struct ocp_selector {
645 	const char *name;
646 	int value;
647 };
648 
649 static struct ocp_selector ptp_ocp_clock[] = {
650 	{ .name = "NONE",	.value = 0 },
651 	{ .name = "TOD",	.value = 1 },
652 	{ .name = "IRIG",	.value = 2 },
653 	{ .name = "PPS",	.value = 3 },
654 	{ .name = "PTP",	.value = 4 },
655 	{ .name = "RTC",	.value = 5 },
656 	{ .name = "DCF",	.value = 6 },
657 	{ .name = "REGS",	.value = 0xfe },
658 	{ .name = "EXT",	.value = 0xff },
659 	{ }
660 };
661 
662 #define SMA_ENABLE		BIT(15)
663 #define SMA_SELECT_MASK		((1U << 15) - 1)
664 #define SMA_DISABLE		0x10000
665 
666 static struct ocp_selector ptp_ocp_sma_in[] = {
667 	{ .name = "10Mhz",	.value = 0x0000 },
668 	{ .name = "PPS1",	.value = 0x0001 },
669 	{ .name = "PPS2",	.value = 0x0002 },
670 	{ .name = "TS1",	.value = 0x0004 },
671 	{ .name = "TS2",	.value = 0x0008 },
672 	{ .name = "IRIG",	.value = 0x0010 },
673 	{ .name = "DCF",	.value = 0x0020 },
674 	{ .name = "TS3",	.value = 0x0040 },
675 	{ .name = "TS4",	.value = 0x0080 },
676 	{ .name = "FREQ1",	.value = 0x0100 },
677 	{ .name = "FREQ2",	.value = 0x0200 },
678 	{ .name = "FREQ3",	.value = 0x0400 },
679 	{ .name = "FREQ4",	.value = 0x0800 },
680 	{ .name = "None",	.value = SMA_DISABLE },
681 	{ }
682 };
683 
684 static struct ocp_selector ptp_ocp_sma_out[] = {
685 	{ .name = "10Mhz",	.value = 0x0000 },
686 	{ .name = "PHC",	.value = 0x0001 },
687 	{ .name = "MAC",	.value = 0x0002 },
688 	{ .name = "GNSS1",	.value = 0x0004 },
689 	{ .name = "GNSS2",	.value = 0x0008 },
690 	{ .name = "IRIG",	.value = 0x0010 },
691 	{ .name = "DCF",	.value = 0x0020 },
692 	{ .name = "GEN1",	.value = 0x0040 },
693 	{ .name = "GEN2",	.value = 0x0080 },
694 	{ .name = "GEN3",	.value = 0x0100 },
695 	{ .name = "GEN4",	.value = 0x0200 },
696 	{ .name = "GND",	.value = 0x2000 },
697 	{ .name = "VCC",	.value = 0x4000 },
698 	{ }
699 };
700 
701 static const char *
702 ptp_ocp_select_name_from_val(struct ocp_selector *tbl, int val)
703 {
704 	int i;
705 
706 	for (i = 0; tbl[i].name; i++)
707 		if (tbl[i].value == val)
708 			return tbl[i].name;
709 	return NULL;
710 }
711 
712 static int
713 ptp_ocp_select_val_from_name(struct ocp_selector *tbl, const char *name)
714 {
715 	const char *select;
716 	int i;
717 
718 	for (i = 0; tbl[i].name; i++) {
719 		select = tbl[i].name;
720 		if (!strncasecmp(name, select, strlen(select)))
721 			return tbl[i].value;
722 	}
723 	return -EINVAL;
724 }
725 
726 static ssize_t
727 ptp_ocp_select_table_show(struct ocp_selector *tbl, char *buf)
728 {
729 	ssize_t count;
730 	int i;
731 
732 	count = 0;
733 	for (i = 0; tbl[i].name; i++)
734 		count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
735 	if (count)
736 		count--;
737 	count += sysfs_emit_at(buf, count, "\n");
738 	return count;
739 }
740 
741 static int
742 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
743 			 struct ptp_system_timestamp *sts)
744 {
745 	u32 ctrl, time_sec, time_ns;
746 	int i;
747 
748 	ptp_read_system_prets(sts);
749 
750 	ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
751 	iowrite32(ctrl, &bp->reg->ctrl);
752 
753 	for (i = 0; i < 100; i++) {
754 		ctrl = ioread32(&bp->reg->ctrl);
755 		if (ctrl & OCP_CTRL_READ_TIME_DONE)
756 			break;
757 	}
758 	ptp_read_system_postts(sts);
759 
760 	if (sts && bp->ts_window_adjust) {
761 		s64 ns = timespec64_to_ns(&sts->post_ts);
762 
763 		sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
764 	}
765 
766 	time_ns = ioread32(&bp->reg->time_ns);
767 	time_sec = ioread32(&bp->reg->time_sec);
768 
769 	ts->tv_sec = time_sec;
770 	ts->tv_nsec = time_ns;
771 
772 	return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
773 }
774 
775 static int
776 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
777 		 struct ptp_system_timestamp *sts)
778 {
779 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
780 	unsigned long flags;
781 	int err;
782 
783 	spin_lock_irqsave(&bp->lock, flags);
784 	err = __ptp_ocp_gettime_locked(bp, ts, sts);
785 	spin_unlock_irqrestore(&bp->lock, flags);
786 
787 	return err;
788 }
789 
790 static void
791 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
792 {
793 	u32 ctrl, time_sec, time_ns;
794 	u32 select;
795 
796 	time_ns = ts->tv_nsec;
797 	time_sec = ts->tv_sec;
798 
799 	select = ioread32(&bp->reg->select);
800 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
801 
802 	iowrite32(time_ns, &bp->reg->adjust_ns);
803 	iowrite32(time_sec, &bp->reg->adjust_sec);
804 
805 	ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
806 	iowrite32(ctrl, &bp->reg->ctrl);
807 
808 	/* restore clock selection */
809 	iowrite32(select >> 16, &bp->reg->select);
810 }
811 
812 static int
813 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
814 {
815 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
816 	unsigned long flags;
817 
818 	spin_lock_irqsave(&bp->lock, flags);
819 	__ptp_ocp_settime_locked(bp, ts);
820 	spin_unlock_irqrestore(&bp->lock, flags);
821 
822 	return 0;
823 }
824 
825 static void
826 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
827 {
828 	u32 select, ctrl;
829 
830 	select = ioread32(&bp->reg->select);
831 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
832 
833 	iowrite32(adj_val, &bp->reg->offset_ns);
834 	iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
835 
836 	ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
837 	iowrite32(ctrl, &bp->reg->ctrl);
838 
839 	/* restore clock selection */
840 	iowrite32(select >> 16, &bp->reg->select);
841 }
842 
843 static void
844 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
845 {
846 	struct timespec64 ts;
847 	unsigned long flags;
848 	int err;
849 
850 	spin_lock_irqsave(&bp->lock, flags);
851 	err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
852 	if (likely(!err)) {
853 		set_normalized_timespec64(&ts, ts.tv_sec,
854 					  ts.tv_nsec + delta_ns);
855 		__ptp_ocp_settime_locked(bp, &ts);
856 	}
857 	spin_unlock_irqrestore(&bp->lock, flags);
858 }
859 
860 static int
861 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
862 {
863 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
864 	unsigned long flags;
865 	u32 adj_ns, sign;
866 
867 	if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
868 		ptp_ocp_adjtime_coarse(bp, delta_ns);
869 		return 0;
870 	}
871 
872 	sign = delta_ns < 0 ? BIT(31) : 0;
873 	adj_ns = sign ? -delta_ns : delta_ns;
874 
875 	spin_lock_irqsave(&bp->lock, flags);
876 	__ptp_ocp_adjtime_locked(bp, sign | adj_ns);
877 	spin_unlock_irqrestore(&bp->lock, flags);
878 
879 	return 0;
880 }
881 
882 static int
883 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
884 {
885 	if (scaled_ppm == 0)
886 		return 0;
887 
888 	return -EOPNOTSUPP;
889 }
890 
891 static int
892 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
893 {
894 	return -EOPNOTSUPP;
895 }
896 
897 static int
898 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
899 	       int on)
900 {
901 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
902 	struct ptp_ocp_ext_src *ext = NULL;
903 	u32 req;
904 	int err;
905 
906 	switch (rq->type) {
907 	case PTP_CLK_REQ_EXTTS:
908 		req = OCP_REQ_TIMESTAMP;
909 		switch (rq->extts.index) {
910 		case 0:
911 			ext = bp->ts0;
912 			break;
913 		case 1:
914 			ext = bp->ts1;
915 			break;
916 		case 2:
917 			ext = bp->ts2;
918 			break;
919 		case 3:
920 			ext = bp->ts3;
921 			break;
922 		case 4:
923 			ext = bp->ts4;
924 			break;
925 		case 5:
926 			ext = bp->pps;
927 			break;
928 		}
929 		break;
930 	case PTP_CLK_REQ_PPS:
931 		req = OCP_REQ_PPS;
932 		ext = bp->pps;
933 		break;
934 	case PTP_CLK_REQ_PEROUT:
935 		switch (rq->perout.index) {
936 		case 0:
937 			/* This is a request for 1PPS on an output SMA.
938 			 * Allow, but assume manual configuration.
939 			 */
940 			if (on && (rq->perout.period.sec != 1 ||
941 				   rq->perout.period.nsec != 0))
942 				return -EINVAL;
943 			return 0;
944 		case 1:
945 		case 2:
946 		case 3:
947 		case 4:
948 			req = rq->perout.index - 1;
949 			ext = bp->signal_out[req];
950 			err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
951 			if (err)
952 				return err;
953 			break;
954 		}
955 		break;
956 	default:
957 		return -EOPNOTSUPP;
958 	}
959 
960 	err = -ENXIO;
961 	if (ext)
962 		err = ext->info->enable(ext, req, on);
963 
964 	return err;
965 }
966 
967 static int
968 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
969 	       enum ptp_pin_function func, unsigned chan)
970 {
971 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
972 	char buf[16];
973 
974 	switch (func) {
975 	case PTP_PF_NONE:
976 		snprintf(buf, sizeof(buf), "IN: None");
977 		break;
978 	case PTP_PF_EXTTS:
979 		/* Allow timestamps, but require sysfs configuration. */
980 		return 0;
981 	case PTP_PF_PEROUT:
982 		/* channel 0 is 1PPS from PHC.
983 		 * channels 1..4 are the frequency generators.
984 		 */
985 		if (chan)
986 			snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
987 		else
988 			snprintf(buf, sizeof(buf), "OUT: PHC");
989 		break;
990 	default:
991 		return -EOPNOTSUPP;
992 	}
993 
994 	return ptp_ocp_sma_store(bp, buf, pin + 1);
995 }
996 
997 static const struct ptp_clock_info ptp_ocp_clock_info = {
998 	.owner		= THIS_MODULE,
999 	.name		= KBUILD_MODNAME,
1000 	.max_adj	= 100000000,
1001 	.gettimex64	= ptp_ocp_gettimex,
1002 	.settime64	= ptp_ocp_settime,
1003 	.adjtime	= ptp_ocp_adjtime,
1004 	.adjfine	= ptp_ocp_null_adjfine,
1005 	.adjphase	= ptp_ocp_null_adjphase,
1006 	.enable		= ptp_ocp_enable,
1007 	.verify		= ptp_ocp_verify,
1008 	.pps		= true,
1009 	.n_ext_ts	= 6,
1010 	.n_per_out	= 5,
1011 };
1012 
1013 static void
1014 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
1015 {
1016 	u32 ctrl, select;
1017 
1018 	select = ioread32(&bp->reg->select);
1019 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1020 
1021 	iowrite32(0, &bp->reg->drift_ns);
1022 
1023 	ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
1024 	iowrite32(ctrl, &bp->reg->ctrl);
1025 
1026 	/* restore clock selection */
1027 	iowrite32(select >> 16, &bp->reg->select);
1028 }
1029 
1030 static void
1031 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
1032 {
1033 	unsigned long flags;
1034 
1035 	spin_lock_irqsave(&bp->lock, flags);
1036 
1037 	bp->utc_tai_offset = val;
1038 
1039 	if (bp->irig_out)
1040 		iowrite32(val, &bp->irig_out->adj_sec);
1041 	if (bp->dcf_out)
1042 		iowrite32(val, &bp->dcf_out->adj_sec);
1043 	if (bp->nmea_out)
1044 		iowrite32(val, &bp->nmea_out->adj_sec);
1045 
1046 	spin_unlock_irqrestore(&bp->lock, flags);
1047 }
1048 
1049 static void
1050 ptp_ocp_watchdog(struct timer_list *t)
1051 {
1052 	struct ptp_ocp *bp = from_timer(bp, t, watchdog);
1053 	unsigned long flags;
1054 	u32 status, utc_offset;
1055 
1056 	status = ioread32(&bp->pps_to_clk->status);
1057 
1058 	if (status & PPS_STATUS_SUPERV_ERR) {
1059 		iowrite32(status, &bp->pps_to_clk->status);
1060 		if (!bp->gnss_lost) {
1061 			spin_lock_irqsave(&bp->lock, flags);
1062 			__ptp_ocp_clear_drift_locked(bp);
1063 			spin_unlock_irqrestore(&bp->lock, flags);
1064 			bp->gnss_lost = ktime_get_real_seconds();
1065 		}
1066 
1067 	} else if (bp->gnss_lost) {
1068 		bp->gnss_lost = 0;
1069 	}
1070 
1071 	/* if GNSS provides correct data we can rely on
1072 	 * it to get leap second information
1073 	 */
1074 	if (bp->tod) {
1075 		status = ioread32(&bp->tod->utc_status);
1076 		utc_offset = status & TOD_STATUS_UTC_MASK;
1077 		if (status & TOD_STATUS_UTC_VALID &&
1078 		    utc_offset != bp->utc_tai_offset)
1079 			ptp_ocp_utc_distribute(bp, utc_offset);
1080 	}
1081 
1082 	mod_timer(&bp->watchdog, jiffies + HZ);
1083 }
1084 
1085 static void
1086 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
1087 {
1088 	ktime_t start, end;
1089 	ktime_t delay;
1090 	u32 ctrl;
1091 
1092 	ctrl = ioread32(&bp->reg->ctrl);
1093 	ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1094 
1095 	iowrite32(ctrl, &bp->reg->ctrl);
1096 
1097 	start = ktime_get_ns();
1098 
1099 	ctrl = ioread32(&bp->reg->ctrl);
1100 
1101 	end = ktime_get_ns();
1102 
1103 	delay = end - start;
1104 	bp->ts_window_adjust = (delay >> 5) * 3;
1105 }
1106 
1107 static int
1108 ptp_ocp_init_clock(struct ptp_ocp *bp)
1109 {
1110 	struct timespec64 ts;
1111 	bool sync;
1112 	u32 ctrl;
1113 
1114 	ctrl = OCP_CTRL_ENABLE;
1115 	iowrite32(ctrl, &bp->reg->ctrl);
1116 
1117 	/* NO DRIFT Correction */
1118 	/* offset_p:i 1/8, offset_i: 1/16, drift_p: 0, drift_i: 0 */
1119 	iowrite32(0x2000, &bp->reg->servo_offset_p);
1120 	iowrite32(0x1000, &bp->reg->servo_offset_i);
1121 	iowrite32(0,	  &bp->reg->servo_drift_p);
1122 	iowrite32(0,	  &bp->reg->servo_drift_i);
1123 
1124 	/* latch servo values */
1125 	ctrl |= OCP_CTRL_ADJUST_SERVO;
1126 	iowrite32(ctrl, &bp->reg->ctrl);
1127 
1128 	if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
1129 		dev_err(&bp->pdev->dev, "clock not enabled\n");
1130 		return -ENODEV;
1131 	}
1132 
1133 	ptp_ocp_estimate_pci_timing(bp);
1134 
1135 	sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
1136 	if (!sync) {
1137 		ktime_get_clocktai_ts64(&ts);
1138 		ptp_ocp_settime(&bp->ptp_info, &ts);
1139 	}
1140 
1141 	/* If there is a clock supervisor, then enable the watchdog */
1142 	if (bp->pps_to_clk) {
1143 		timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
1144 		mod_timer(&bp->watchdog, jiffies + HZ);
1145 	}
1146 
1147 	return 0;
1148 }
1149 
1150 static void
1151 ptp_ocp_tod_init(struct ptp_ocp *bp)
1152 {
1153 	u32 ctrl, reg;
1154 
1155 	ctrl = ioread32(&bp->tod->ctrl);
1156 	ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
1157 	ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
1158 	iowrite32(ctrl, &bp->tod->ctrl);
1159 
1160 	reg = ioread32(&bp->tod->utc_status);
1161 	if (reg & TOD_STATUS_UTC_VALID)
1162 		ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
1163 }
1164 
1165 static const char *
1166 ptp_ocp_tod_proto_name(const int idx)
1167 {
1168 	static const char * const proto_name[] = {
1169 		"NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
1170 		"UBX", "UBX_UTC", "UBX_LS", "UBX_none"
1171 	};
1172 	return proto_name[idx];
1173 }
1174 
1175 static const char *
1176 ptp_ocp_tod_gnss_name(int idx)
1177 {
1178 	static const char * const gnss_name[] = {
1179 		"ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
1180 		"Unknown"
1181 	};
1182 	if (idx >= ARRAY_SIZE(gnss_name))
1183 		idx = ARRAY_SIZE(gnss_name) - 1;
1184 	return gnss_name[idx];
1185 }
1186 
1187 struct ptp_ocp_nvmem_match_info {
1188 	struct ptp_ocp *bp;
1189 	const void * const tag;
1190 };
1191 
1192 static int
1193 ptp_ocp_nvmem_match(struct device *dev, const void *data)
1194 {
1195 	const struct ptp_ocp_nvmem_match_info *info = data;
1196 
1197 	dev = dev->parent;
1198 	if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
1199 		return 0;
1200 
1201 	while ((dev = dev->parent))
1202 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
1203 			return info->bp == dev_get_drvdata(dev);
1204 	return 0;
1205 }
1206 
1207 static inline struct nvmem_device *
1208 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
1209 {
1210 	struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
1211 
1212 	return nvmem_device_find(&info, ptp_ocp_nvmem_match);
1213 }
1214 
1215 static inline void
1216 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
1217 {
1218 	if (!IS_ERR_OR_NULL(*nvmemp))
1219 		nvmem_device_put(*nvmemp);
1220 	*nvmemp = NULL;
1221 }
1222 
1223 static void
1224 ptp_ocp_read_eeprom(struct ptp_ocp *bp)
1225 {
1226 	const struct ptp_ocp_eeprom_map *map;
1227 	struct nvmem_device *nvmem;
1228 	const void *tag;
1229 	int ret;
1230 
1231 	if (!bp->i2c_ctrl)
1232 		return;
1233 
1234 	tag = NULL;
1235 	nvmem = NULL;
1236 
1237 	for (map = bp->eeprom_map; map->len; map++) {
1238 		if (map->tag != tag) {
1239 			tag = map->tag;
1240 			ptp_ocp_nvmem_device_put(&nvmem);
1241 		}
1242 		if (!nvmem) {
1243 			nvmem = ptp_ocp_nvmem_device_get(bp, tag);
1244 			if (IS_ERR(nvmem)) {
1245 				ret = PTR_ERR(nvmem);
1246 				goto fail;
1247 			}
1248 		}
1249 		ret = nvmem_device_read(nvmem, map->off, map->len,
1250 					BP_MAP_ENTRY_ADDR(bp, map));
1251 		if (ret != map->len)
1252 			goto fail;
1253 	}
1254 
1255 	bp->has_eeprom_data = true;
1256 
1257 out:
1258 	ptp_ocp_nvmem_device_put(&nvmem);
1259 	return;
1260 
1261 fail:
1262 	dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
1263 	goto out;
1264 }
1265 
1266 static int
1267 ptp_ocp_firstchild(struct device *dev, void *data)
1268 {
1269 	return 1;
1270 }
1271 
1272 static struct device *
1273 ptp_ocp_find_flash(struct ptp_ocp *bp)
1274 {
1275 	struct device *dev, *last;
1276 
1277 	last = NULL;
1278 	dev = &bp->spi_flash->dev;
1279 
1280 	while ((dev = device_find_child(dev, NULL, ptp_ocp_firstchild))) {
1281 		if (!strcmp("mtd", dev_bus_name(dev)))
1282 			break;
1283 		put_device(last);
1284 		last = dev;
1285 	}
1286 	put_device(last);
1287 
1288 	return dev;
1289 }
1290 
1291 static int
1292 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
1293 		      const struct firmware *fw)
1294 {
1295 	struct mtd_info *mtd = dev_get_drvdata(dev);
1296 	struct ptp_ocp *bp = devlink_priv(devlink);
1297 	size_t off, len, resid, wrote;
1298 	struct erase_info erase;
1299 	size_t base, blksz;
1300 	int err = 0;
1301 
1302 	off = 0;
1303 	base = bp->flash_start;
1304 	blksz = 4096;
1305 	resid = fw->size;
1306 
1307 	while (resid) {
1308 		devlink_flash_update_status_notify(devlink, "Flashing",
1309 						   NULL, off, fw->size);
1310 
1311 		len = min_t(size_t, resid, blksz);
1312 		erase.addr = base + off;
1313 		erase.len = blksz;
1314 
1315 		err = mtd_erase(mtd, &erase);
1316 		if (err)
1317 			goto out;
1318 
1319 		err = mtd_write(mtd, base + off, len, &wrote, &fw->data[off]);
1320 		if (err)
1321 			goto out;
1322 
1323 		off += blksz;
1324 		resid -= len;
1325 	}
1326 out:
1327 	return err;
1328 }
1329 
1330 static int
1331 ptp_ocp_devlink_flash_update(struct devlink *devlink,
1332 			     struct devlink_flash_update_params *params,
1333 			     struct netlink_ext_ack *extack)
1334 {
1335 	struct ptp_ocp *bp = devlink_priv(devlink);
1336 	struct device *dev;
1337 	const char *msg;
1338 	int err;
1339 
1340 	dev = ptp_ocp_find_flash(bp);
1341 	if (!dev) {
1342 		dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
1343 		return -ENODEV;
1344 	}
1345 
1346 	devlink_flash_update_status_notify(devlink, "Preparing to flash",
1347 					   NULL, 0, 0);
1348 
1349 	err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
1350 
1351 	msg = err ? "Flash error" : "Flash complete";
1352 	devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
1353 
1354 	put_device(dev);
1355 	return err;
1356 }
1357 
1358 static int
1359 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
1360 			 struct netlink_ext_ack *extack)
1361 {
1362 	struct ptp_ocp *bp = devlink_priv(devlink);
1363 	char buf[32];
1364 	int err;
1365 
1366 	err = devlink_info_driver_name_put(req, KBUILD_MODNAME);
1367 	if (err)
1368 		return err;
1369 
1370 	if (bp->fw_version & 0xffff) {
1371 		sprintf(buf, "%d", bp->fw_version);
1372 		err = devlink_info_version_running_put(req, "fw", buf);
1373 	} else {
1374 		sprintf(buf, "%d", bp->fw_version >> 16);
1375 		err = devlink_info_version_running_put(req, "loader", buf);
1376 	}
1377 	if (err)
1378 		return err;
1379 
1380 	if (!bp->has_eeprom_data) {
1381 		ptp_ocp_read_eeprom(bp);
1382 		if (!bp->has_eeprom_data)
1383 			return 0;
1384 	}
1385 
1386 	sprintf(buf, "%pM", bp->serial);
1387 	err = devlink_info_serial_number_put(req, buf);
1388 	if (err)
1389 		return err;
1390 
1391 	err = devlink_info_version_fixed_put(req,
1392 			DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
1393 			bp->board_id);
1394 	if (err)
1395 		return err;
1396 
1397 	return 0;
1398 }
1399 
1400 static const struct devlink_ops ptp_ocp_devlink_ops = {
1401 	.flash_update = ptp_ocp_devlink_flash_update,
1402 	.info_get = ptp_ocp_devlink_info_get,
1403 };
1404 
1405 static void __iomem *
1406 __ptp_ocp_get_mem(struct ptp_ocp *bp, unsigned long start, int size)
1407 {
1408 	struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
1409 
1410 	return devm_ioremap_resource(&bp->pdev->dev, &res);
1411 }
1412 
1413 static void __iomem *
1414 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1415 {
1416 	unsigned long start;
1417 
1418 	start = pci_resource_start(bp->pdev, 0) + r->offset;
1419 	return __ptp_ocp_get_mem(bp, start, r->size);
1420 }
1421 
1422 static void
1423 ptp_ocp_set_irq_resource(struct resource *res, int irq)
1424 {
1425 	struct resource r = DEFINE_RES_IRQ(irq);
1426 	*res = r;
1427 }
1428 
1429 static void
1430 ptp_ocp_set_mem_resource(struct resource *res, unsigned long start, int size)
1431 {
1432 	struct resource r = DEFINE_RES_MEM(start, size);
1433 	*res = r;
1434 }
1435 
1436 static int
1437 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
1438 {
1439 	struct ptp_ocp_flash_info *info;
1440 	struct pci_dev *pdev = bp->pdev;
1441 	struct platform_device *p;
1442 	struct resource res[2];
1443 	unsigned long start;
1444 	int id;
1445 
1446 	start = pci_resource_start(pdev, 0) + r->offset;
1447 	ptp_ocp_set_mem_resource(&res[0], start, r->size);
1448 	ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1449 
1450 	info = r->extra;
1451 	id = pci_dev_id(pdev) << 1;
1452 	id += info->pci_offset;
1453 
1454 	p = platform_device_register_resndata(&pdev->dev, info->name, id,
1455 					      res, 2, info->data,
1456 					      info->data_size);
1457 	if (IS_ERR(p))
1458 		return PTR_ERR(p);
1459 
1460 	bp_assign_entry(bp, r, p);
1461 
1462 	return 0;
1463 }
1464 
1465 static struct platform_device *
1466 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
1467 {
1468 	struct ptp_ocp_i2c_info *info;
1469 	struct resource res[2];
1470 	unsigned long start;
1471 
1472 	info = r->extra;
1473 	start = pci_resource_start(pdev, 0) + r->offset;
1474 	ptp_ocp_set_mem_resource(&res[0], start, r->size);
1475 	ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1476 
1477 	return platform_device_register_resndata(&pdev->dev, info->name,
1478 						 id, res, 2,
1479 						 info->data, info->data_size);
1480 }
1481 
1482 static int
1483 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
1484 {
1485 	struct pci_dev *pdev = bp->pdev;
1486 	struct ptp_ocp_i2c_info *info;
1487 	struct platform_device *p;
1488 	struct clk_hw *clk;
1489 	char buf[32];
1490 	int id;
1491 
1492 	info = r->extra;
1493 	id = pci_dev_id(bp->pdev);
1494 
1495 	sprintf(buf, "AXI.%d", id);
1496 	clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
1497 					 info->fixed_rate);
1498 	if (IS_ERR(clk))
1499 		return PTR_ERR(clk);
1500 	bp->i2c_clk = clk;
1501 
1502 	sprintf(buf, "%s.%d", info->name, id);
1503 	devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
1504 	p = ptp_ocp_i2c_bus(bp->pdev, r, id);
1505 	if (IS_ERR(p))
1506 		return PTR_ERR(p);
1507 
1508 	bp_assign_entry(bp, r, p);
1509 
1510 	return 0;
1511 }
1512 
1513 /* The expectation is that this is triggered only on error. */
1514 static irqreturn_t
1515 ptp_ocp_signal_irq(int irq, void *priv)
1516 {
1517 	struct ptp_ocp_ext_src *ext = priv;
1518 	struct signal_reg __iomem *reg = ext->mem;
1519 	struct ptp_ocp *bp = ext->bp;
1520 	u32 enable, status;
1521 	int gen;
1522 
1523 	gen = ext->info->index - 1;
1524 
1525 	enable = ioread32(&reg->enable);
1526 	status = ioread32(&reg->status);
1527 
1528 	/* disable generator on error */
1529 	if (status || !enable) {
1530 		iowrite32(0, &reg->intr_mask);
1531 		iowrite32(0, &reg->enable);
1532 		bp->signal[gen].running = false;
1533 	}
1534 
1535 	iowrite32(0, &reg->intr);	/* ack interrupt */
1536 
1537 	return IRQ_HANDLED;
1538 }
1539 
1540 static int
1541 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
1542 {
1543 	struct ptp_system_timestamp sts;
1544 	struct timespec64 ts;
1545 	ktime_t start_ns;
1546 	int err;
1547 
1548 	if (!s->period)
1549 		return 0;
1550 
1551 	if (!s->pulse)
1552 		s->pulse = ktime_divns(s->period * s->duty, 100);
1553 
1554 	err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
1555 	if (err)
1556 		return err;
1557 
1558 	start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
1559 	if (!s->start) {
1560 		/* roundup() does not work on 32-bit systems */
1561 		s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
1562 		s->start = ktime_add(s->start, s->phase);
1563 	}
1564 
1565 	if (s->duty < 1 || s->duty > 99)
1566 		return -EINVAL;
1567 
1568 	if (s->pulse < 1 || s->pulse > s->period)
1569 		return -EINVAL;
1570 
1571 	if (s->start < start_ns)
1572 		return -EINVAL;
1573 
1574 	bp->signal[gen] = *s;
1575 
1576 	return 0;
1577 }
1578 
1579 static int
1580 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
1581 			   struct ptp_perout_request *req)
1582 {
1583 	struct ptp_ocp_signal s = { };
1584 
1585 	s.polarity = bp->signal[gen].polarity;
1586 	s.period = ktime_set(req->period.sec, req->period.nsec);
1587 	if (!s.period)
1588 		return 0;
1589 
1590 	if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
1591 		s.pulse = ktime_set(req->on.sec, req->on.nsec);
1592 		s.duty = ktime_divns(s.pulse * 100, s.period);
1593 	}
1594 
1595 	if (req->flags & PTP_PEROUT_PHASE)
1596 		s.phase = ktime_set(req->phase.sec, req->phase.nsec);
1597 	else
1598 		s.start = ktime_set(req->start.sec, req->start.nsec);
1599 
1600 	return ptp_ocp_signal_set(bp, gen, &s);
1601 }
1602 
1603 static int
1604 ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
1605 {
1606 	struct ptp_ocp_ext_src *ext = priv;
1607 	struct signal_reg __iomem *reg = ext->mem;
1608 	struct ptp_ocp *bp = ext->bp;
1609 	struct timespec64 ts;
1610 	int gen;
1611 
1612 	gen = ext->info->index - 1;
1613 
1614 	iowrite32(0, &reg->intr_mask);
1615 	iowrite32(0, &reg->enable);
1616 	bp->signal[gen].running = false;
1617 	if (!enable)
1618 		return 0;
1619 
1620 	ts = ktime_to_timespec64(bp->signal[gen].start);
1621 	iowrite32(ts.tv_sec, &reg->start_sec);
1622 	iowrite32(ts.tv_nsec, &reg->start_ns);
1623 
1624 	ts = ktime_to_timespec64(bp->signal[gen].period);
1625 	iowrite32(ts.tv_sec, &reg->period_sec);
1626 	iowrite32(ts.tv_nsec, &reg->period_ns);
1627 
1628 	ts = ktime_to_timespec64(bp->signal[gen].pulse);
1629 	iowrite32(ts.tv_sec, &reg->pulse_sec);
1630 	iowrite32(ts.tv_nsec, &reg->pulse_ns);
1631 
1632 	iowrite32(bp->signal[gen].polarity, &reg->polarity);
1633 	iowrite32(0, &reg->repeat_count);
1634 
1635 	iowrite32(0, &reg->intr);		/* clear interrupt state */
1636 	iowrite32(1, &reg->intr_mask);		/* enable interrupt */
1637 	iowrite32(3, &reg->enable);		/* valid & enable */
1638 
1639 	bp->signal[gen].running = true;
1640 
1641 	return 0;
1642 }
1643 
1644 static irqreturn_t
1645 ptp_ocp_ts_irq(int irq, void *priv)
1646 {
1647 	struct ptp_ocp_ext_src *ext = priv;
1648 	struct ts_reg __iomem *reg = ext->mem;
1649 	struct ptp_clock_event ev;
1650 	u32 sec, nsec;
1651 
1652 	if (ext == ext->bp->pps) {
1653 		if (ext->bp->pps_req_map & OCP_REQ_PPS) {
1654 			ev.type = PTP_CLOCK_PPS;
1655 			ptp_clock_event(ext->bp->ptp, &ev);
1656 		}
1657 
1658 		if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
1659 			goto out;
1660 	}
1661 
1662 	/* XXX should fix API - this converts s/ns -> ts -> s/ns */
1663 	sec = ioread32(&reg->time_sec);
1664 	nsec = ioread32(&reg->time_ns);
1665 
1666 	ev.type = PTP_CLOCK_EXTTS;
1667 	ev.index = ext->info->index;
1668 	ev.timestamp = sec * NSEC_PER_SEC + nsec;
1669 
1670 	ptp_clock_event(ext->bp->ptp, &ev);
1671 
1672 out:
1673 	iowrite32(1, &reg->intr);	/* write 1 to ack */
1674 
1675 	return IRQ_HANDLED;
1676 }
1677 
1678 static int
1679 ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
1680 {
1681 	struct ptp_ocp_ext_src *ext = priv;
1682 	struct ts_reg __iomem *reg = ext->mem;
1683 	struct ptp_ocp *bp = ext->bp;
1684 
1685 	if (ext == bp->pps) {
1686 		u32 old_map = bp->pps_req_map;
1687 
1688 		if (enable)
1689 			bp->pps_req_map |= req;
1690 		else
1691 			bp->pps_req_map &= ~req;
1692 
1693 		/* if no state change, just return */
1694 		if ((!!old_map ^ !!bp->pps_req_map) == 0)
1695 			return 0;
1696 	}
1697 
1698 	if (enable) {
1699 		iowrite32(1, &reg->enable);
1700 		iowrite32(1, &reg->intr_mask);
1701 		iowrite32(1, &reg->intr);
1702 	} else {
1703 		iowrite32(0, &reg->intr_mask);
1704 		iowrite32(0, &reg->enable);
1705 	}
1706 
1707 	return 0;
1708 }
1709 
1710 static void
1711 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
1712 {
1713 	ext->info->enable(ext, ~0, false);
1714 	pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
1715 	kfree(ext);
1716 }
1717 
1718 static int
1719 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
1720 {
1721 	struct pci_dev *pdev = bp->pdev;
1722 	struct ptp_ocp_ext_src *ext;
1723 	int err;
1724 
1725 	ext = kzalloc(sizeof(*ext), GFP_KERNEL);
1726 	if (!ext)
1727 		return -ENOMEM;
1728 
1729 	ext->mem = ptp_ocp_get_mem(bp, r);
1730 	if (IS_ERR(ext->mem)) {
1731 		err = PTR_ERR(ext->mem);
1732 		goto out;
1733 	}
1734 
1735 	ext->bp = bp;
1736 	ext->info = r->extra;
1737 	ext->irq_vec = r->irq_vec;
1738 
1739 	err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
1740 			      ext, "ocp%d.%s", bp->id, r->name);
1741 	if (err) {
1742 		dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
1743 		goto out;
1744 	}
1745 
1746 	bp_assign_entry(bp, r, ext);
1747 
1748 	return 0;
1749 
1750 out:
1751 	kfree(ext);
1752 	return err;
1753 }
1754 
1755 static int
1756 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
1757 {
1758 	struct pci_dev *pdev = bp->pdev;
1759 	struct uart_8250_port uart;
1760 
1761 	/* Setting UPF_IOREMAP and leaving port.membase unspecified lets
1762 	 * the serial port device claim and release the pci resource.
1763 	 */
1764 	memset(&uart, 0, sizeof(uart));
1765 	uart.port.dev = &pdev->dev;
1766 	uart.port.iotype = UPIO_MEM;
1767 	uart.port.regshift = 2;
1768 	uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
1769 	uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
1770 	uart.port.uartclk = 50000000;
1771 	uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
1772 	uart.port.type = PORT_16550A;
1773 
1774 	return serial8250_register_8250_port(&uart);
1775 }
1776 
1777 static int
1778 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
1779 {
1780 	int port;
1781 
1782 	port = ptp_ocp_serial_line(bp, r);
1783 	if (port < 0)
1784 		return port;
1785 
1786 	bp_assign_entry(bp, r, port);
1787 
1788 	return 0;
1789 }
1790 
1791 static int
1792 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1793 {
1794 	void __iomem *mem;
1795 
1796 	mem = ptp_ocp_get_mem(bp, r);
1797 	if (IS_ERR(mem))
1798 		return PTR_ERR(mem);
1799 
1800 	bp_assign_entry(bp, r, mem);
1801 
1802 	return 0;
1803 }
1804 
1805 static void
1806 ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
1807 {
1808 	if (!bp->nmea_out)
1809 		return;
1810 
1811 	iowrite32(0, &bp->nmea_out->ctrl);		/* disable */
1812 	iowrite32(7, &bp->nmea_out->uart_baud);		/* 115200 */
1813 	iowrite32(1, &bp->nmea_out->ctrl);		/* enable */
1814 }
1815 
1816 static void
1817 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
1818 {
1819 	u32 val;
1820 
1821 	iowrite32(0, &reg->enable);		/* disable */
1822 
1823 	val = ioread32(&reg->polarity);
1824 	s->polarity = val ? true : false;
1825 	s->duty = 50;
1826 }
1827 
1828 static void
1829 ptp_ocp_signal_init(struct ptp_ocp *bp)
1830 {
1831 	int i;
1832 
1833 	for (i = 0; i < 4; i++)
1834 		if (bp->signal_out[i])
1835 			_ptp_ocp_signal_init(&bp->signal[i],
1836 					     bp->signal_out[i]->mem);
1837 }
1838 
1839 static void
1840 ptp_ocp_attr_group_del(struct ptp_ocp *bp)
1841 {
1842 	sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
1843 	kfree(bp->attr_group);
1844 }
1845 
1846 static int
1847 ptp_ocp_attr_group_add(struct ptp_ocp *bp,
1848 		       const struct ocp_attr_group *attr_tbl)
1849 {
1850 	int count, i;
1851 	int err;
1852 
1853 	count = 0;
1854 	for (i = 0; attr_tbl[i].cap; i++)
1855 		if (attr_tbl[i].cap & bp->fw_cap)
1856 			count++;
1857 
1858 	bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *),
1859 				 GFP_KERNEL);
1860 	if (!bp->attr_group)
1861 		return -ENOMEM;
1862 
1863 	count = 0;
1864 	for (i = 0; attr_tbl[i].cap; i++)
1865 		if (attr_tbl[i].cap & bp->fw_cap)
1866 			bp->attr_group[count++] = attr_tbl[i].group;
1867 
1868 	err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
1869 	if (err)
1870 		bp->attr_group[0] = NULL;
1871 
1872 	return err;
1873 }
1874 
1875 static void
1876 ptp_ocp_sma_init(struct ptp_ocp *bp)
1877 {
1878 	u32 reg;
1879 	int i;
1880 
1881 	/* defaults */
1882 	bp->sma[0].mode = SMA_MODE_IN;
1883 	bp->sma[1].mode = SMA_MODE_IN;
1884 	bp->sma[2].mode = SMA_MODE_OUT;
1885 	bp->sma[3].mode = SMA_MODE_OUT;
1886 
1887 	/* If no SMA1 map, the pin functions and directions are fixed. */
1888 	if (!bp->sma_map1) {
1889 		for (i = 0; i < 4; i++) {
1890 			bp->sma[i].fixed_fcn = true;
1891 			bp->sma[i].fixed_dir = true;
1892 		}
1893 		return;
1894 	}
1895 
1896 	/* If SMA2 GPIO output map is all 1, it is not present.
1897 	 * This indicates the firmware has fixed direction SMA pins.
1898 	 */
1899 	reg = ioread32(&bp->sma_map2->gpio2);
1900 	if (reg == 0xffffffff) {
1901 		for (i = 0; i < 4; i++)
1902 			bp->sma[i].fixed_dir = true;
1903 	} else {
1904 		reg = ioread32(&bp->sma_map1->gpio1);
1905 		bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
1906 		bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
1907 
1908 		reg = ioread32(&bp->sma_map1->gpio2);
1909 		bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
1910 		bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
1911 	}
1912 }
1913 
1914 static int
1915 ptp_ocp_fb_set_pins(struct ptp_ocp *bp)
1916 {
1917 	struct ptp_pin_desc *config;
1918 	int i;
1919 
1920 	config = kzalloc(sizeof(*config) * 4, GFP_KERNEL);
1921 	if (!config)
1922 		return -ENOMEM;
1923 
1924 	for (i = 0; i < 4; i++) {
1925 		sprintf(config[i].name, "sma%d", i + 1);
1926 		config[i].index = i;
1927 	}
1928 
1929 	bp->ptp_info.n_pins = 4;
1930 	bp->ptp_info.pin_config = config;
1931 
1932 	return 0;
1933 }
1934 
1935 /* FB specific board initializers; last "resource" registered. */
1936 static int
1937 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
1938 {
1939 	int ver, err;
1940 
1941 	bp->flash_start = 1024 * 4096;
1942 	bp->eeprom_map = fb_eeprom_map;
1943 	bp->fw_version = ioread32(&bp->image->version);
1944 	bp->fw_cap = OCP_CAP_BASIC;
1945 
1946 	ver = bp->fw_version & 0xffff;
1947 	if (ver >= 19)
1948 		bp->fw_cap |= OCP_CAP_SIGNAL;
1949 	if (ver >= 20)
1950 		bp->fw_cap |= OCP_CAP_FREQ;
1951 
1952 	ptp_ocp_tod_init(bp);
1953 	ptp_ocp_nmea_out_init(bp);
1954 	ptp_ocp_sma_init(bp);
1955 	ptp_ocp_signal_init(bp);
1956 
1957 	err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
1958 	if (err)
1959 		return err;
1960 
1961 	err = ptp_ocp_fb_set_pins(bp);
1962 	if (err)
1963 		return err;
1964 
1965 	return ptp_ocp_init_clock(bp);
1966 }
1967 
1968 static bool
1969 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
1970 {
1971 	bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
1972 
1973 	if (!allow)
1974 		dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
1975 			r->irq_vec, r->name);
1976 	return allow;
1977 }
1978 
1979 static int
1980 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
1981 {
1982 	struct ocp_resource *r, *table;
1983 	int err = 0;
1984 
1985 	table = (struct ocp_resource *)driver_data;
1986 	for (r = table; r->setup; r++) {
1987 		if (!ptp_ocp_allow_irq(bp, r))
1988 			continue;
1989 		err = r->setup(bp, r);
1990 		if (err) {
1991 			dev_err(&bp->pdev->dev,
1992 				"Could not register %s: err %d\n",
1993 				r->name, err);
1994 			break;
1995 		}
1996 	}
1997 	return err;
1998 }
1999 
2000 static void
2001 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
2002 {
2003 	u32 ctrl;
2004 	bool on;
2005 
2006 	ctrl = ioread32(reg);
2007 	on = ctrl & bit;
2008 	if (on ^ enable) {
2009 		ctrl &= ~bit;
2010 		ctrl |= enable ? bit : 0;
2011 		iowrite32(ctrl, reg);
2012 	}
2013 }
2014 
2015 static void
2016 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
2017 {
2018 	return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
2019 				   IRIG_M_CTRL_ENABLE, enable);
2020 }
2021 
2022 static void
2023 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
2024 {
2025 	return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
2026 				   IRIG_S_CTRL_ENABLE, enable);
2027 }
2028 
2029 static void
2030 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
2031 {
2032 	return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
2033 				   DCF_M_CTRL_ENABLE, enable);
2034 }
2035 
2036 static void
2037 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
2038 {
2039 	return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
2040 				   DCF_S_CTRL_ENABLE, enable);
2041 }
2042 
2043 static void
2044 __handle_signal_outputs(struct ptp_ocp *bp, u32 val)
2045 {
2046 	ptp_ocp_irig_out(bp, val & 0x00100010);
2047 	ptp_ocp_dcf_out(bp, val & 0x00200020);
2048 }
2049 
2050 static void
2051 __handle_signal_inputs(struct ptp_ocp *bp, u32 val)
2052 {
2053 	ptp_ocp_irig_in(bp, val & 0x00100010);
2054 	ptp_ocp_dcf_in(bp, val & 0x00200020);
2055 }
2056 
2057 /*
2058  * ANT0 == gps	(in)
2059  * ANT1 == sma1 (in)
2060  * ANT2 == sma2 (in)
2061  * ANT3 == sma3 (out)
2062  * ANT4 == sma4 (out)
2063  */
2064 
2065 static ssize_t
2066 ptp_ocp_show_output(u32 val, char *buf, int def_val)
2067 {
2068 	const char *name;
2069 	ssize_t count;
2070 
2071 	count = sysfs_emit(buf, "OUT: ");
2072 	name = ptp_ocp_select_name_from_val(ptp_ocp_sma_out, val);
2073 	if (!name)
2074 		name = ptp_ocp_select_name_from_val(ptp_ocp_sma_out, def_val);
2075 	count += sysfs_emit_at(buf, count, "%s\n", name);
2076 	return count;
2077 }
2078 
2079 static ssize_t
2080 ptp_ocp_show_inputs(u32 val, char *buf, int def_val)
2081 {
2082 	const char *name;
2083 	ssize_t count;
2084 	int i;
2085 
2086 	count = sysfs_emit(buf, "IN: ");
2087 	for (i = 0; i < ARRAY_SIZE(ptp_ocp_sma_in); i++) {
2088 		if (val & ptp_ocp_sma_in[i].value) {
2089 			name = ptp_ocp_sma_in[i].name;
2090 			count += sysfs_emit_at(buf, count, "%s ", name);
2091 		}
2092 	}
2093 	if (!val && def_val >= 0) {
2094 		name = ptp_ocp_select_name_from_val(ptp_ocp_sma_in, def_val);
2095 		count += sysfs_emit_at(buf, count, "%s ", name);
2096 	}
2097 	if (count)
2098 		count--;
2099 	count += sysfs_emit_at(buf, count, "\n");
2100 	return count;
2101 }
2102 
2103 static int
2104 sma_parse_inputs(const char *buf, enum ptp_ocp_sma_mode *mode)
2105 {
2106 	struct ocp_selector *tbl[] = { ptp_ocp_sma_in, ptp_ocp_sma_out };
2107 	int idx, count, dir;
2108 	char **argv;
2109 	int ret;
2110 
2111 	argv = argv_split(GFP_KERNEL, buf, &count);
2112 	if (!argv)
2113 		return -ENOMEM;
2114 
2115 	ret = -EINVAL;
2116 	if (!count)
2117 		goto out;
2118 
2119 	idx = 0;
2120 	dir = *mode == SMA_MODE_IN ? 0 : 1;
2121 	if (!strcasecmp("IN:", argv[0])) {
2122 		dir = 0;
2123 		idx++;
2124 	}
2125 	if (!strcasecmp("OUT:", argv[0])) {
2126 		dir = 1;
2127 		idx++;
2128 	}
2129 	*mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
2130 
2131 	ret = 0;
2132 	for (; idx < count; idx++)
2133 		ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
2134 	if (ret < 0)
2135 		ret = -EINVAL;
2136 
2137 out:
2138 	argv_free(argv);
2139 	return ret;
2140 }
2141 
2142 static u32
2143 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr, enum ptp_ocp_sma_mode mode)
2144 {
2145 	u32 __iomem *gpio;
2146 	u32 shift;
2147 
2148 	if (bp->sma[sma_nr - 1].fixed_fcn)
2149 		return (sma_nr - 1) & 1;
2150 
2151 	if (mode == SMA_MODE_IN)
2152 		gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2153 	else
2154 		gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2155 	shift = sma_nr & 1 ? 0 : 16;
2156 
2157 	return (ioread32(gpio) >> shift) & 0xffff;
2158 }
2159 
2160 static ssize_t
2161 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
2162 		 int default_in_val, int default_out_val)
2163 {
2164 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2165 	u32 val;
2166 
2167 	val = ptp_ocp_sma_get(bp, sma_nr, sma->mode) & SMA_SELECT_MASK;
2168 
2169 	if (sma->mode == SMA_MODE_IN) {
2170 		if (sma->disabled)
2171 			val = SMA_DISABLE;
2172 		return ptp_ocp_show_inputs(val, buf, default_in_val);
2173 	}
2174 
2175 	return ptp_ocp_show_output(val, buf, default_out_val);
2176 }
2177 
2178 static ssize_t
2179 sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
2180 {
2181 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2182 
2183 	return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
2184 }
2185 
2186 static ssize_t
2187 sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
2188 {
2189 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2190 
2191 	return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
2192 }
2193 
2194 static ssize_t
2195 sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
2196 {
2197 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2198 
2199 	return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
2200 }
2201 
2202 static ssize_t
2203 sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
2204 {
2205 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2206 
2207 	return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
2208 }
2209 
2210 static void
2211 ptp_ocp_sma_store_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2212 {
2213 	u32 reg, mask, shift;
2214 	unsigned long flags;
2215 	u32 __iomem *gpio;
2216 
2217 	gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2218 	shift = sma_nr & 1 ? 0 : 16;
2219 
2220 	mask = 0xffff << (16 - shift);
2221 
2222 	spin_lock_irqsave(&bp->lock, flags);
2223 
2224 	reg = ioread32(gpio);
2225 	reg = (reg & mask) | (val << shift);
2226 
2227 	__handle_signal_outputs(bp, reg);
2228 
2229 	iowrite32(reg, gpio);
2230 
2231 	spin_unlock_irqrestore(&bp->lock, flags);
2232 }
2233 
2234 static void
2235 ptp_ocp_sma_store_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2236 {
2237 	u32 reg, mask, shift;
2238 	unsigned long flags;
2239 	u32 __iomem *gpio;
2240 
2241 	gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2242 	shift = sma_nr & 1 ? 0 : 16;
2243 
2244 	mask = 0xffff << (16 - shift);
2245 
2246 	spin_lock_irqsave(&bp->lock, flags);
2247 
2248 	reg = ioread32(gpio);
2249 	reg = (reg & mask) | (val << shift);
2250 
2251 	__handle_signal_inputs(bp, reg);
2252 
2253 	iowrite32(reg, gpio);
2254 
2255 	spin_unlock_irqrestore(&bp->lock, flags);
2256 }
2257 
2258 static int
2259 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
2260 {
2261 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2262 	enum ptp_ocp_sma_mode mode;
2263 	int val;
2264 
2265 	mode = sma->mode;
2266 	val = sma_parse_inputs(buf, &mode);
2267 	if (val < 0)
2268 		return val;
2269 
2270 	if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
2271 		return -EOPNOTSUPP;
2272 
2273 	if (sma->fixed_fcn) {
2274 		if (val != ((sma_nr - 1) & 1))
2275 			return -EOPNOTSUPP;
2276 		return 0;
2277 	}
2278 
2279 	sma->disabled = !!(val & SMA_DISABLE);
2280 
2281 	if (mode != sma->mode) {
2282 		if (mode == SMA_MODE_IN)
2283 			ptp_ocp_sma_store_output(bp, sma_nr, 0);
2284 		else
2285 			ptp_ocp_sma_store_inputs(bp, sma_nr, 0);
2286 		sma->mode = mode;
2287 	}
2288 
2289 	if (!sma->fixed_dir)
2290 		val |= SMA_ENABLE;		/* add enable bit */
2291 
2292 	if (sma->disabled)
2293 		val = 0;
2294 
2295 	if (mode == SMA_MODE_IN)
2296 		ptp_ocp_sma_store_inputs(bp, sma_nr, val);
2297 	else
2298 		ptp_ocp_sma_store_output(bp, sma_nr, val);
2299 
2300 	return 0;
2301 }
2302 
2303 static ssize_t
2304 sma1_store(struct device *dev, struct device_attribute *attr,
2305 	   const char *buf, size_t count)
2306 {
2307 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2308 	int err;
2309 
2310 	err = ptp_ocp_sma_store(bp, buf, 1);
2311 	return err ? err : count;
2312 }
2313 
2314 static ssize_t
2315 sma2_store(struct device *dev, struct device_attribute *attr,
2316 	   const char *buf, size_t count)
2317 {
2318 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2319 	int err;
2320 
2321 	err = ptp_ocp_sma_store(bp, buf, 2);
2322 	return err ? err : count;
2323 }
2324 
2325 static ssize_t
2326 sma3_store(struct device *dev, struct device_attribute *attr,
2327 	   const char *buf, size_t count)
2328 {
2329 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2330 	int err;
2331 
2332 	err = ptp_ocp_sma_store(bp, buf, 3);
2333 	return err ? err : count;
2334 }
2335 
2336 static ssize_t
2337 sma4_store(struct device *dev, struct device_attribute *attr,
2338 	   const char *buf, size_t count)
2339 {
2340 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2341 	int err;
2342 
2343 	err = ptp_ocp_sma_store(bp, buf, 4);
2344 	return err ? err : count;
2345 }
2346 static DEVICE_ATTR_RW(sma1);
2347 static DEVICE_ATTR_RW(sma2);
2348 static DEVICE_ATTR_RW(sma3);
2349 static DEVICE_ATTR_RW(sma4);
2350 
2351 static ssize_t
2352 available_sma_inputs_show(struct device *dev,
2353 			  struct device_attribute *attr, char *buf)
2354 {
2355 	return ptp_ocp_select_table_show(ptp_ocp_sma_in, buf);
2356 }
2357 static DEVICE_ATTR_RO(available_sma_inputs);
2358 
2359 static ssize_t
2360 available_sma_outputs_show(struct device *dev,
2361 			   struct device_attribute *attr, char *buf)
2362 {
2363 	return ptp_ocp_select_table_show(ptp_ocp_sma_out, buf);
2364 }
2365 static DEVICE_ATTR_RO(available_sma_outputs);
2366 
2367 #define EXT_ATTR_RO(_group, _name, _val)				\
2368 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
2369 		{ __ATTR_RO(_name), (void *)_val }
2370 #define EXT_ATTR_RW(_group, _name, _val)				\
2371 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
2372 		{ __ATTR_RW(_name), (void *)_val }
2373 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2374 
2375 /* period [duty [phase [polarity]]] */
2376 static ssize_t
2377 signal_store(struct device *dev, struct device_attribute *attr,
2378 	     const char *buf, size_t count)
2379 {
2380 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2381 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2382 	struct ptp_ocp_signal s = { };
2383 	int gen = (uintptr_t)ea->var;
2384 	int argc, err;
2385 	char **argv;
2386 
2387 	argv = argv_split(GFP_KERNEL, buf, &argc);
2388 	if (!argv)
2389 		return -ENOMEM;
2390 
2391 	err = -EINVAL;
2392 	s.duty = bp->signal[gen].duty;
2393 	s.phase = bp->signal[gen].phase;
2394 	s.period = bp->signal[gen].period;
2395 	s.polarity = bp->signal[gen].polarity;
2396 
2397 	switch (argc) {
2398 	case 4:
2399 		argc--;
2400 		err = kstrtobool(argv[argc], &s.polarity);
2401 		if (err)
2402 			goto out;
2403 		fallthrough;
2404 	case 3:
2405 		argc--;
2406 		err = kstrtou64(argv[argc], 0, &s.phase);
2407 		if (err)
2408 			goto out;
2409 		fallthrough;
2410 	case 2:
2411 		argc--;
2412 		err = kstrtoint(argv[argc], 0, &s.duty);
2413 		if (err)
2414 			goto out;
2415 		fallthrough;
2416 	case 1:
2417 		argc--;
2418 		err = kstrtou64(argv[argc], 0, &s.period);
2419 		if (err)
2420 			goto out;
2421 		break;
2422 	default:
2423 		goto out;
2424 	}
2425 
2426 	err = ptp_ocp_signal_set(bp, gen, &s);
2427 	if (err)
2428 		goto out;
2429 
2430 	err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
2431 
2432 out:
2433 	argv_free(argv);
2434 	return err ? err : count;
2435 }
2436 
2437 static ssize_t
2438 signal_show(struct device *dev, struct device_attribute *attr, char *buf)
2439 {
2440 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2441 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2442 	struct ptp_ocp_signal *signal;
2443 	struct timespec64 ts;
2444 	ssize_t count;
2445 	int i;
2446 
2447 	i = (uintptr_t)ea->var;
2448 	signal = &bp->signal[i];
2449 
2450 	count = sysfs_emit(buf, "%llu %d %llu %d", signal->period,
2451 			   signal->duty, signal->phase, signal->polarity);
2452 
2453 	ts = ktime_to_timespec64(signal->start);
2454 	count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts);
2455 
2456 	return count;
2457 }
2458 static EXT_ATTR_RW(signal, signal, 0);
2459 static EXT_ATTR_RW(signal, signal, 1);
2460 static EXT_ATTR_RW(signal, signal, 2);
2461 static EXT_ATTR_RW(signal, signal, 3);
2462 
2463 static ssize_t
2464 duty_show(struct device *dev, struct device_attribute *attr, char *buf)
2465 {
2466 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2467 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2468 	int i = (uintptr_t)ea->var;
2469 
2470 	return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
2471 }
2472 static EXT_ATTR_RO(signal, duty, 0);
2473 static EXT_ATTR_RO(signal, duty, 1);
2474 static EXT_ATTR_RO(signal, duty, 2);
2475 static EXT_ATTR_RO(signal, duty, 3);
2476 
2477 static ssize_t
2478 period_show(struct device *dev, struct device_attribute *attr, char *buf)
2479 {
2480 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2481 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2482 	int i = (uintptr_t)ea->var;
2483 
2484 	return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
2485 }
2486 static EXT_ATTR_RO(signal, period, 0);
2487 static EXT_ATTR_RO(signal, period, 1);
2488 static EXT_ATTR_RO(signal, period, 2);
2489 static EXT_ATTR_RO(signal, period, 3);
2490 
2491 static ssize_t
2492 phase_show(struct device *dev, struct device_attribute *attr, char *buf)
2493 {
2494 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2495 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2496 	int i = (uintptr_t)ea->var;
2497 
2498 	return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
2499 }
2500 static EXT_ATTR_RO(signal, phase, 0);
2501 static EXT_ATTR_RO(signal, phase, 1);
2502 static EXT_ATTR_RO(signal, phase, 2);
2503 static EXT_ATTR_RO(signal, phase, 3);
2504 
2505 static ssize_t
2506 polarity_show(struct device *dev, struct device_attribute *attr,
2507 	      char *buf)
2508 {
2509 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2510 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2511 	int i = (uintptr_t)ea->var;
2512 
2513 	return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
2514 }
2515 static EXT_ATTR_RO(signal, polarity, 0);
2516 static EXT_ATTR_RO(signal, polarity, 1);
2517 static EXT_ATTR_RO(signal, polarity, 2);
2518 static EXT_ATTR_RO(signal, polarity, 3);
2519 
2520 static ssize_t
2521 running_show(struct device *dev, struct device_attribute *attr, char *buf)
2522 {
2523 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2524 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2525 	int i = (uintptr_t)ea->var;
2526 
2527 	return sysfs_emit(buf, "%d\n", bp->signal[i].running);
2528 }
2529 static EXT_ATTR_RO(signal, running, 0);
2530 static EXT_ATTR_RO(signal, running, 1);
2531 static EXT_ATTR_RO(signal, running, 2);
2532 static EXT_ATTR_RO(signal, running, 3);
2533 
2534 static ssize_t
2535 start_show(struct device *dev, struct device_attribute *attr, char *buf)
2536 {
2537 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2538 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2539 	int i = (uintptr_t)ea->var;
2540 	struct timespec64 ts;
2541 
2542 	ts = ktime_to_timespec64(bp->signal[i].start);
2543 	return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
2544 }
2545 static EXT_ATTR_RO(signal, start, 0);
2546 static EXT_ATTR_RO(signal, start, 1);
2547 static EXT_ATTR_RO(signal, start, 2);
2548 static EXT_ATTR_RO(signal, start, 3);
2549 
2550 static ssize_t
2551 seconds_store(struct device *dev, struct device_attribute *attr,
2552 	      const char *buf, size_t count)
2553 {
2554 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2555 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2556 	int idx = (uintptr_t)ea->var;
2557 	u32 val;
2558 	int err;
2559 
2560 	err = kstrtou32(buf, 0, &val);
2561 	if (err)
2562 		return err;
2563 	if (val > 0xff)
2564 		return -EINVAL;
2565 
2566 	if (val)
2567 		val = (val << 8) | 0x1;
2568 
2569 	iowrite32(val, &bp->freq_in[idx]->ctrl);
2570 
2571 	return count;
2572 }
2573 
2574 static ssize_t
2575 seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
2576 {
2577 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2578 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2579 	int idx = (uintptr_t)ea->var;
2580 	u32 val;
2581 
2582 	val = ioread32(&bp->freq_in[idx]->ctrl);
2583 	if (val & 1)
2584 		val = (val >> 8) & 0xff;
2585 	else
2586 		val = 0;
2587 
2588 	return sysfs_emit(buf, "%u\n", val);
2589 }
2590 static EXT_ATTR_RW(freq, seconds, 0);
2591 static EXT_ATTR_RW(freq, seconds, 1);
2592 static EXT_ATTR_RW(freq, seconds, 2);
2593 static EXT_ATTR_RW(freq, seconds, 3);
2594 
2595 static ssize_t
2596 frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
2597 {
2598 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2599 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2600 	int idx = (uintptr_t)ea->var;
2601 	u32 val;
2602 
2603 	val = ioread32(&bp->freq_in[idx]->status);
2604 	if (val & FREQ_STATUS_ERROR)
2605 		return sysfs_emit(buf, "error\n");
2606 	if (val & FREQ_STATUS_OVERRUN)
2607 		return sysfs_emit(buf, "overrun\n");
2608 	if (val & FREQ_STATUS_VALID)
2609 		return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
2610 	return 0;
2611 }
2612 static EXT_ATTR_RO(freq, frequency, 0);
2613 static EXT_ATTR_RO(freq, frequency, 1);
2614 static EXT_ATTR_RO(freq, frequency, 2);
2615 static EXT_ATTR_RO(freq, frequency, 3);
2616 
2617 static ssize_t
2618 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
2619 {
2620 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2621 
2622 	if (!bp->has_eeprom_data)
2623 		ptp_ocp_read_eeprom(bp);
2624 
2625 	return sysfs_emit(buf, "%pM\n", bp->serial);
2626 }
2627 static DEVICE_ATTR_RO(serialnum);
2628 
2629 static ssize_t
2630 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
2631 {
2632 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2633 	ssize_t ret;
2634 
2635 	if (bp->gnss_lost)
2636 		ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
2637 	else
2638 		ret = sysfs_emit(buf, "SYNC\n");
2639 
2640 	return ret;
2641 }
2642 static DEVICE_ATTR_RO(gnss_sync);
2643 
2644 static ssize_t
2645 utc_tai_offset_show(struct device *dev,
2646 		    struct device_attribute *attr, char *buf)
2647 {
2648 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2649 
2650 	return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
2651 }
2652 
2653 static ssize_t
2654 utc_tai_offset_store(struct device *dev,
2655 		     struct device_attribute *attr,
2656 		     const char *buf, size_t count)
2657 {
2658 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2659 	int err;
2660 	u32 val;
2661 
2662 	err = kstrtou32(buf, 0, &val);
2663 	if (err)
2664 		return err;
2665 
2666 	ptp_ocp_utc_distribute(bp, val);
2667 
2668 	return count;
2669 }
2670 static DEVICE_ATTR_RW(utc_tai_offset);
2671 
2672 static ssize_t
2673 ts_window_adjust_show(struct device *dev,
2674 		      struct device_attribute *attr, char *buf)
2675 {
2676 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2677 
2678 	return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
2679 }
2680 
2681 static ssize_t
2682 ts_window_adjust_store(struct device *dev,
2683 		       struct device_attribute *attr,
2684 		       const char *buf, size_t count)
2685 {
2686 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2687 	int err;
2688 	u32 val;
2689 
2690 	err = kstrtou32(buf, 0, &val);
2691 	if (err)
2692 		return err;
2693 
2694 	bp->ts_window_adjust = val;
2695 
2696 	return count;
2697 }
2698 static DEVICE_ATTR_RW(ts_window_adjust);
2699 
2700 static ssize_t
2701 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
2702 {
2703 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2704 	u32 val;
2705 
2706 	val = ioread32(&bp->irig_out->ctrl);
2707 	val = (val >> 16) & 0x07;
2708 	return sysfs_emit(buf, "%d\n", val);
2709 }
2710 
2711 static ssize_t
2712 irig_b_mode_store(struct device *dev,
2713 		  struct device_attribute *attr,
2714 		  const char *buf, size_t count)
2715 {
2716 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2717 	unsigned long flags;
2718 	int err;
2719 	u32 reg;
2720 	u8 val;
2721 
2722 	err = kstrtou8(buf, 0, &val);
2723 	if (err)
2724 		return err;
2725 	if (val > 7)
2726 		return -EINVAL;
2727 
2728 	reg = ((val & 0x7) << 16);
2729 
2730 	spin_lock_irqsave(&bp->lock, flags);
2731 	iowrite32(0, &bp->irig_out->ctrl);		/* disable */
2732 	iowrite32(reg, &bp->irig_out->ctrl);		/* change mode */
2733 	iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
2734 	spin_unlock_irqrestore(&bp->lock, flags);
2735 
2736 	return count;
2737 }
2738 static DEVICE_ATTR_RW(irig_b_mode);
2739 
2740 static ssize_t
2741 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
2742 {
2743 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2744 	const char *p;
2745 	u32 select;
2746 
2747 	select = ioread32(&bp->reg->select);
2748 	p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
2749 
2750 	return sysfs_emit(buf, "%s\n", p);
2751 }
2752 
2753 static ssize_t
2754 clock_source_store(struct device *dev, struct device_attribute *attr,
2755 		   const char *buf, size_t count)
2756 {
2757 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2758 	unsigned long flags;
2759 	int val;
2760 
2761 	val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
2762 	if (val < 0)
2763 		return val;
2764 
2765 	spin_lock_irqsave(&bp->lock, flags);
2766 	iowrite32(val, &bp->reg->select);
2767 	spin_unlock_irqrestore(&bp->lock, flags);
2768 
2769 	return count;
2770 }
2771 static DEVICE_ATTR_RW(clock_source);
2772 
2773 static ssize_t
2774 available_clock_sources_show(struct device *dev,
2775 			     struct device_attribute *attr, char *buf)
2776 {
2777 	return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
2778 }
2779 static DEVICE_ATTR_RO(available_clock_sources);
2780 
2781 static ssize_t
2782 clock_status_drift_show(struct device *dev,
2783 			struct device_attribute *attr, char *buf)
2784 {
2785 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2786 	u32 val;
2787 	int res;
2788 
2789 	val = ioread32(&bp->reg->status_drift);
2790 	res = (val & ~INT_MAX) ? -1 : 1;
2791 	res *= (val & INT_MAX);
2792 	return sysfs_emit(buf, "%d\n", res);
2793 }
2794 static DEVICE_ATTR_RO(clock_status_drift);
2795 
2796 static ssize_t
2797 clock_status_offset_show(struct device *dev,
2798 			 struct device_attribute *attr, char *buf)
2799 {
2800 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2801 	u32 val;
2802 	int res;
2803 
2804 	val = ioread32(&bp->reg->status_offset);
2805 	res = (val & ~INT_MAX) ? -1 : 1;
2806 	res *= (val & INT_MAX);
2807 	return sysfs_emit(buf, "%d\n", res);
2808 }
2809 static DEVICE_ATTR_RO(clock_status_offset);
2810 
2811 static ssize_t
2812 tod_correction_show(struct device *dev,
2813 		    struct device_attribute *attr, char *buf)
2814 {
2815 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2816 	u32 val;
2817 	int res;
2818 
2819 	val = ioread32(&bp->tod->adj_sec);
2820 	res = (val & ~INT_MAX) ? -1 : 1;
2821 	res *= (val & INT_MAX);
2822 	return sysfs_emit(buf, "%d\n", res);
2823 }
2824 
2825 static ssize_t
2826 tod_correction_store(struct device *dev, struct device_attribute *attr,
2827 		     const char *buf, size_t count)
2828 {
2829 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2830 	unsigned long flags;
2831 	int err, res;
2832 	u32 val = 0;
2833 
2834 	err = kstrtos32(buf, 0, &res);
2835 	if (err)
2836 		return err;
2837 	if (res < 0) {
2838 		res *= -1;
2839 		val |= BIT(31);
2840 	}
2841 	val |= res;
2842 
2843 	spin_lock_irqsave(&bp->lock, flags);
2844 	iowrite32(val, &bp->tod->adj_sec);
2845 	spin_unlock_irqrestore(&bp->lock, flags);
2846 
2847 	return count;
2848 }
2849 static DEVICE_ATTR_RW(tod_correction);
2850 
2851 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr)					\
2852 	static struct attribute *fb_timecard_signal##_nr##_attrs[] = {	\
2853 		&dev_attr_signal##_nr##_signal.attr.attr,		\
2854 		&dev_attr_signal##_nr##_duty.attr.attr,			\
2855 		&dev_attr_signal##_nr##_phase.attr.attr,		\
2856 		&dev_attr_signal##_nr##_period.attr.attr,		\
2857 		&dev_attr_signal##_nr##_polarity.attr.attr,		\
2858 		&dev_attr_signal##_nr##_running.attr.attr,		\
2859 		&dev_attr_signal##_nr##_start.attr.attr,		\
2860 		NULL,							\
2861 	}
2862 
2863 #define DEVICE_SIGNAL_GROUP(_name, _nr)					\
2864 	_DEVICE_SIGNAL_GROUP_ATTRS(_nr);				\
2865 	static const struct attribute_group				\
2866 			fb_timecard_signal##_nr##_group = {		\
2867 		.name = #_name,						\
2868 		.attrs = fb_timecard_signal##_nr##_attrs,		\
2869 }
2870 
2871 DEVICE_SIGNAL_GROUP(gen1, 0);
2872 DEVICE_SIGNAL_GROUP(gen2, 1);
2873 DEVICE_SIGNAL_GROUP(gen3, 2);
2874 DEVICE_SIGNAL_GROUP(gen4, 3);
2875 
2876 #define _DEVICE_FREQ_GROUP_ATTRS(_nr)					\
2877 	static struct attribute *fb_timecard_freq##_nr##_attrs[] = {	\
2878 		&dev_attr_freq##_nr##_seconds.attr.attr,		\
2879 		&dev_attr_freq##_nr##_frequency.attr.attr,		\
2880 		NULL,							\
2881 	}
2882 
2883 #define DEVICE_FREQ_GROUP(_name, _nr)					\
2884 	_DEVICE_FREQ_GROUP_ATTRS(_nr);					\
2885 	static const struct attribute_group				\
2886 			fb_timecard_freq##_nr##_group = {		\
2887 		.name = #_name,						\
2888 		.attrs = fb_timecard_freq##_nr##_attrs,			\
2889 }
2890 
2891 DEVICE_FREQ_GROUP(freq1, 0);
2892 DEVICE_FREQ_GROUP(freq2, 1);
2893 DEVICE_FREQ_GROUP(freq3, 2);
2894 DEVICE_FREQ_GROUP(freq4, 3);
2895 
2896 static struct attribute *fb_timecard_attrs[] = {
2897 	&dev_attr_serialnum.attr,
2898 	&dev_attr_gnss_sync.attr,
2899 	&dev_attr_clock_source.attr,
2900 	&dev_attr_available_clock_sources.attr,
2901 	&dev_attr_sma1.attr,
2902 	&dev_attr_sma2.attr,
2903 	&dev_attr_sma3.attr,
2904 	&dev_attr_sma4.attr,
2905 	&dev_attr_available_sma_inputs.attr,
2906 	&dev_attr_available_sma_outputs.attr,
2907 	&dev_attr_clock_status_drift.attr,
2908 	&dev_attr_clock_status_offset.attr,
2909 	&dev_attr_irig_b_mode.attr,
2910 	&dev_attr_utc_tai_offset.attr,
2911 	&dev_attr_ts_window_adjust.attr,
2912 	&dev_attr_tod_correction.attr,
2913 	NULL,
2914 };
2915 static const struct attribute_group fb_timecard_group = {
2916 	.attrs = fb_timecard_attrs,
2917 };
2918 static const struct ocp_attr_group fb_timecard_groups[] = {
2919 	{ .cap = OCP_CAP_BASIC,	    .group = &fb_timecard_group },
2920 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal0_group },
2921 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal1_group },
2922 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal2_group },
2923 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal3_group },
2924 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq0_group },
2925 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq1_group },
2926 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq2_group },
2927 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq3_group },
2928 	{ },
2929 };
2930 
2931 static void
2932 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
2933 	       const char *def)
2934 {
2935 	int i;
2936 
2937 	for (i = 0; i < 4; i++) {
2938 		if (bp->sma[i].mode != SMA_MODE_IN)
2939 			continue;
2940 		if (map[i][0] & (1 << bit)) {
2941 			sprintf(buf, "sma%d", i + 1);
2942 			return;
2943 		}
2944 	}
2945 	if (!def)
2946 		def = "----";
2947 	strcpy(buf, def);
2948 }
2949 
2950 static void
2951 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
2952 {
2953 	char *ans = buf;
2954 	int i;
2955 
2956 	strcpy(ans, "----");
2957 	for (i = 0; i < 4; i++) {
2958 		if (bp->sma[i].mode != SMA_MODE_OUT)
2959 			continue;
2960 		if (map[i][1] & (1 << bit))
2961 			ans += sprintf(ans, "sma%d ", i + 1);
2962 	}
2963 }
2964 
2965 static void
2966 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
2967 {
2968 	struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
2969 	struct ptp_ocp_signal *signal = &bp->signal[nr];
2970 	char label[8];
2971 	bool on;
2972 	u32 val;
2973 
2974 	if (!signal)
2975 		return;
2976 
2977 	on = signal->running;
2978 	sprintf(label, "GEN%d", nr + 1);
2979 	seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
2980 		   label, on ? " ON" : "OFF",
2981 		   signal->period, signal->duty, signal->phase,
2982 		   signal->polarity);
2983 
2984 	val = ioread32(&reg->enable);
2985 	seq_printf(s, " [%x", val);
2986 	val = ioread32(&reg->status);
2987 	seq_printf(s, " %x]", val);
2988 
2989 	seq_printf(s, " start:%llu\n", signal->start);
2990 }
2991 
2992 static void
2993 _frequency_summary_show(struct seq_file *s, int nr,
2994 			struct frequency_reg __iomem *reg)
2995 {
2996 	char label[8];
2997 	bool on;
2998 	u32 val;
2999 
3000 	if (!reg)
3001 		return;
3002 
3003 	sprintf(label, "FREQ%d", nr + 1);
3004 	val = ioread32(&reg->ctrl);
3005 	on = val & 1;
3006 	val = (val >> 8) & 0xff;
3007 	seq_printf(s, "%7s: %s, sec:%u",
3008 		   label,
3009 		   on ? " ON" : "OFF",
3010 		   val);
3011 
3012 	val = ioread32(&reg->status);
3013 	if (val & FREQ_STATUS_ERROR)
3014 		seq_printf(s, ", error");
3015 	if (val & FREQ_STATUS_OVERRUN)
3016 		seq_printf(s, ", overrun");
3017 	if (val & FREQ_STATUS_VALID)
3018 		seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
3019 	seq_printf(s, "  reg:%x\n", val);
3020 }
3021 
3022 static int
3023 ptp_ocp_summary_show(struct seq_file *s, void *data)
3024 {
3025 	struct device *dev = s->private;
3026 	struct ptp_system_timestamp sts;
3027 	struct ts_reg __iomem *ts_reg;
3028 	struct timespec64 ts;
3029 	struct ptp_ocp *bp;
3030 	u16 sma_val[4][2];
3031 	char *src, *buf;
3032 	u32 ctrl, val;
3033 	bool on, map;
3034 	int i;
3035 
3036 	buf = (char *)__get_free_page(GFP_KERNEL);
3037 	if (!buf)
3038 		return -ENOMEM;
3039 
3040 	bp = dev_get_drvdata(dev);
3041 
3042 	seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
3043 	if (bp->gnss_port != -1)
3044 		seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS1", bp->gnss_port);
3045 	if (bp->gnss2_port != -1)
3046 		seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS2", bp->gnss2_port);
3047 	if (bp->mac_port != -1)
3048 		seq_printf(s, "%7s: /dev/ttyS%d\n", "MAC", bp->mac_port);
3049 	if (bp->nmea_port != -1)
3050 		seq_printf(s, "%7s: /dev/ttyS%d\n", "NMEA", bp->nmea_port);
3051 
3052 	memset(sma_val, 0xff, sizeof(sma_val));
3053 	if (bp->sma_map1) {
3054 		u32 reg;
3055 
3056 		reg = ioread32(&bp->sma_map1->gpio1);
3057 		sma_val[0][0] = reg & 0xffff;
3058 		sma_val[1][0] = reg >> 16;
3059 
3060 		reg = ioread32(&bp->sma_map1->gpio2);
3061 		sma_val[2][1] = reg & 0xffff;
3062 		sma_val[3][1] = reg >> 16;
3063 
3064 		reg = ioread32(&bp->sma_map2->gpio1);
3065 		sma_val[2][0] = reg & 0xffff;
3066 		sma_val[3][0] = reg >> 16;
3067 
3068 		reg = ioread32(&bp->sma_map2->gpio2);
3069 		sma_val[0][1] = reg & 0xffff;
3070 		sma_val[1][1] = reg >> 16;
3071 	}
3072 
3073 	sma1_show(dev, NULL, buf);
3074 	seq_printf(s, "   sma1: %04x,%04x %s",
3075 		   sma_val[0][0], sma_val[0][1], buf);
3076 
3077 	sma2_show(dev, NULL, buf);
3078 	seq_printf(s, "   sma2: %04x,%04x %s",
3079 		   sma_val[1][0], sma_val[1][1], buf);
3080 
3081 	sma3_show(dev, NULL, buf);
3082 	seq_printf(s, "   sma3: %04x,%04x %s",
3083 		   sma_val[2][0], sma_val[2][1], buf);
3084 
3085 	sma4_show(dev, NULL, buf);
3086 	seq_printf(s, "   sma4: %04x,%04x %s",
3087 		   sma_val[3][0], sma_val[3][1], buf);
3088 
3089 	if (bp->ts0) {
3090 		ts_reg = bp->ts0->mem;
3091 		on = ioread32(&ts_reg->enable);
3092 		src = "GNSS1";
3093 		seq_printf(s, "%7s: %s, src: %s\n", "TS0",
3094 			   on ? " ON" : "OFF", src);
3095 	}
3096 
3097 	if (bp->ts1) {
3098 		ts_reg = bp->ts1->mem;
3099 		on = ioread32(&ts_reg->enable);
3100 		gpio_input_map(buf, bp, sma_val, 2, NULL);
3101 		seq_printf(s, "%7s: %s, src: %s\n", "TS1",
3102 			   on ? " ON" : "OFF", buf);
3103 	}
3104 
3105 	if (bp->ts2) {
3106 		ts_reg = bp->ts2->mem;
3107 		on = ioread32(&ts_reg->enable);
3108 		gpio_input_map(buf, bp, sma_val, 3, NULL);
3109 		seq_printf(s, "%7s: %s, src: %s\n", "TS2",
3110 			   on ? " ON" : "OFF", buf);
3111 	}
3112 
3113 	if (bp->ts3) {
3114 		ts_reg = bp->ts3->mem;
3115 		on = ioread32(&ts_reg->enable);
3116 		gpio_input_map(buf, bp, sma_val, 6, NULL);
3117 		seq_printf(s, "%7s: %s, src: %s\n", "TS3",
3118 			   on ? " ON" : "OFF", buf);
3119 	}
3120 
3121 	if (bp->ts4) {
3122 		ts_reg = bp->ts4->mem;
3123 		on = ioread32(&ts_reg->enable);
3124 		gpio_input_map(buf, bp, sma_val, 7, NULL);
3125 		seq_printf(s, "%7s: %s, src: %s\n", "TS4",
3126 			   on ? " ON" : "OFF", buf);
3127 	}
3128 
3129 	if (bp->pps) {
3130 		ts_reg = bp->pps->mem;
3131 		src = "PHC";
3132 		on = ioread32(&ts_reg->enable);
3133 		map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
3134 		seq_printf(s, "%7s: %s, src: %s\n", "TS5",
3135 			   on && map ? " ON" : "OFF", src);
3136 
3137 		map = !!(bp->pps_req_map & OCP_REQ_PPS);
3138 		seq_printf(s, "%7s: %s, src: %s\n", "PPS",
3139 			   on && map ? " ON" : "OFF", src);
3140 	}
3141 
3142 	if (bp->fw_cap & OCP_CAP_SIGNAL)
3143 		for (i = 0; i < 4; i++)
3144 			_signal_summary_show(s, bp, i);
3145 
3146 	if (bp->fw_cap & OCP_CAP_FREQ)
3147 		for (i = 0; i < 4; i++)
3148 			_frequency_summary_show(s, i, bp->freq_in[i]);
3149 
3150 	if (bp->irig_out) {
3151 		ctrl = ioread32(&bp->irig_out->ctrl);
3152 		on = ctrl & IRIG_M_CTRL_ENABLE;
3153 		val = ioread32(&bp->irig_out->status);
3154 		gpio_output_map(buf, bp, sma_val, 4);
3155 		seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
3156 			   on ? " ON" : "OFF", val, (ctrl >> 16), buf);
3157 	}
3158 
3159 	if (bp->irig_in) {
3160 		on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
3161 		val = ioread32(&bp->irig_in->status);
3162 		gpio_input_map(buf, bp, sma_val, 4, NULL);
3163 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
3164 			   on ? " ON" : "OFF", val, buf);
3165 	}
3166 
3167 	if (bp->dcf_out) {
3168 		on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
3169 		val = ioread32(&bp->dcf_out->status);
3170 		gpio_output_map(buf, bp, sma_val, 5);
3171 		seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
3172 			   on ? " ON" : "OFF", val, buf);
3173 	}
3174 
3175 	if (bp->dcf_in) {
3176 		on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
3177 		val = ioread32(&bp->dcf_in->status);
3178 		gpio_input_map(buf, bp, sma_val, 5, NULL);
3179 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
3180 			   on ? " ON" : "OFF", val, buf);
3181 	}
3182 
3183 	if (bp->nmea_out) {
3184 		on = ioread32(&bp->nmea_out->ctrl) & 1;
3185 		val = ioread32(&bp->nmea_out->status);
3186 		seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
3187 			   on ? " ON" : "OFF", val);
3188 	}
3189 
3190 	/* compute src for PPS1, used below. */
3191 	if (bp->pps_select) {
3192 		val = ioread32(&bp->pps_select->gpio1);
3193 		src = &buf[80];
3194 		if (val & 0x01)
3195 			gpio_input_map(src, bp, sma_val, 0, NULL);
3196 		else if (val & 0x02)
3197 			src = "MAC";
3198 		else if (val & 0x04)
3199 			src = "GNSS1";
3200 		else
3201 			src = "----";
3202 	} else {
3203 		src = "?";
3204 	}
3205 
3206 	/* assumes automatic switchover/selection */
3207 	val = ioread32(&bp->reg->select);
3208 	switch (val >> 16) {
3209 	case 0:
3210 		sprintf(buf, "----");
3211 		break;
3212 	case 2:
3213 		sprintf(buf, "IRIG");
3214 		break;
3215 	case 3:
3216 		sprintf(buf, "%s via PPS1", src);
3217 		break;
3218 	case 6:
3219 		sprintf(buf, "DCF");
3220 		break;
3221 	default:
3222 		strcpy(buf, "unknown");
3223 		break;
3224 	}
3225 	val = ioread32(&bp->reg->status);
3226 	seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
3227 		   val & OCP_STATUS_IN_SYNC ? "sync" : "unsynced");
3228 
3229 	/* reuses PPS1 src from earlier */
3230 	seq_printf(s, "MAC PPS1 src: %s\n", src);
3231 
3232 	gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
3233 	seq_printf(s, "MAC PPS2 src: %s\n", buf);
3234 
3235 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
3236 		struct timespec64 sys_ts;
3237 		s64 pre_ns, post_ns, ns;
3238 
3239 		pre_ns = timespec64_to_ns(&sts.pre_ts);
3240 		post_ns = timespec64_to_ns(&sts.post_ts);
3241 		ns = (pre_ns + post_ns) / 2;
3242 		ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
3243 		sys_ts = ns_to_timespec64(ns);
3244 
3245 		seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
3246 			   ts.tv_sec, ts.tv_nsec, &ts);
3247 		seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
3248 			   sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
3249 			   bp->utc_tai_offset);
3250 		seq_printf(s, "%7s: PHC:SYS offset: %lld  window: %lld\n", "",
3251 			   timespec64_to_ns(&ts) - ns,
3252 			   post_ns - pre_ns);
3253 	}
3254 
3255 	free_page((unsigned long)buf);
3256 	return 0;
3257 }
3258 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
3259 
3260 static int
3261 ptp_ocp_tod_status_show(struct seq_file *s, void *data)
3262 {
3263 	struct device *dev = s->private;
3264 	struct ptp_ocp *bp;
3265 	u32 val;
3266 	int idx;
3267 
3268 	bp = dev_get_drvdata(dev);
3269 
3270 	val = ioread32(&bp->tod->ctrl);
3271 	if (!(val & TOD_CTRL_ENABLE)) {
3272 		seq_printf(s, "TOD Slave disabled\n");
3273 		return 0;
3274 	}
3275 	seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
3276 
3277 	idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
3278 	idx += (val >> 16) & 3;
3279 	seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
3280 
3281 	idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
3282 	seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
3283 
3284 	val = ioread32(&bp->tod->version);
3285 	seq_printf(s, "TOD Version %d.%d.%d\n",
3286 		val >> 24, (val >> 16) & 0xff, val & 0xffff);
3287 
3288 	val = ioread32(&bp->tod->status);
3289 	seq_printf(s, "Status register: 0x%08X\n", val);
3290 
3291 	val = ioread32(&bp->tod->adj_sec);
3292 	idx = (val & ~INT_MAX) ? -1 : 1;
3293 	idx *= (val & INT_MAX);
3294 	seq_printf(s, "Correction seconds: %d\n", idx);
3295 
3296 	val = ioread32(&bp->tod->utc_status);
3297 	seq_printf(s, "UTC status register: 0x%08X\n", val);
3298 	seq_printf(s, "UTC offset: %d  valid:%d\n",
3299 		val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
3300 	seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
3301 		val & TOD_STATUS_LEAP_VALID ? 1 : 0,
3302 		val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
3303 
3304 	val = ioread32(&bp->tod->leap);
3305 	seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
3306 
3307 	return 0;
3308 }
3309 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
3310 
3311 static struct dentry *ptp_ocp_debugfs_root;
3312 
3313 static void
3314 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
3315 {
3316 	struct dentry *d;
3317 
3318 	d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
3319 	bp->debug_root = d;
3320 	debugfs_create_file("summary", 0444, bp->debug_root,
3321 			    &bp->dev, &ptp_ocp_summary_fops);
3322 	if (bp->tod)
3323 		debugfs_create_file("tod_status", 0444, bp->debug_root,
3324 				    &bp->dev, &ptp_ocp_tod_status_fops);
3325 }
3326 
3327 static void
3328 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
3329 {
3330 	debugfs_remove_recursive(bp->debug_root);
3331 }
3332 
3333 static void
3334 ptp_ocp_debugfs_init(void)
3335 {
3336 	ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
3337 }
3338 
3339 static void
3340 ptp_ocp_debugfs_fini(void)
3341 {
3342 	debugfs_remove_recursive(ptp_ocp_debugfs_root);
3343 }
3344 
3345 static void
3346 ptp_ocp_dev_release(struct device *dev)
3347 {
3348 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3349 
3350 	mutex_lock(&ptp_ocp_lock);
3351 	idr_remove(&ptp_ocp_idr, bp->id);
3352 	mutex_unlock(&ptp_ocp_lock);
3353 }
3354 
3355 static int
3356 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
3357 {
3358 	int err;
3359 
3360 	mutex_lock(&ptp_ocp_lock);
3361 	err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
3362 	mutex_unlock(&ptp_ocp_lock);
3363 	if (err < 0) {
3364 		dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
3365 		return err;
3366 	}
3367 	bp->id = err;
3368 
3369 	bp->ptp_info = ptp_ocp_clock_info;
3370 	spin_lock_init(&bp->lock);
3371 	bp->gnss_port = -1;
3372 	bp->gnss2_port = -1;
3373 	bp->mac_port = -1;
3374 	bp->nmea_port = -1;
3375 	bp->pdev = pdev;
3376 
3377 	device_initialize(&bp->dev);
3378 	dev_set_name(&bp->dev, "ocp%d", bp->id);
3379 	bp->dev.class = &timecard_class;
3380 	bp->dev.parent = &pdev->dev;
3381 	bp->dev.release = ptp_ocp_dev_release;
3382 	dev_set_drvdata(&bp->dev, bp);
3383 
3384 	err = device_add(&bp->dev);
3385 	if (err) {
3386 		dev_err(&bp->dev, "device add failed: %d\n", err);
3387 		goto out;
3388 	}
3389 
3390 	pci_set_drvdata(pdev, bp);
3391 
3392 	return 0;
3393 
3394 out:
3395 	ptp_ocp_dev_release(&bp->dev);
3396 	put_device(&bp->dev);
3397 	return err;
3398 }
3399 
3400 static void
3401 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
3402 {
3403 	struct device *dev = &bp->dev;
3404 
3405 	if (sysfs_create_link(&dev->kobj, &child->kobj, link))
3406 		dev_err(dev, "%s symlink failed\n", link);
3407 }
3408 
3409 static void
3410 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
3411 {
3412 	struct device *dev, *child;
3413 
3414 	dev = &bp->pdev->dev;
3415 
3416 	child = device_find_child_by_name(dev, name);
3417 	if (!child) {
3418 		dev_err(dev, "Could not find device %s\n", name);
3419 		return;
3420 	}
3421 
3422 	ptp_ocp_symlink(bp, child, link);
3423 	put_device(child);
3424 }
3425 
3426 static int
3427 ptp_ocp_complete(struct ptp_ocp *bp)
3428 {
3429 	struct pps_device *pps;
3430 	char buf[32];
3431 
3432 	if (bp->gnss_port != -1) {
3433 		sprintf(buf, "ttyS%d", bp->gnss_port);
3434 		ptp_ocp_link_child(bp, buf, "ttyGNSS");
3435 	}
3436 	if (bp->gnss2_port != -1) {
3437 		sprintf(buf, "ttyS%d", bp->gnss2_port);
3438 		ptp_ocp_link_child(bp, buf, "ttyGNSS2");
3439 	}
3440 	if (bp->mac_port != -1) {
3441 		sprintf(buf, "ttyS%d", bp->mac_port);
3442 		ptp_ocp_link_child(bp, buf, "ttyMAC");
3443 	}
3444 	if (bp->nmea_port != -1) {
3445 		sprintf(buf, "ttyS%d", bp->nmea_port);
3446 		ptp_ocp_link_child(bp, buf, "ttyNMEA");
3447 	}
3448 	sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
3449 	ptp_ocp_link_child(bp, buf, "ptp");
3450 
3451 	pps = pps_lookup_dev(bp->ptp);
3452 	if (pps)
3453 		ptp_ocp_symlink(bp, pps->dev, "pps");
3454 
3455 	ptp_ocp_debugfs_add_device(bp);
3456 
3457 	return 0;
3458 }
3459 
3460 static void
3461 ptp_ocp_phc_info(struct ptp_ocp *bp)
3462 {
3463 	struct timespec64 ts;
3464 	u32 version, select;
3465 	bool sync;
3466 
3467 	version = ioread32(&bp->reg->version);
3468 	select = ioread32(&bp->reg->select);
3469 	dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
3470 		 version >> 24, (version >> 16) & 0xff, version & 0xffff,
3471 		 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
3472 		 ptp_clock_index(bp->ptp));
3473 
3474 	sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
3475 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
3476 		dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
3477 			 ts.tv_sec, ts.tv_nsec,
3478 			 sync ? "in-sync" : "UNSYNCED");
3479 }
3480 
3481 static void
3482 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
3483 {
3484 	if (port != -1)
3485 		dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
3486 }
3487 
3488 static void
3489 ptp_ocp_info(struct ptp_ocp *bp)
3490 {
3491 	static int nmea_baud[] = {
3492 		1200, 2400, 4800, 9600, 19200, 38400,
3493 		57600, 115200, 230400, 460800, 921600,
3494 		1000000, 2000000
3495 	};
3496 	struct device *dev = &bp->pdev->dev;
3497 	u32 reg;
3498 
3499 	ptp_ocp_phc_info(bp);
3500 
3501 	dev_info(dev, "version %x\n", bp->fw_version);
3502 	if (bp->fw_version & 0xffff)
3503 		dev_info(dev, "regular image, version %d\n",
3504 			 bp->fw_version & 0xffff);
3505 	else
3506 		dev_info(dev, "golden image, version %d\n",
3507 			 bp->fw_version >> 16);
3508 
3509 	ptp_ocp_serial_info(dev, "GNSS", bp->gnss_port, 115200);
3510 	ptp_ocp_serial_info(dev, "GNSS2", bp->gnss2_port, 115200);
3511 	ptp_ocp_serial_info(dev, "MAC", bp->mac_port, 57600);
3512 	if (bp->nmea_out && bp->nmea_port != -1) {
3513 		int baud = -1;
3514 
3515 		reg = ioread32(&bp->nmea_out->uart_baud);
3516 		if (reg < ARRAY_SIZE(nmea_baud))
3517 			baud = nmea_baud[reg];
3518 		ptp_ocp_serial_info(dev, "NMEA", bp->nmea_port, baud);
3519 	}
3520 }
3521 
3522 static void
3523 ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
3524 {
3525 	struct device *dev = &bp->dev;
3526 
3527 	sysfs_remove_link(&dev->kobj, "ttyGNSS");
3528 	sysfs_remove_link(&dev->kobj, "ttyMAC");
3529 	sysfs_remove_link(&dev->kobj, "ptp");
3530 	sysfs_remove_link(&dev->kobj, "pps");
3531 }
3532 
3533 static void
3534 ptp_ocp_detach(struct ptp_ocp *bp)
3535 {
3536 	int i;
3537 
3538 	ptp_ocp_debugfs_remove_device(bp);
3539 	ptp_ocp_detach_sysfs(bp);
3540 	ptp_ocp_attr_group_del(bp);
3541 	if (timer_pending(&bp->watchdog))
3542 		del_timer_sync(&bp->watchdog);
3543 	if (bp->ts0)
3544 		ptp_ocp_unregister_ext(bp->ts0);
3545 	if (bp->ts1)
3546 		ptp_ocp_unregister_ext(bp->ts1);
3547 	if (bp->ts2)
3548 		ptp_ocp_unregister_ext(bp->ts2);
3549 	if (bp->ts3)
3550 		ptp_ocp_unregister_ext(bp->ts3);
3551 	if (bp->ts4)
3552 		ptp_ocp_unregister_ext(bp->ts4);
3553 	if (bp->pps)
3554 		ptp_ocp_unregister_ext(bp->pps);
3555 	for (i = 0; i < 4; i++)
3556 		if (bp->signal_out[i])
3557 			ptp_ocp_unregister_ext(bp->signal_out[i]);
3558 	if (bp->gnss_port != -1)
3559 		serial8250_unregister_port(bp->gnss_port);
3560 	if (bp->gnss2_port != -1)
3561 		serial8250_unregister_port(bp->gnss2_port);
3562 	if (bp->mac_port != -1)
3563 		serial8250_unregister_port(bp->mac_port);
3564 	if (bp->nmea_port != -1)
3565 		serial8250_unregister_port(bp->nmea_port);
3566 	if (bp->spi_flash)
3567 		platform_device_unregister(bp->spi_flash);
3568 	if (bp->i2c_ctrl)
3569 		platform_device_unregister(bp->i2c_ctrl);
3570 	if (bp->i2c_clk)
3571 		clk_hw_unregister_fixed_rate(bp->i2c_clk);
3572 	if (bp->n_irqs)
3573 		pci_free_irq_vectors(bp->pdev);
3574 	if (bp->ptp)
3575 		ptp_clock_unregister(bp->ptp);
3576 	kfree(bp->ptp_info.pin_config);
3577 	device_unregister(&bp->dev);
3578 }
3579 
3580 static int
3581 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3582 {
3583 	struct devlink *devlink;
3584 	struct ptp_ocp *bp;
3585 	int err;
3586 
3587 	devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
3588 	if (!devlink) {
3589 		dev_err(&pdev->dev, "devlink_alloc failed\n");
3590 		return -ENOMEM;
3591 	}
3592 
3593 	err = pci_enable_device(pdev);
3594 	if (err) {
3595 		dev_err(&pdev->dev, "pci_enable_device\n");
3596 		goto out_free;
3597 	}
3598 
3599 	bp = devlink_priv(devlink);
3600 	err = ptp_ocp_device_init(bp, pdev);
3601 	if (err)
3602 		goto out_disable;
3603 
3604 	/* compat mode.
3605 	 * Older FPGA firmware only returns 2 irq's.
3606 	 * allow this - if not all of the IRQ's are returned, skip the
3607 	 * extra devices and just register the clock.
3608 	 */
3609 	err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
3610 	if (err < 0) {
3611 		dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
3612 		goto out;
3613 	}
3614 	bp->n_irqs = err;
3615 	pci_set_master(pdev);
3616 
3617 	err = ptp_ocp_register_resources(bp, id->driver_data);
3618 	if (err)
3619 		goto out;
3620 
3621 	bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
3622 	if (IS_ERR(bp->ptp)) {
3623 		err = PTR_ERR(bp->ptp);
3624 		dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
3625 		bp->ptp = NULL;
3626 		goto out;
3627 	}
3628 
3629 	err = ptp_ocp_complete(bp);
3630 	if (err)
3631 		goto out;
3632 
3633 	ptp_ocp_info(bp);
3634 	devlink_register(devlink);
3635 	return 0;
3636 
3637 out:
3638 	ptp_ocp_detach(bp);
3639 	pci_set_drvdata(pdev, NULL);
3640 out_disable:
3641 	pci_disable_device(pdev);
3642 out_free:
3643 	devlink_free(devlink);
3644 	return err;
3645 }
3646 
3647 static void
3648 ptp_ocp_remove(struct pci_dev *pdev)
3649 {
3650 	struct ptp_ocp *bp = pci_get_drvdata(pdev);
3651 	struct devlink *devlink = priv_to_devlink(bp);
3652 
3653 	devlink_unregister(devlink);
3654 	ptp_ocp_detach(bp);
3655 	pci_set_drvdata(pdev, NULL);
3656 	pci_disable_device(pdev);
3657 
3658 	devlink_free(devlink);
3659 }
3660 
3661 static struct pci_driver ptp_ocp_driver = {
3662 	.name		= KBUILD_MODNAME,
3663 	.id_table	= ptp_ocp_pcidev_id,
3664 	.probe		= ptp_ocp_probe,
3665 	.remove		= ptp_ocp_remove,
3666 };
3667 
3668 static int
3669 ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
3670 			  unsigned long action, void *data)
3671 {
3672 	struct device *dev, *child = data;
3673 	struct ptp_ocp *bp;
3674 	bool add;
3675 
3676 	switch (action) {
3677 	case BUS_NOTIFY_ADD_DEVICE:
3678 	case BUS_NOTIFY_DEL_DEVICE:
3679 		add = action == BUS_NOTIFY_ADD_DEVICE;
3680 		break;
3681 	default:
3682 		return 0;
3683 	}
3684 
3685 	if (!i2c_verify_adapter(child))
3686 		return 0;
3687 
3688 	dev = child;
3689 	while ((dev = dev->parent))
3690 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
3691 			goto found;
3692 	return 0;
3693 
3694 found:
3695 	bp = dev_get_drvdata(dev);
3696 	if (add)
3697 		ptp_ocp_symlink(bp, child, "i2c");
3698 	else
3699 		sysfs_remove_link(&bp->dev.kobj, "i2c");
3700 
3701 	return 0;
3702 }
3703 
3704 static struct notifier_block ptp_ocp_i2c_notifier = {
3705 	.notifier_call = ptp_ocp_i2c_notifier_call,
3706 };
3707 
3708 static int __init
3709 ptp_ocp_init(void)
3710 {
3711 	const char *what;
3712 	int err;
3713 
3714 	ptp_ocp_debugfs_init();
3715 
3716 	what = "timecard class";
3717 	err = class_register(&timecard_class);
3718 	if (err)
3719 		goto out;
3720 
3721 	what = "i2c notifier";
3722 	err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
3723 	if (err)
3724 		goto out_notifier;
3725 
3726 	what = "ptp_ocp driver";
3727 	err = pci_register_driver(&ptp_ocp_driver);
3728 	if (err)
3729 		goto out_register;
3730 
3731 	return 0;
3732 
3733 out_register:
3734 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
3735 out_notifier:
3736 	class_unregister(&timecard_class);
3737 out:
3738 	ptp_ocp_debugfs_fini();
3739 	pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
3740 	return err;
3741 }
3742 
3743 static void __exit
3744 ptp_ocp_fini(void)
3745 {
3746 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
3747 	pci_unregister_driver(&ptp_ocp_driver);
3748 	class_unregister(&timecard_class);
3749 	ptp_ocp_debugfs_fini();
3750 }
3751 
3752 module_init(ptp_ocp_init);
3753 module_exit(ptp_ocp_fini);
3754 
3755 MODULE_DESCRIPTION("OpenCompute TimeCard driver");
3756 MODULE_LICENSE("GPL v2");
3757