1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2020 Facebook */ 3 4 #include <linux/err.h> 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/debugfs.h> 8 #include <linux/init.h> 9 #include <linux/pci.h> 10 #include <linux/serial_8250.h> 11 #include <linux/clkdev.h> 12 #include <linux/clk-provider.h> 13 #include <linux/platform_device.h> 14 #include <linux/platform_data/i2c-xiic.h> 15 #include <linux/ptp_clock_kernel.h> 16 #include <linux/spi/spi.h> 17 #include <linux/spi/xilinx_spi.h> 18 #include <net/devlink.h> 19 #include <linux/i2c.h> 20 #include <linux/mtd/mtd.h> 21 #include <linux/nvmem-consumer.h> 22 #include <linux/crc16.h> 23 24 #define PCI_VENDOR_ID_FACEBOOK 0x1d9b 25 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD 0x0400 26 27 #define PCI_VENDOR_ID_CELESTICA 0x18d4 28 #define PCI_DEVICE_ID_CELESTICA_TIMECARD 0x1008 29 30 static struct class timecard_class = { 31 .owner = THIS_MODULE, 32 .name = "timecard", 33 }; 34 35 struct ocp_reg { 36 u32 ctrl; 37 u32 status; 38 u32 select; 39 u32 version; 40 u32 time_ns; 41 u32 time_sec; 42 u32 __pad0[2]; 43 u32 adjust_ns; 44 u32 adjust_sec; 45 u32 __pad1[2]; 46 u32 offset_ns; 47 u32 offset_window_ns; 48 u32 __pad2[2]; 49 u32 drift_ns; 50 u32 drift_window_ns; 51 u32 __pad3[6]; 52 u32 servo_offset_p; 53 u32 servo_offset_i; 54 u32 servo_drift_p; 55 u32 servo_drift_i; 56 u32 status_offset; 57 u32 status_drift; 58 }; 59 60 #define OCP_CTRL_ENABLE BIT(0) 61 #define OCP_CTRL_ADJUST_TIME BIT(1) 62 #define OCP_CTRL_ADJUST_OFFSET BIT(2) 63 #define OCP_CTRL_ADJUST_DRIFT BIT(3) 64 #define OCP_CTRL_ADJUST_SERVO BIT(8) 65 #define OCP_CTRL_READ_TIME_REQ BIT(30) 66 #define OCP_CTRL_READ_TIME_DONE BIT(31) 67 68 #define OCP_STATUS_IN_SYNC BIT(0) 69 #define OCP_STATUS_IN_HOLDOVER BIT(1) 70 71 #define OCP_SELECT_CLK_NONE 0 72 #define OCP_SELECT_CLK_REG 0xfe 73 74 struct tod_reg { 75 u32 ctrl; 76 u32 status; 77 u32 uart_polarity; 78 u32 version; 79 u32 adj_sec; 80 u32 __pad0[3]; 81 u32 uart_baud; 82 u32 __pad1[3]; 83 u32 utc_status; 84 u32 leap; 85 }; 86 87 #define TOD_CTRL_PROTOCOL BIT(28) 88 #define TOD_CTRL_DISABLE_FMT_A BIT(17) 89 #define TOD_CTRL_DISABLE_FMT_B BIT(16) 90 #define TOD_CTRL_ENABLE BIT(0) 91 #define TOD_CTRL_GNSS_MASK ((1U << 4) - 1) 92 #define TOD_CTRL_GNSS_SHIFT 24 93 94 #define TOD_STATUS_UTC_MASK 0xff 95 #define TOD_STATUS_UTC_VALID BIT(8) 96 #define TOD_STATUS_LEAP_ANNOUNCE BIT(12) 97 #define TOD_STATUS_LEAP_VALID BIT(16) 98 99 struct ts_reg { 100 u32 enable; 101 u32 error; 102 u32 polarity; 103 u32 version; 104 u32 __pad0[4]; 105 u32 cable_delay; 106 u32 __pad1[3]; 107 u32 intr; 108 u32 intr_mask; 109 u32 event_count; 110 u32 __pad2[1]; 111 u32 ts_count; 112 u32 time_ns; 113 u32 time_sec; 114 u32 data_width; 115 u32 data; 116 }; 117 118 struct pps_reg { 119 u32 ctrl; 120 u32 status; 121 u32 __pad0[6]; 122 u32 cable_delay; 123 }; 124 125 #define PPS_STATUS_FILTER_ERR BIT(0) 126 #define PPS_STATUS_SUPERV_ERR BIT(1) 127 128 struct img_reg { 129 u32 version; 130 }; 131 132 struct gpio_reg { 133 u32 gpio1; 134 u32 __pad0; 135 u32 gpio2; 136 u32 __pad1; 137 }; 138 139 struct irig_master_reg { 140 u32 ctrl; 141 u32 status; 142 u32 __pad0; 143 u32 version; 144 u32 adj_sec; 145 u32 mode_ctrl; 146 }; 147 148 #define IRIG_M_CTRL_ENABLE BIT(0) 149 150 struct irig_slave_reg { 151 u32 ctrl; 152 u32 status; 153 u32 __pad0; 154 u32 version; 155 u32 adj_sec; 156 u32 mode_ctrl; 157 }; 158 159 #define IRIG_S_CTRL_ENABLE BIT(0) 160 161 struct dcf_master_reg { 162 u32 ctrl; 163 u32 status; 164 u32 __pad0; 165 u32 version; 166 u32 adj_sec; 167 }; 168 169 #define DCF_M_CTRL_ENABLE BIT(0) 170 171 struct dcf_slave_reg { 172 u32 ctrl; 173 u32 status; 174 u32 __pad0; 175 u32 version; 176 u32 adj_sec; 177 }; 178 179 #define DCF_S_CTRL_ENABLE BIT(0) 180 181 struct signal_reg { 182 u32 enable; 183 u32 status; 184 u32 polarity; 185 u32 version; 186 u32 __pad0[4]; 187 u32 cable_delay; 188 u32 __pad1[3]; 189 u32 intr; 190 u32 intr_mask; 191 u32 __pad2[2]; 192 u32 start_ns; 193 u32 start_sec; 194 u32 pulse_ns; 195 u32 pulse_sec; 196 u32 period_ns; 197 u32 period_sec; 198 u32 repeat_count; 199 }; 200 201 struct frequency_reg { 202 u32 ctrl; 203 u32 status; 204 }; 205 #define FREQ_STATUS_VALID BIT(31) 206 #define FREQ_STATUS_ERROR BIT(30) 207 #define FREQ_STATUS_OVERRUN BIT(29) 208 #define FREQ_STATUS_MASK (BIT(24) - 1) 209 210 struct ptp_ocp_flash_info { 211 const char *name; 212 int pci_offset; 213 int data_size; 214 void *data; 215 }; 216 217 struct ptp_ocp_firmware_header { 218 char magic[4]; 219 __be16 pci_vendor_id; 220 __be16 pci_device_id; 221 __be32 image_size; 222 __be16 hw_revision; 223 __be16 crc; 224 }; 225 226 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC" 227 228 struct ptp_ocp_i2c_info { 229 const char *name; 230 unsigned long fixed_rate; 231 size_t data_size; 232 void *data; 233 }; 234 235 struct ptp_ocp_ext_info { 236 int index; 237 irqreturn_t (*irq_fcn)(int irq, void *priv); 238 int (*enable)(void *priv, u32 req, bool enable); 239 }; 240 241 struct ptp_ocp_ext_src { 242 void __iomem *mem; 243 struct ptp_ocp *bp; 244 struct ptp_ocp_ext_info *info; 245 int irq_vec; 246 }; 247 248 enum ptp_ocp_sma_mode { 249 SMA_MODE_IN, 250 SMA_MODE_OUT, 251 }; 252 253 struct ptp_ocp_sma_connector { 254 enum ptp_ocp_sma_mode mode; 255 bool fixed_fcn; 256 bool fixed_dir; 257 bool disabled; 258 u8 default_fcn; 259 }; 260 261 struct ocp_attr_group { 262 u64 cap; 263 const struct attribute_group *group; 264 }; 265 266 #define OCP_CAP_BASIC BIT(0) 267 #define OCP_CAP_SIGNAL BIT(1) 268 #define OCP_CAP_FREQ BIT(2) 269 270 struct ptp_ocp_signal { 271 ktime_t period; 272 ktime_t pulse; 273 ktime_t phase; 274 ktime_t start; 275 int duty; 276 bool polarity; 277 bool running; 278 }; 279 280 #define OCP_BOARD_ID_LEN 13 281 #define OCP_SERIAL_LEN 6 282 283 struct ptp_ocp { 284 struct pci_dev *pdev; 285 struct device dev; 286 spinlock_t lock; 287 struct ocp_reg __iomem *reg; 288 struct tod_reg __iomem *tod; 289 struct pps_reg __iomem *pps_to_ext; 290 struct pps_reg __iomem *pps_to_clk; 291 struct gpio_reg __iomem *pps_select; 292 struct gpio_reg __iomem *sma_map1; 293 struct gpio_reg __iomem *sma_map2; 294 struct irig_master_reg __iomem *irig_out; 295 struct irig_slave_reg __iomem *irig_in; 296 struct dcf_master_reg __iomem *dcf_out; 297 struct dcf_slave_reg __iomem *dcf_in; 298 struct tod_reg __iomem *nmea_out; 299 struct frequency_reg __iomem *freq_in[4]; 300 struct ptp_ocp_ext_src *signal_out[4]; 301 struct ptp_ocp_ext_src *pps; 302 struct ptp_ocp_ext_src *ts0; 303 struct ptp_ocp_ext_src *ts1; 304 struct ptp_ocp_ext_src *ts2; 305 struct ptp_ocp_ext_src *ts3; 306 struct ptp_ocp_ext_src *ts4; 307 struct img_reg __iomem *image; 308 struct ptp_clock *ptp; 309 struct ptp_clock_info ptp_info; 310 struct platform_device *i2c_ctrl; 311 struct platform_device *spi_flash; 312 struct clk_hw *i2c_clk; 313 struct timer_list watchdog; 314 const struct attribute_group **attr_group; 315 const struct ptp_ocp_eeprom_map *eeprom_map; 316 struct dentry *debug_root; 317 time64_t gnss_lost; 318 int id; 319 int n_irqs; 320 int gnss_port; 321 int gnss2_port; 322 int mac_port; /* miniature atomic clock */ 323 int nmea_port; 324 bool fw_loader; 325 u8 fw_tag; 326 u16 fw_version; 327 u8 board_id[OCP_BOARD_ID_LEN]; 328 u8 serial[OCP_SERIAL_LEN]; 329 bool has_eeprom_data; 330 u32 pps_req_map; 331 int flash_start; 332 u32 utc_tai_offset; 333 u32 ts_window_adjust; 334 u64 fw_cap; 335 struct ptp_ocp_signal signal[4]; 336 struct ptp_ocp_sma_connector sma[4]; 337 const struct ocp_sma_op *sma_op; 338 }; 339 340 #define OCP_REQ_TIMESTAMP BIT(0) 341 #define OCP_REQ_PPS BIT(1) 342 343 struct ocp_resource { 344 unsigned long offset; 345 int size; 346 int irq_vec; 347 int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r); 348 void *extra; 349 unsigned long bp_offset; 350 const char * const name; 351 }; 352 353 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r); 354 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r); 355 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r); 356 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r); 357 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r); 358 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r); 359 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv); 360 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv); 361 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable); 362 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen, 363 struct ptp_perout_request *req); 364 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable); 365 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr); 366 367 static const struct ocp_attr_group fb_timecard_groups[]; 368 369 struct ptp_ocp_eeprom_map { 370 u16 off; 371 u16 len; 372 u32 bp_offset; 373 const void * const tag; 374 }; 375 376 #define EEPROM_ENTRY(addr, member) \ 377 .off = addr, \ 378 .len = sizeof_field(struct ptp_ocp, member), \ 379 .bp_offset = offsetof(struct ptp_ocp, member) 380 381 #define BP_MAP_ENTRY_ADDR(bp, map) ({ \ 382 (void *)((uintptr_t)(bp) + (map)->bp_offset); \ 383 }) 384 385 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = { 386 { EEPROM_ENTRY(0x43, board_id) }, 387 { EEPROM_ENTRY(0x00, serial), .tag = "mac" }, 388 { } 389 }; 390 391 #define bp_assign_entry(bp, res, val) ({ \ 392 uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset; \ 393 *(typeof(val) *)addr = val; \ 394 }) 395 396 #define OCP_RES_LOCATION(member) \ 397 .name = #member, .bp_offset = offsetof(struct ptp_ocp, member) 398 399 #define OCP_MEM_RESOURCE(member) \ 400 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem 401 402 #define OCP_SERIAL_RESOURCE(member) \ 403 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial 404 405 #define OCP_I2C_RESOURCE(member) \ 406 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c 407 408 #define OCP_SPI_RESOURCE(member) \ 409 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi 410 411 #define OCP_EXT_RESOURCE(member) \ 412 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext 413 414 /* This is the MSI vector mapping used. 415 * 0: PPS (TS5) 416 * 1: TS0 417 * 2: TS1 418 * 3: GNSS1 419 * 4: GNSS2 420 * 5: MAC 421 * 6: TS2 422 * 7: I2C controller 423 * 8: HWICAP (notused) 424 * 9: SPI Flash 425 * 10: NMEA 426 * 11: Signal Generator 1 427 * 12: Signal Generator 2 428 * 13: Signal Generator 3 429 * 14: Signal Generator 4 430 * 15: TS3 431 * 16: TS4 432 */ 433 434 static struct ocp_resource ocp_fb_resource[] = { 435 { 436 OCP_MEM_RESOURCE(reg), 437 .offset = 0x01000000, .size = 0x10000, 438 }, 439 { 440 OCP_EXT_RESOURCE(ts0), 441 .offset = 0x01010000, .size = 0x10000, .irq_vec = 1, 442 .extra = &(struct ptp_ocp_ext_info) { 443 .index = 0, 444 .irq_fcn = ptp_ocp_ts_irq, 445 .enable = ptp_ocp_ts_enable, 446 }, 447 }, 448 { 449 OCP_EXT_RESOURCE(ts1), 450 .offset = 0x01020000, .size = 0x10000, .irq_vec = 2, 451 .extra = &(struct ptp_ocp_ext_info) { 452 .index = 1, 453 .irq_fcn = ptp_ocp_ts_irq, 454 .enable = ptp_ocp_ts_enable, 455 }, 456 }, 457 { 458 OCP_EXT_RESOURCE(ts2), 459 .offset = 0x01060000, .size = 0x10000, .irq_vec = 6, 460 .extra = &(struct ptp_ocp_ext_info) { 461 .index = 2, 462 .irq_fcn = ptp_ocp_ts_irq, 463 .enable = ptp_ocp_ts_enable, 464 }, 465 }, 466 { 467 OCP_EXT_RESOURCE(ts3), 468 .offset = 0x01110000, .size = 0x10000, .irq_vec = 15, 469 .extra = &(struct ptp_ocp_ext_info) { 470 .index = 3, 471 .irq_fcn = ptp_ocp_ts_irq, 472 .enable = ptp_ocp_ts_enable, 473 }, 474 }, 475 { 476 OCP_EXT_RESOURCE(ts4), 477 .offset = 0x01120000, .size = 0x10000, .irq_vec = 16, 478 .extra = &(struct ptp_ocp_ext_info) { 479 .index = 4, 480 .irq_fcn = ptp_ocp_ts_irq, 481 .enable = ptp_ocp_ts_enable, 482 }, 483 }, 484 /* Timestamp for PHC and/or PPS generator */ 485 { 486 OCP_EXT_RESOURCE(pps), 487 .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0, 488 .extra = &(struct ptp_ocp_ext_info) { 489 .index = 5, 490 .irq_fcn = ptp_ocp_ts_irq, 491 .enable = ptp_ocp_ts_enable, 492 }, 493 }, 494 { 495 OCP_EXT_RESOURCE(signal_out[0]), 496 .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11, 497 .extra = &(struct ptp_ocp_ext_info) { 498 .index = 1, 499 .irq_fcn = ptp_ocp_signal_irq, 500 .enable = ptp_ocp_signal_enable, 501 }, 502 }, 503 { 504 OCP_EXT_RESOURCE(signal_out[1]), 505 .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12, 506 .extra = &(struct ptp_ocp_ext_info) { 507 .index = 2, 508 .irq_fcn = ptp_ocp_signal_irq, 509 .enable = ptp_ocp_signal_enable, 510 }, 511 }, 512 { 513 OCP_EXT_RESOURCE(signal_out[2]), 514 .offset = 0x010F0000, .size = 0x10000, .irq_vec = 13, 515 .extra = &(struct ptp_ocp_ext_info) { 516 .index = 3, 517 .irq_fcn = ptp_ocp_signal_irq, 518 .enable = ptp_ocp_signal_enable, 519 }, 520 }, 521 { 522 OCP_EXT_RESOURCE(signal_out[3]), 523 .offset = 0x01100000, .size = 0x10000, .irq_vec = 14, 524 .extra = &(struct ptp_ocp_ext_info) { 525 .index = 4, 526 .irq_fcn = ptp_ocp_signal_irq, 527 .enable = ptp_ocp_signal_enable, 528 }, 529 }, 530 { 531 OCP_MEM_RESOURCE(pps_to_ext), 532 .offset = 0x01030000, .size = 0x10000, 533 }, 534 { 535 OCP_MEM_RESOURCE(pps_to_clk), 536 .offset = 0x01040000, .size = 0x10000, 537 }, 538 { 539 OCP_MEM_RESOURCE(tod), 540 .offset = 0x01050000, .size = 0x10000, 541 }, 542 { 543 OCP_MEM_RESOURCE(irig_in), 544 .offset = 0x01070000, .size = 0x10000, 545 }, 546 { 547 OCP_MEM_RESOURCE(irig_out), 548 .offset = 0x01080000, .size = 0x10000, 549 }, 550 { 551 OCP_MEM_RESOURCE(dcf_in), 552 .offset = 0x01090000, .size = 0x10000, 553 }, 554 { 555 OCP_MEM_RESOURCE(dcf_out), 556 .offset = 0x010A0000, .size = 0x10000, 557 }, 558 { 559 OCP_MEM_RESOURCE(nmea_out), 560 .offset = 0x010B0000, .size = 0x10000, 561 }, 562 { 563 OCP_MEM_RESOURCE(image), 564 .offset = 0x00020000, .size = 0x1000, 565 }, 566 { 567 OCP_MEM_RESOURCE(pps_select), 568 .offset = 0x00130000, .size = 0x1000, 569 }, 570 { 571 OCP_MEM_RESOURCE(sma_map1), 572 .offset = 0x00140000, .size = 0x1000, 573 }, 574 { 575 OCP_MEM_RESOURCE(sma_map2), 576 .offset = 0x00220000, .size = 0x1000, 577 }, 578 { 579 OCP_I2C_RESOURCE(i2c_ctrl), 580 .offset = 0x00150000, .size = 0x10000, .irq_vec = 7, 581 .extra = &(struct ptp_ocp_i2c_info) { 582 .name = "xiic-i2c", 583 .fixed_rate = 50000000, 584 .data_size = sizeof(struct xiic_i2c_platform_data), 585 .data = &(struct xiic_i2c_platform_data) { 586 .num_devices = 2, 587 .devices = (struct i2c_board_info[]) { 588 { I2C_BOARD_INFO("24c02", 0x50) }, 589 { I2C_BOARD_INFO("24mac402", 0x58), 590 .platform_data = "mac" }, 591 }, 592 }, 593 }, 594 }, 595 { 596 OCP_SERIAL_RESOURCE(gnss_port), 597 .offset = 0x00160000 + 0x1000, .irq_vec = 3, 598 }, 599 { 600 OCP_SERIAL_RESOURCE(gnss2_port), 601 .offset = 0x00170000 + 0x1000, .irq_vec = 4, 602 }, 603 { 604 OCP_SERIAL_RESOURCE(mac_port), 605 .offset = 0x00180000 + 0x1000, .irq_vec = 5, 606 }, 607 { 608 OCP_SERIAL_RESOURCE(nmea_port), 609 .offset = 0x00190000 + 0x1000, .irq_vec = 10, 610 }, 611 { 612 OCP_SPI_RESOURCE(spi_flash), 613 .offset = 0x00310000, .size = 0x10000, .irq_vec = 9, 614 .extra = &(struct ptp_ocp_flash_info) { 615 .name = "xilinx_spi", .pci_offset = 0, 616 .data_size = sizeof(struct xspi_platform_data), 617 .data = &(struct xspi_platform_data) { 618 .num_chipselect = 1, 619 .bits_per_word = 8, 620 .num_devices = 1, 621 .devices = &(struct spi_board_info) { 622 .modalias = "spi-nor", 623 }, 624 }, 625 }, 626 }, 627 { 628 OCP_MEM_RESOURCE(freq_in[0]), 629 .offset = 0x01200000, .size = 0x10000, 630 }, 631 { 632 OCP_MEM_RESOURCE(freq_in[1]), 633 .offset = 0x01210000, .size = 0x10000, 634 }, 635 { 636 OCP_MEM_RESOURCE(freq_in[2]), 637 .offset = 0x01220000, .size = 0x10000, 638 }, 639 { 640 OCP_MEM_RESOURCE(freq_in[3]), 641 .offset = 0x01230000, .size = 0x10000, 642 }, 643 { 644 .setup = ptp_ocp_fb_board_init, 645 }, 646 { } 647 }; 648 649 static const struct pci_device_id ptp_ocp_pcidev_id[] = { 650 { PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) }, 651 { PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) }, 652 { } 653 }; 654 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id); 655 656 static DEFINE_MUTEX(ptp_ocp_lock); 657 static DEFINE_IDR(ptp_ocp_idr); 658 659 struct ocp_selector { 660 const char *name; 661 int value; 662 }; 663 664 static const struct ocp_selector ptp_ocp_clock[] = { 665 { .name = "NONE", .value = 0 }, 666 { .name = "TOD", .value = 1 }, 667 { .name = "IRIG", .value = 2 }, 668 { .name = "PPS", .value = 3 }, 669 { .name = "PTP", .value = 4 }, 670 { .name = "RTC", .value = 5 }, 671 { .name = "DCF", .value = 6 }, 672 { .name = "REGS", .value = 0xfe }, 673 { .name = "EXT", .value = 0xff }, 674 { } 675 }; 676 677 #define SMA_ENABLE BIT(15) 678 #define SMA_SELECT_MASK ((1U << 15) - 1) 679 #define SMA_DISABLE 0x10000 680 681 static const struct ocp_selector ptp_ocp_sma_in[] = { 682 { .name = "10Mhz", .value = 0x0000 }, 683 { .name = "PPS1", .value = 0x0001 }, 684 { .name = "PPS2", .value = 0x0002 }, 685 { .name = "TS1", .value = 0x0004 }, 686 { .name = "TS2", .value = 0x0008 }, 687 { .name = "IRIG", .value = 0x0010 }, 688 { .name = "DCF", .value = 0x0020 }, 689 { .name = "TS3", .value = 0x0040 }, 690 { .name = "TS4", .value = 0x0080 }, 691 { .name = "FREQ1", .value = 0x0100 }, 692 { .name = "FREQ2", .value = 0x0200 }, 693 { .name = "FREQ3", .value = 0x0400 }, 694 { .name = "FREQ4", .value = 0x0800 }, 695 { .name = "None", .value = SMA_DISABLE }, 696 { } 697 }; 698 699 static const struct ocp_selector ptp_ocp_sma_out[] = { 700 { .name = "10Mhz", .value = 0x0000 }, 701 { .name = "PHC", .value = 0x0001 }, 702 { .name = "MAC", .value = 0x0002 }, 703 { .name = "GNSS1", .value = 0x0004 }, 704 { .name = "GNSS2", .value = 0x0008 }, 705 { .name = "IRIG", .value = 0x0010 }, 706 { .name = "DCF", .value = 0x0020 }, 707 { .name = "GEN1", .value = 0x0040 }, 708 { .name = "GEN2", .value = 0x0080 }, 709 { .name = "GEN3", .value = 0x0100 }, 710 { .name = "GEN4", .value = 0x0200 }, 711 { .name = "GND", .value = 0x2000 }, 712 { .name = "VCC", .value = 0x4000 }, 713 { } 714 }; 715 716 struct ocp_sma_op { 717 const struct ocp_selector *tbl[2]; 718 void (*init)(struct ptp_ocp *bp); 719 u32 (*get)(struct ptp_ocp *bp, int sma_nr); 720 int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val); 721 int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val); 722 }; 723 724 static void 725 ptp_ocp_sma_init(struct ptp_ocp *bp) 726 { 727 return bp->sma_op->init(bp); 728 } 729 730 static u32 731 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr) 732 { 733 return bp->sma_op->get(bp, sma_nr); 734 } 735 736 static int 737 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val) 738 { 739 return bp->sma_op->set_inputs(bp, sma_nr, val); 740 } 741 742 static int 743 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val) 744 { 745 return bp->sma_op->set_output(bp, sma_nr, val); 746 } 747 748 static const char * 749 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val) 750 { 751 int i; 752 753 for (i = 0; tbl[i].name; i++) 754 if (tbl[i].value == val) 755 return tbl[i].name; 756 return NULL; 757 } 758 759 static int 760 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name) 761 { 762 const char *select; 763 int i; 764 765 for (i = 0; tbl[i].name; i++) { 766 select = tbl[i].name; 767 if (!strncasecmp(name, select, strlen(select))) 768 return tbl[i].value; 769 } 770 return -EINVAL; 771 } 772 773 static ssize_t 774 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf) 775 { 776 ssize_t count; 777 int i; 778 779 count = 0; 780 for (i = 0; tbl[i].name; i++) 781 count += sysfs_emit_at(buf, count, "%s ", tbl[i].name); 782 if (count) 783 count--; 784 count += sysfs_emit_at(buf, count, "\n"); 785 return count; 786 } 787 788 static int 789 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts, 790 struct ptp_system_timestamp *sts) 791 { 792 u32 ctrl, time_sec, time_ns; 793 int i; 794 795 ptp_read_system_prets(sts); 796 797 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE; 798 iowrite32(ctrl, &bp->reg->ctrl); 799 800 for (i = 0; i < 100; i++) { 801 ctrl = ioread32(&bp->reg->ctrl); 802 if (ctrl & OCP_CTRL_READ_TIME_DONE) 803 break; 804 } 805 ptp_read_system_postts(sts); 806 807 if (sts && bp->ts_window_adjust) { 808 s64 ns = timespec64_to_ns(&sts->post_ts); 809 810 sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust); 811 } 812 813 time_ns = ioread32(&bp->reg->time_ns); 814 time_sec = ioread32(&bp->reg->time_sec); 815 816 ts->tv_sec = time_sec; 817 ts->tv_nsec = time_ns; 818 819 return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT; 820 } 821 822 static int 823 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts, 824 struct ptp_system_timestamp *sts) 825 { 826 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 827 unsigned long flags; 828 int err; 829 830 spin_lock_irqsave(&bp->lock, flags); 831 err = __ptp_ocp_gettime_locked(bp, ts, sts); 832 spin_unlock_irqrestore(&bp->lock, flags); 833 834 return err; 835 } 836 837 static void 838 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts) 839 { 840 u32 ctrl, time_sec, time_ns; 841 u32 select; 842 843 time_ns = ts->tv_nsec; 844 time_sec = ts->tv_sec; 845 846 select = ioread32(&bp->reg->select); 847 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); 848 849 iowrite32(time_ns, &bp->reg->adjust_ns); 850 iowrite32(time_sec, &bp->reg->adjust_sec); 851 852 ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE; 853 iowrite32(ctrl, &bp->reg->ctrl); 854 855 /* restore clock selection */ 856 iowrite32(select >> 16, &bp->reg->select); 857 } 858 859 static int 860 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts) 861 { 862 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 863 unsigned long flags; 864 865 spin_lock_irqsave(&bp->lock, flags); 866 __ptp_ocp_settime_locked(bp, ts); 867 spin_unlock_irqrestore(&bp->lock, flags); 868 869 return 0; 870 } 871 872 static void 873 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val) 874 { 875 u32 select, ctrl; 876 877 select = ioread32(&bp->reg->select); 878 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); 879 880 iowrite32(adj_val, &bp->reg->offset_ns); 881 iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns); 882 883 ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE; 884 iowrite32(ctrl, &bp->reg->ctrl); 885 886 /* restore clock selection */ 887 iowrite32(select >> 16, &bp->reg->select); 888 } 889 890 static void 891 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns) 892 { 893 struct timespec64 ts; 894 unsigned long flags; 895 int err; 896 897 spin_lock_irqsave(&bp->lock, flags); 898 err = __ptp_ocp_gettime_locked(bp, &ts, NULL); 899 if (likely(!err)) { 900 set_normalized_timespec64(&ts, ts.tv_sec, 901 ts.tv_nsec + delta_ns); 902 __ptp_ocp_settime_locked(bp, &ts); 903 } 904 spin_unlock_irqrestore(&bp->lock, flags); 905 } 906 907 static int 908 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns) 909 { 910 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 911 unsigned long flags; 912 u32 adj_ns, sign; 913 914 if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) { 915 ptp_ocp_adjtime_coarse(bp, delta_ns); 916 return 0; 917 } 918 919 sign = delta_ns < 0 ? BIT(31) : 0; 920 adj_ns = sign ? -delta_ns : delta_ns; 921 922 spin_lock_irqsave(&bp->lock, flags); 923 __ptp_ocp_adjtime_locked(bp, sign | adj_ns); 924 spin_unlock_irqrestore(&bp->lock, flags); 925 926 return 0; 927 } 928 929 static int 930 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm) 931 { 932 if (scaled_ppm == 0) 933 return 0; 934 935 return -EOPNOTSUPP; 936 } 937 938 static int 939 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns) 940 { 941 return -EOPNOTSUPP; 942 } 943 944 static int 945 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq, 946 int on) 947 { 948 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 949 struct ptp_ocp_ext_src *ext = NULL; 950 u32 req; 951 int err; 952 953 switch (rq->type) { 954 case PTP_CLK_REQ_EXTTS: 955 req = OCP_REQ_TIMESTAMP; 956 switch (rq->extts.index) { 957 case 0: 958 ext = bp->ts0; 959 break; 960 case 1: 961 ext = bp->ts1; 962 break; 963 case 2: 964 ext = bp->ts2; 965 break; 966 case 3: 967 ext = bp->ts3; 968 break; 969 case 4: 970 ext = bp->ts4; 971 break; 972 case 5: 973 ext = bp->pps; 974 break; 975 } 976 break; 977 case PTP_CLK_REQ_PPS: 978 req = OCP_REQ_PPS; 979 ext = bp->pps; 980 break; 981 case PTP_CLK_REQ_PEROUT: 982 switch (rq->perout.index) { 983 case 0: 984 /* This is a request for 1PPS on an output SMA. 985 * Allow, but assume manual configuration. 986 */ 987 if (on && (rq->perout.period.sec != 1 || 988 rq->perout.period.nsec != 0)) 989 return -EINVAL; 990 return 0; 991 case 1: 992 case 2: 993 case 3: 994 case 4: 995 req = rq->perout.index - 1; 996 ext = bp->signal_out[req]; 997 err = ptp_ocp_signal_from_perout(bp, req, &rq->perout); 998 if (err) 999 return err; 1000 break; 1001 } 1002 break; 1003 default: 1004 return -EOPNOTSUPP; 1005 } 1006 1007 err = -ENXIO; 1008 if (ext) 1009 err = ext->info->enable(ext, req, on); 1010 1011 return err; 1012 } 1013 1014 static int 1015 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin, 1016 enum ptp_pin_function func, unsigned chan) 1017 { 1018 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 1019 char buf[16]; 1020 1021 switch (func) { 1022 case PTP_PF_NONE: 1023 snprintf(buf, sizeof(buf), "IN: None"); 1024 break; 1025 case PTP_PF_EXTTS: 1026 /* Allow timestamps, but require sysfs configuration. */ 1027 return 0; 1028 case PTP_PF_PEROUT: 1029 /* channel 0 is 1PPS from PHC. 1030 * channels 1..4 are the frequency generators. 1031 */ 1032 if (chan) 1033 snprintf(buf, sizeof(buf), "OUT: GEN%d", chan); 1034 else 1035 snprintf(buf, sizeof(buf), "OUT: PHC"); 1036 break; 1037 default: 1038 return -EOPNOTSUPP; 1039 } 1040 1041 return ptp_ocp_sma_store(bp, buf, pin + 1); 1042 } 1043 1044 static const struct ptp_clock_info ptp_ocp_clock_info = { 1045 .owner = THIS_MODULE, 1046 .name = KBUILD_MODNAME, 1047 .max_adj = 100000000, 1048 .gettimex64 = ptp_ocp_gettimex, 1049 .settime64 = ptp_ocp_settime, 1050 .adjtime = ptp_ocp_adjtime, 1051 .adjfine = ptp_ocp_null_adjfine, 1052 .adjphase = ptp_ocp_null_adjphase, 1053 .enable = ptp_ocp_enable, 1054 .verify = ptp_ocp_verify, 1055 .pps = true, 1056 .n_ext_ts = 6, 1057 .n_per_out = 5, 1058 }; 1059 1060 static void 1061 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp) 1062 { 1063 u32 ctrl, select; 1064 1065 select = ioread32(&bp->reg->select); 1066 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); 1067 1068 iowrite32(0, &bp->reg->drift_ns); 1069 1070 ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE; 1071 iowrite32(ctrl, &bp->reg->ctrl); 1072 1073 /* restore clock selection */ 1074 iowrite32(select >> 16, &bp->reg->select); 1075 } 1076 1077 static void 1078 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val) 1079 { 1080 unsigned long flags; 1081 1082 spin_lock_irqsave(&bp->lock, flags); 1083 1084 bp->utc_tai_offset = val; 1085 1086 if (bp->irig_out) 1087 iowrite32(val, &bp->irig_out->adj_sec); 1088 if (bp->dcf_out) 1089 iowrite32(val, &bp->dcf_out->adj_sec); 1090 if (bp->nmea_out) 1091 iowrite32(val, &bp->nmea_out->adj_sec); 1092 1093 spin_unlock_irqrestore(&bp->lock, flags); 1094 } 1095 1096 static void 1097 ptp_ocp_watchdog(struct timer_list *t) 1098 { 1099 struct ptp_ocp *bp = from_timer(bp, t, watchdog); 1100 unsigned long flags; 1101 u32 status, utc_offset; 1102 1103 status = ioread32(&bp->pps_to_clk->status); 1104 1105 if (status & PPS_STATUS_SUPERV_ERR) { 1106 iowrite32(status, &bp->pps_to_clk->status); 1107 if (!bp->gnss_lost) { 1108 spin_lock_irqsave(&bp->lock, flags); 1109 __ptp_ocp_clear_drift_locked(bp); 1110 spin_unlock_irqrestore(&bp->lock, flags); 1111 bp->gnss_lost = ktime_get_real_seconds(); 1112 } 1113 1114 } else if (bp->gnss_lost) { 1115 bp->gnss_lost = 0; 1116 } 1117 1118 /* if GNSS provides correct data we can rely on 1119 * it to get leap second information 1120 */ 1121 if (bp->tod) { 1122 status = ioread32(&bp->tod->utc_status); 1123 utc_offset = status & TOD_STATUS_UTC_MASK; 1124 if (status & TOD_STATUS_UTC_VALID && 1125 utc_offset != bp->utc_tai_offset) 1126 ptp_ocp_utc_distribute(bp, utc_offset); 1127 } 1128 1129 mod_timer(&bp->watchdog, jiffies + HZ); 1130 } 1131 1132 static void 1133 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp) 1134 { 1135 ktime_t start, end; 1136 ktime_t delay; 1137 u32 ctrl; 1138 1139 ctrl = ioread32(&bp->reg->ctrl); 1140 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE; 1141 1142 iowrite32(ctrl, &bp->reg->ctrl); 1143 1144 start = ktime_get_ns(); 1145 1146 ctrl = ioread32(&bp->reg->ctrl); 1147 1148 end = ktime_get_ns(); 1149 1150 delay = end - start; 1151 bp->ts_window_adjust = (delay >> 5) * 3; 1152 } 1153 1154 static int 1155 ptp_ocp_init_clock(struct ptp_ocp *bp) 1156 { 1157 struct timespec64 ts; 1158 bool sync; 1159 u32 ctrl; 1160 1161 ctrl = OCP_CTRL_ENABLE; 1162 iowrite32(ctrl, &bp->reg->ctrl); 1163 1164 /* NO DRIFT Correction */ 1165 /* offset_p:i 1/8, offset_i: 1/16, drift_p: 0, drift_i: 0 */ 1166 iowrite32(0x2000, &bp->reg->servo_offset_p); 1167 iowrite32(0x1000, &bp->reg->servo_offset_i); 1168 iowrite32(0, &bp->reg->servo_drift_p); 1169 iowrite32(0, &bp->reg->servo_drift_i); 1170 1171 /* latch servo values */ 1172 ctrl |= OCP_CTRL_ADJUST_SERVO; 1173 iowrite32(ctrl, &bp->reg->ctrl); 1174 1175 if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) { 1176 dev_err(&bp->pdev->dev, "clock not enabled\n"); 1177 return -ENODEV; 1178 } 1179 1180 ptp_ocp_estimate_pci_timing(bp); 1181 1182 sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC; 1183 if (!sync) { 1184 ktime_get_clocktai_ts64(&ts); 1185 ptp_ocp_settime(&bp->ptp_info, &ts); 1186 } 1187 1188 /* If there is a clock supervisor, then enable the watchdog */ 1189 if (bp->pps_to_clk) { 1190 timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0); 1191 mod_timer(&bp->watchdog, jiffies + HZ); 1192 } 1193 1194 return 0; 1195 } 1196 1197 static void 1198 ptp_ocp_tod_init(struct ptp_ocp *bp) 1199 { 1200 u32 ctrl, reg; 1201 1202 ctrl = ioread32(&bp->tod->ctrl); 1203 ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE; 1204 ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B); 1205 iowrite32(ctrl, &bp->tod->ctrl); 1206 1207 reg = ioread32(&bp->tod->utc_status); 1208 if (reg & TOD_STATUS_UTC_VALID) 1209 ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK); 1210 } 1211 1212 static const char * 1213 ptp_ocp_tod_proto_name(const int idx) 1214 { 1215 static const char * const proto_name[] = { 1216 "NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none", 1217 "UBX", "UBX_UTC", "UBX_LS", "UBX_none" 1218 }; 1219 return proto_name[idx]; 1220 } 1221 1222 static const char * 1223 ptp_ocp_tod_gnss_name(int idx) 1224 { 1225 static const char * const gnss_name[] = { 1226 "ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU", 1227 "Unknown" 1228 }; 1229 if (idx >= ARRAY_SIZE(gnss_name)) 1230 idx = ARRAY_SIZE(gnss_name) - 1; 1231 return gnss_name[idx]; 1232 } 1233 1234 struct ptp_ocp_nvmem_match_info { 1235 struct ptp_ocp *bp; 1236 const void * const tag; 1237 }; 1238 1239 static int 1240 ptp_ocp_nvmem_match(struct device *dev, const void *data) 1241 { 1242 const struct ptp_ocp_nvmem_match_info *info = data; 1243 1244 dev = dev->parent; 1245 if (!i2c_verify_client(dev) || info->tag != dev->platform_data) 1246 return 0; 1247 1248 while ((dev = dev->parent)) 1249 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME)) 1250 return info->bp == dev_get_drvdata(dev); 1251 return 0; 1252 } 1253 1254 static inline struct nvmem_device * 1255 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag) 1256 { 1257 struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag }; 1258 1259 return nvmem_device_find(&info, ptp_ocp_nvmem_match); 1260 } 1261 1262 static inline void 1263 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp) 1264 { 1265 if (!IS_ERR_OR_NULL(*nvmemp)) 1266 nvmem_device_put(*nvmemp); 1267 *nvmemp = NULL; 1268 } 1269 1270 static void 1271 ptp_ocp_read_eeprom(struct ptp_ocp *bp) 1272 { 1273 const struct ptp_ocp_eeprom_map *map; 1274 struct nvmem_device *nvmem; 1275 const void *tag; 1276 int ret; 1277 1278 if (!bp->i2c_ctrl) 1279 return; 1280 1281 tag = NULL; 1282 nvmem = NULL; 1283 1284 for (map = bp->eeprom_map; map->len; map++) { 1285 if (map->tag != tag) { 1286 tag = map->tag; 1287 ptp_ocp_nvmem_device_put(&nvmem); 1288 } 1289 if (!nvmem) { 1290 nvmem = ptp_ocp_nvmem_device_get(bp, tag); 1291 if (IS_ERR(nvmem)) { 1292 ret = PTR_ERR(nvmem); 1293 goto fail; 1294 } 1295 } 1296 ret = nvmem_device_read(nvmem, map->off, map->len, 1297 BP_MAP_ENTRY_ADDR(bp, map)); 1298 if (ret != map->len) 1299 goto fail; 1300 } 1301 1302 bp->has_eeprom_data = true; 1303 1304 out: 1305 ptp_ocp_nvmem_device_put(&nvmem); 1306 return; 1307 1308 fail: 1309 dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret); 1310 goto out; 1311 } 1312 1313 static int 1314 ptp_ocp_firstchild(struct device *dev, void *data) 1315 { 1316 return 1; 1317 } 1318 1319 static struct device * 1320 ptp_ocp_find_flash(struct ptp_ocp *bp) 1321 { 1322 struct device *dev, *last; 1323 1324 last = NULL; 1325 dev = &bp->spi_flash->dev; 1326 1327 while ((dev = device_find_child(dev, NULL, ptp_ocp_firstchild))) { 1328 if (!strcmp("mtd", dev_bus_name(dev))) 1329 break; 1330 put_device(last); 1331 last = dev; 1332 } 1333 put_device(last); 1334 1335 return dev; 1336 } 1337 1338 static int 1339 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw, 1340 const u8 **data, size_t *size) 1341 { 1342 struct ptp_ocp *bp = devlink_priv(devlink); 1343 const struct ptp_ocp_firmware_header *hdr; 1344 size_t offset, length; 1345 u16 crc; 1346 1347 hdr = (const struct ptp_ocp_firmware_header *)fw->data; 1348 if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) { 1349 devlink_flash_update_status_notify(devlink, 1350 "No firmware header found, flashing raw image", 1351 NULL, 0, 0); 1352 offset = 0; 1353 length = fw->size; 1354 goto out; 1355 } 1356 1357 if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor || 1358 be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) { 1359 devlink_flash_update_status_notify(devlink, 1360 "Firmware image compatibility check failed", 1361 NULL, 0, 0); 1362 return -EINVAL; 1363 } 1364 1365 offset = sizeof(*hdr); 1366 length = be32_to_cpu(hdr->image_size); 1367 if (length != (fw->size - offset)) { 1368 devlink_flash_update_status_notify(devlink, 1369 "Firmware image size check failed", 1370 NULL, 0, 0); 1371 return -EINVAL; 1372 } 1373 1374 crc = crc16(0xffff, &fw->data[offset], length); 1375 if (be16_to_cpu(hdr->crc) != crc) { 1376 devlink_flash_update_status_notify(devlink, 1377 "Firmware image CRC check failed", 1378 NULL, 0, 0); 1379 return -EINVAL; 1380 } 1381 1382 out: 1383 *data = &fw->data[offset]; 1384 *size = length; 1385 1386 return 0; 1387 } 1388 1389 static int 1390 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev, 1391 const struct firmware *fw) 1392 { 1393 struct mtd_info *mtd = dev_get_drvdata(dev); 1394 struct ptp_ocp *bp = devlink_priv(devlink); 1395 size_t off, len, size, resid, wrote; 1396 struct erase_info erase; 1397 size_t base, blksz; 1398 const u8 *data; 1399 int err; 1400 1401 err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size); 1402 if (err) 1403 goto out; 1404 1405 off = 0; 1406 base = bp->flash_start; 1407 blksz = 4096; 1408 resid = size; 1409 1410 while (resid) { 1411 devlink_flash_update_status_notify(devlink, "Flashing", 1412 NULL, off, size); 1413 1414 len = min_t(size_t, resid, blksz); 1415 erase.addr = base + off; 1416 erase.len = blksz; 1417 1418 err = mtd_erase(mtd, &erase); 1419 if (err) 1420 goto out; 1421 1422 err = mtd_write(mtd, base + off, len, &wrote, data + off); 1423 if (err) 1424 goto out; 1425 1426 off += blksz; 1427 resid -= len; 1428 } 1429 out: 1430 return err; 1431 } 1432 1433 static int 1434 ptp_ocp_devlink_flash_update(struct devlink *devlink, 1435 struct devlink_flash_update_params *params, 1436 struct netlink_ext_ack *extack) 1437 { 1438 struct ptp_ocp *bp = devlink_priv(devlink); 1439 struct device *dev; 1440 const char *msg; 1441 int err; 1442 1443 dev = ptp_ocp_find_flash(bp); 1444 if (!dev) { 1445 dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n"); 1446 return -ENODEV; 1447 } 1448 1449 devlink_flash_update_status_notify(devlink, "Preparing to flash", 1450 NULL, 0, 0); 1451 1452 err = ptp_ocp_devlink_flash(devlink, dev, params->fw); 1453 1454 msg = err ? "Flash error" : "Flash complete"; 1455 devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0); 1456 1457 put_device(dev); 1458 return err; 1459 } 1460 1461 static int 1462 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req, 1463 struct netlink_ext_ack *extack) 1464 { 1465 struct ptp_ocp *bp = devlink_priv(devlink); 1466 const char *fw_image; 1467 char buf[32]; 1468 int err; 1469 1470 err = devlink_info_driver_name_put(req, KBUILD_MODNAME); 1471 if (err) 1472 return err; 1473 1474 fw_image = bp->fw_loader ? "loader" : "fw"; 1475 sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version); 1476 err = devlink_info_version_running_put(req, fw_image, buf); 1477 if (err) 1478 return err; 1479 1480 if (!bp->has_eeprom_data) { 1481 ptp_ocp_read_eeprom(bp); 1482 if (!bp->has_eeprom_data) 1483 return 0; 1484 } 1485 1486 sprintf(buf, "%pM", bp->serial); 1487 err = devlink_info_serial_number_put(req, buf); 1488 if (err) 1489 return err; 1490 1491 err = devlink_info_version_fixed_put(req, 1492 DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, 1493 bp->board_id); 1494 if (err) 1495 return err; 1496 1497 return 0; 1498 } 1499 1500 static const struct devlink_ops ptp_ocp_devlink_ops = { 1501 .flash_update = ptp_ocp_devlink_flash_update, 1502 .info_get = ptp_ocp_devlink_info_get, 1503 }; 1504 1505 static void __iomem * 1506 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size) 1507 { 1508 struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp"); 1509 1510 return devm_ioremap_resource(&bp->pdev->dev, &res); 1511 } 1512 1513 static void __iomem * 1514 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r) 1515 { 1516 resource_size_t start; 1517 1518 start = pci_resource_start(bp->pdev, 0) + r->offset; 1519 return __ptp_ocp_get_mem(bp, start, r->size); 1520 } 1521 1522 static void 1523 ptp_ocp_set_irq_resource(struct resource *res, int irq) 1524 { 1525 struct resource r = DEFINE_RES_IRQ(irq); 1526 *res = r; 1527 } 1528 1529 static void 1530 ptp_ocp_set_mem_resource(struct resource *res, resource_size_t start, int size) 1531 { 1532 struct resource r = DEFINE_RES_MEM(start, size); 1533 *res = r; 1534 } 1535 1536 static int 1537 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r) 1538 { 1539 struct ptp_ocp_flash_info *info; 1540 struct pci_dev *pdev = bp->pdev; 1541 struct platform_device *p; 1542 struct resource res[2]; 1543 resource_size_t start; 1544 int id; 1545 1546 start = pci_resource_start(pdev, 0) + r->offset; 1547 ptp_ocp_set_mem_resource(&res[0], start, r->size); 1548 ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec)); 1549 1550 info = r->extra; 1551 id = pci_dev_id(pdev) << 1; 1552 id += info->pci_offset; 1553 1554 p = platform_device_register_resndata(&pdev->dev, info->name, id, 1555 res, 2, info->data, 1556 info->data_size); 1557 if (IS_ERR(p)) 1558 return PTR_ERR(p); 1559 1560 bp_assign_entry(bp, r, p); 1561 1562 return 0; 1563 } 1564 1565 static struct platform_device * 1566 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id) 1567 { 1568 struct ptp_ocp_i2c_info *info; 1569 struct resource res[2]; 1570 resource_size_t start; 1571 1572 info = r->extra; 1573 start = pci_resource_start(pdev, 0) + r->offset; 1574 ptp_ocp_set_mem_resource(&res[0], start, r->size); 1575 ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec)); 1576 1577 return platform_device_register_resndata(&pdev->dev, info->name, 1578 id, res, 2, 1579 info->data, info->data_size); 1580 } 1581 1582 static int 1583 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r) 1584 { 1585 struct pci_dev *pdev = bp->pdev; 1586 struct ptp_ocp_i2c_info *info; 1587 struct platform_device *p; 1588 struct clk_hw *clk; 1589 char buf[32]; 1590 int id; 1591 1592 info = r->extra; 1593 id = pci_dev_id(bp->pdev); 1594 1595 sprintf(buf, "AXI.%d", id); 1596 clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0, 1597 info->fixed_rate); 1598 if (IS_ERR(clk)) 1599 return PTR_ERR(clk); 1600 bp->i2c_clk = clk; 1601 1602 sprintf(buf, "%s.%d", info->name, id); 1603 devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf); 1604 p = ptp_ocp_i2c_bus(bp->pdev, r, id); 1605 if (IS_ERR(p)) 1606 return PTR_ERR(p); 1607 1608 bp_assign_entry(bp, r, p); 1609 1610 return 0; 1611 } 1612 1613 /* The expectation is that this is triggered only on error. */ 1614 static irqreturn_t 1615 ptp_ocp_signal_irq(int irq, void *priv) 1616 { 1617 struct ptp_ocp_ext_src *ext = priv; 1618 struct signal_reg __iomem *reg = ext->mem; 1619 struct ptp_ocp *bp = ext->bp; 1620 u32 enable, status; 1621 int gen; 1622 1623 gen = ext->info->index - 1; 1624 1625 enable = ioread32(®->enable); 1626 status = ioread32(®->status); 1627 1628 /* disable generator on error */ 1629 if (status || !enable) { 1630 iowrite32(0, ®->intr_mask); 1631 iowrite32(0, ®->enable); 1632 bp->signal[gen].running = false; 1633 } 1634 1635 iowrite32(0, ®->intr); /* ack interrupt */ 1636 1637 return IRQ_HANDLED; 1638 } 1639 1640 static int 1641 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s) 1642 { 1643 struct ptp_system_timestamp sts; 1644 struct timespec64 ts; 1645 ktime_t start_ns; 1646 int err; 1647 1648 if (!s->period) 1649 return 0; 1650 1651 if (!s->pulse) 1652 s->pulse = ktime_divns(s->period * s->duty, 100); 1653 1654 err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts); 1655 if (err) 1656 return err; 1657 1658 start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC; 1659 if (!s->start) { 1660 /* roundup() does not work on 32-bit systems */ 1661 s->start = DIV64_U64_ROUND_UP(start_ns, s->period); 1662 s->start = ktime_add(s->start, s->phase); 1663 } 1664 1665 if (s->duty < 1 || s->duty > 99) 1666 return -EINVAL; 1667 1668 if (s->pulse < 1 || s->pulse > s->period) 1669 return -EINVAL; 1670 1671 if (s->start < start_ns) 1672 return -EINVAL; 1673 1674 bp->signal[gen] = *s; 1675 1676 return 0; 1677 } 1678 1679 static int 1680 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen, 1681 struct ptp_perout_request *req) 1682 { 1683 struct ptp_ocp_signal s = { }; 1684 1685 s.polarity = bp->signal[gen].polarity; 1686 s.period = ktime_set(req->period.sec, req->period.nsec); 1687 if (!s.period) 1688 return 0; 1689 1690 if (req->flags & PTP_PEROUT_DUTY_CYCLE) { 1691 s.pulse = ktime_set(req->on.sec, req->on.nsec); 1692 s.duty = ktime_divns(s.pulse * 100, s.period); 1693 } 1694 1695 if (req->flags & PTP_PEROUT_PHASE) 1696 s.phase = ktime_set(req->phase.sec, req->phase.nsec); 1697 else 1698 s.start = ktime_set(req->start.sec, req->start.nsec); 1699 1700 return ptp_ocp_signal_set(bp, gen, &s); 1701 } 1702 1703 static int 1704 ptp_ocp_signal_enable(void *priv, u32 req, bool enable) 1705 { 1706 struct ptp_ocp_ext_src *ext = priv; 1707 struct signal_reg __iomem *reg = ext->mem; 1708 struct ptp_ocp *bp = ext->bp; 1709 struct timespec64 ts; 1710 int gen; 1711 1712 gen = ext->info->index - 1; 1713 1714 iowrite32(0, ®->intr_mask); 1715 iowrite32(0, ®->enable); 1716 bp->signal[gen].running = false; 1717 if (!enable) 1718 return 0; 1719 1720 ts = ktime_to_timespec64(bp->signal[gen].start); 1721 iowrite32(ts.tv_sec, ®->start_sec); 1722 iowrite32(ts.tv_nsec, ®->start_ns); 1723 1724 ts = ktime_to_timespec64(bp->signal[gen].period); 1725 iowrite32(ts.tv_sec, ®->period_sec); 1726 iowrite32(ts.tv_nsec, ®->period_ns); 1727 1728 ts = ktime_to_timespec64(bp->signal[gen].pulse); 1729 iowrite32(ts.tv_sec, ®->pulse_sec); 1730 iowrite32(ts.tv_nsec, ®->pulse_ns); 1731 1732 iowrite32(bp->signal[gen].polarity, ®->polarity); 1733 iowrite32(0, ®->repeat_count); 1734 1735 iowrite32(0, ®->intr); /* clear interrupt state */ 1736 iowrite32(1, ®->intr_mask); /* enable interrupt */ 1737 iowrite32(3, ®->enable); /* valid & enable */ 1738 1739 bp->signal[gen].running = true; 1740 1741 return 0; 1742 } 1743 1744 static irqreturn_t 1745 ptp_ocp_ts_irq(int irq, void *priv) 1746 { 1747 struct ptp_ocp_ext_src *ext = priv; 1748 struct ts_reg __iomem *reg = ext->mem; 1749 struct ptp_clock_event ev; 1750 u32 sec, nsec; 1751 1752 if (ext == ext->bp->pps) { 1753 if (ext->bp->pps_req_map & OCP_REQ_PPS) { 1754 ev.type = PTP_CLOCK_PPS; 1755 ptp_clock_event(ext->bp->ptp, &ev); 1756 } 1757 1758 if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0) 1759 goto out; 1760 } 1761 1762 /* XXX should fix API - this converts s/ns -> ts -> s/ns */ 1763 sec = ioread32(®->time_sec); 1764 nsec = ioread32(®->time_ns); 1765 1766 ev.type = PTP_CLOCK_EXTTS; 1767 ev.index = ext->info->index; 1768 ev.timestamp = sec * NSEC_PER_SEC + nsec; 1769 1770 ptp_clock_event(ext->bp->ptp, &ev); 1771 1772 out: 1773 iowrite32(1, ®->intr); /* write 1 to ack */ 1774 1775 return IRQ_HANDLED; 1776 } 1777 1778 static int 1779 ptp_ocp_ts_enable(void *priv, u32 req, bool enable) 1780 { 1781 struct ptp_ocp_ext_src *ext = priv; 1782 struct ts_reg __iomem *reg = ext->mem; 1783 struct ptp_ocp *bp = ext->bp; 1784 1785 if (ext == bp->pps) { 1786 u32 old_map = bp->pps_req_map; 1787 1788 if (enable) 1789 bp->pps_req_map |= req; 1790 else 1791 bp->pps_req_map &= ~req; 1792 1793 /* if no state change, just return */ 1794 if ((!!old_map ^ !!bp->pps_req_map) == 0) 1795 return 0; 1796 } 1797 1798 if (enable) { 1799 iowrite32(1, ®->enable); 1800 iowrite32(1, ®->intr_mask); 1801 iowrite32(1, ®->intr); 1802 } else { 1803 iowrite32(0, ®->intr_mask); 1804 iowrite32(0, ®->enable); 1805 } 1806 1807 return 0; 1808 } 1809 1810 static void 1811 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext) 1812 { 1813 ext->info->enable(ext, ~0, false); 1814 pci_free_irq(ext->bp->pdev, ext->irq_vec, ext); 1815 kfree(ext); 1816 } 1817 1818 static int 1819 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r) 1820 { 1821 struct pci_dev *pdev = bp->pdev; 1822 struct ptp_ocp_ext_src *ext; 1823 int err; 1824 1825 ext = kzalloc(sizeof(*ext), GFP_KERNEL); 1826 if (!ext) 1827 return -ENOMEM; 1828 1829 ext->mem = ptp_ocp_get_mem(bp, r); 1830 if (IS_ERR(ext->mem)) { 1831 err = PTR_ERR(ext->mem); 1832 goto out; 1833 } 1834 1835 ext->bp = bp; 1836 ext->info = r->extra; 1837 ext->irq_vec = r->irq_vec; 1838 1839 err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL, 1840 ext, "ocp%d.%s", bp->id, r->name); 1841 if (err) { 1842 dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec); 1843 goto out; 1844 } 1845 1846 bp_assign_entry(bp, r, ext); 1847 1848 return 0; 1849 1850 out: 1851 kfree(ext); 1852 return err; 1853 } 1854 1855 static int 1856 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r) 1857 { 1858 struct pci_dev *pdev = bp->pdev; 1859 struct uart_8250_port uart; 1860 1861 /* Setting UPF_IOREMAP and leaving port.membase unspecified lets 1862 * the serial port device claim and release the pci resource. 1863 */ 1864 memset(&uart, 0, sizeof(uart)); 1865 uart.port.dev = &pdev->dev; 1866 uart.port.iotype = UPIO_MEM; 1867 uart.port.regshift = 2; 1868 uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset; 1869 uart.port.irq = pci_irq_vector(pdev, r->irq_vec); 1870 uart.port.uartclk = 50000000; 1871 uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST; 1872 uart.port.type = PORT_16550A; 1873 1874 return serial8250_register_8250_port(&uart); 1875 } 1876 1877 static int 1878 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r) 1879 { 1880 int port; 1881 1882 port = ptp_ocp_serial_line(bp, r); 1883 if (port < 0) 1884 return port; 1885 1886 bp_assign_entry(bp, r, port); 1887 1888 return 0; 1889 } 1890 1891 static int 1892 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r) 1893 { 1894 void __iomem *mem; 1895 1896 mem = ptp_ocp_get_mem(bp, r); 1897 if (IS_ERR(mem)) 1898 return PTR_ERR(mem); 1899 1900 bp_assign_entry(bp, r, mem); 1901 1902 return 0; 1903 } 1904 1905 static void 1906 ptp_ocp_nmea_out_init(struct ptp_ocp *bp) 1907 { 1908 if (!bp->nmea_out) 1909 return; 1910 1911 iowrite32(0, &bp->nmea_out->ctrl); /* disable */ 1912 iowrite32(7, &bp->nmea_out->uart_baud); /* 115200 */ 1913 iowrite32(1, &bp->nmea_out->ctrl); /* enable */ 1914 } 1915 1916 static void 1917 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg) 1918 { 1919 u32 val; 1920 1921 iowrite32(0, ®->enable); /* disable */ 1922 1923 val = ioread32(®->polarity); 1924 s->polarity = val ? true : false; 1925 s->duty = 50; 1926 } 1927 1928 static void 1929 ptp_ocp_signal_init(struct ptp_ocp *bp) 1930 { 1931 int i; 1932 1933 for (i = 0; i < 4; i++) 1934 if (bp->signal_out[i]) 1935 _ptp_ocp_signal_init(&bp->signal[i], 1936 bp->signal_out[i]->mem); 1937 } 1938 1939 static void 1940 ptp_ocp_attr_group_del(struct ptp_ocp *bp) 1941 { 1942 sysfs_remove_groups(&bp->dev.kobj, bp->attr_group); 1943 kfree(bp->attr_group); 1944 } 1945 1946 static int 1947 ptp_ocp_attr_group_add(struct ptp_ocp *bp, 1948 const struct ocp_attr_group *attr_tbl) 1949 { 1950 int count, i; 1951 int err; 1952 1953 count = 0; 1954 for (i = 0; attr_tbl[i].cap; i++) 1955 if (attr_tbl[i].cap & bp->fw_cap) 1956 count++; 1957 1958 bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *), 1959 GFP_KERNEL); 1960 if (!bp->attr_group) 1961 return -ENOMEM; 1962 1963 count = 0; 1964 for (i = 0; attr_tbl[i].cap; i++) 1965 if (attr_tbl[i].cap & bp->fw_cap) 1966 bp->attr_group[count++] = attr_tbl[i].group; 1967 1968 err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group); 1969 if (err) 1970 bp->attr_group[0] = NULL; 1971 1972 return err; 1973 } 1974 1975 static void 1976 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable) 1977 { 1978 u32 ctrl; 1979 bool on; 1980 1981 ctrl = ioread32(reg); 1982 on = ctrl & bit; 1983 if (on ^ enable) { 1984 ctrl &= ~bit; 1985 ctrl |= enable ? bit : 0; 1986 iowrite32(ctrl, reg); 1987 } 1988 } 1989 1990 static void 1991 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable) 1992 { 1993 return ptp_ocp_enable_fpga(&bp->irig_out->ctrl, 1994 IRIG_M_CTRL_ENABLE, enable); 1995 } 1996 1997 static void 1998 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable) 1999 { 2000 return ptp_ocp_enable_fpga(&bp->irig_in->ctrl, 2001 IRIG_S_CTRL_ENABLE, enable); 2002 } 2003 2004 static void 2005 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable) 2006 { 2007 return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl, 2008 DCF_M_CTRL_ENABLE, enable); 2009 } 2010 2011 static void 2012 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable) 2013 { 2014 return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl, 2015 DCF_S_CTRL_ENABLE, enable); 2016 } 2017 2018 static void 2019 __handle_signal_outputs(struct ptp_ocp *bp, u32 val) 2020 { 2021 ptp_ocp_irig_out(bp, val & 0x00100010); 2022 ptp_ocp_dcf_out(bp, val & 0x00200020); 2023 } 2024 2025 static void 2026 __handle_signal_inputs(struct ptp_ocp *bp, u32 val) 2027 { 2028 ptp_ocp_irig_in(bp, val & 0x00100010); 2029 ptp_ocp_dcf_in(bp, val & 0x00200020); 2030 } 2031 2032 static u32 2033 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr) 2034 { 2035 u32 __iomem *gpio; 2036 u32 shift; 2037 2038 if (bp->sma[sma_nr - 1].fixed_fcn) 2039 return (sma_nr - 1) & 1; 2040 2041 if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN) 2042 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1; 2043 else 2044 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2; 2045 shift = sma_nr & 1 ? 0 : 16; 2046 2047 return (ioread32(gpio) >> shift) & 0xffff; 2048 } 2049 2050 static int 2051 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val) 2052 { 2053 u32 reg, mask, shift; 2054 unsigned long flags; 2055 u32 __iomem *gpio; 2056 2057 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2; 2058 shift = sma_nr & 1 ? 0 : 16; 2059 2060 mask = 0xffff << (16 - shift); 2061 2062 spin_lock_irqsave(&bp->lock, flags); 2063 2064 reg = ioread32(gpio); 2065 reg = (reg & mask) | (val << shift); 2066 2067 __handle_signal_outputs(bp, reg); 2068 2069 iowrite32(reg, gpio); 2070 2071 spin_unlock_irqrestore(&bp->lock, flags); 2072 2073 return 0; 2074 } 2075 2076 static int 2077 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val) 2078 { 2079 u32 reg, mask, shift; 2080 unsigned long flags; 2081 u32 __iomem *gpio; 2082 2083 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1; 2084 shift = sma_nr & 1 ? 0 : 16; 2085 2086 mask = 0xffff << (16 - shift); 2087 2088 spin_lock_irqsave(&bp->lock, flags); 2089 2090 reg = ioread32(gpio); 2091 reg = (reg & mask) | (val << shift); 2092 2093 __handle_signal_inputs(bp, reg); 2094 2095 iowrite32(reg, gpio); 2096 2097 spin_unlock_irqrestore(&bp->lock, flags); 2098 2099 return 0; 2100 } 2101 2102 static void 2103 ptp_ocp_sma_fb_init(struct ptp_ocp *bp) 2104 { 2105 u32 reg; 2106 int i; 2107 2108 /* defaults */ 2109 bp->sma[0].mode = SMA_MODE_IN; 2110 bp->sma[1].mode = SMA_MODE_IN; 2111 bp->sma[2].mode = SMA_MODE_OUT; 2112 bp->sma[3].mode = SMA_MODE_OUT; 2113 for (i = 0; i < 4; i++) 2114 bp->sma[i].default_fcn = i & 1; 2115 2116 /* If no SMA1 map, the pin functions and directions are fixed. */ 2117 if (!bp->sma_map1) { 2118 for (i = 0; i < 4; i++) { 2119 bp->sma[i].fixed_fcn = true; 2120 bp->sma[i].fixed_dir = true; 2121 } 2122 return; 2123 } 2124 2125 /* If SMA2 GPIO output map is all 1, it is not present. 2126 * This indicates the firmware has fixed direction SMA pins. 2127 */ 2128 reg = ioread32(&bp->sma_map2->gpio2); 2129 if (reg == 0xffffffff) { 2130 for (i = 0; i < 4; i++) 2131 bp->sma[i].fixed_dir = true; 2132 } else { 2133 reg = ioread32(&bp->sma_map1->gpio1); 2134 bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT; 2135 bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT; 2136 2137 reg = ioread32(&bp->sma_map1->gpio2); 2138 bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN; 2139 bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN; 2140 } 2141 } 2142 2143 static const struct ocp_sma_op ocp_fb_sma_op = { 2144 .tbl = { ptp_ocp_sma_in, ptp_ocp_sma_out }, 2145 .init = ptp_ocp_sma_fb_init, 2146 .get = ptp_ocp_sma_fb_get, 2147 .set_inputs = ptp_ocp_sma_fb_set_inputs, 2148 .set_output = ptp_ocp_sma_fb_set_output, 2149 }; 2150 2151 static int 2152 ptp_ocp_fb_set_pins(struct ptp_ocp *bp) 2153 { 2154 struct ptp_pin_desc *config; 2155 int i; 2156 2157 config = kzalloc(sizeof(*config) * 4, GFP_KERNEL); 2158 if (!config) 2159 return -ENOMEM; 2160 2161 for (i = 0; i < 4; i++) { 2162 sprintf(config[i].name, "sma%d", i + 1); 2163 config[i].index = i; 2164 } 2165 2166 bp->ptp_info.n_pins = 4; 2167 bp->ptp_info.pin_config = config; 2168 2169 return 0; 2170 } 2171 2172 static void 2173 ptp_ocp_fb_set_version(struct ptp_ocp *bp) 2174 { 2175 u64 cap = OCP_CAP_BASIC; 2176 u32 version; 2177 2178 version = ioread32(&bp->image->version); 2179 2180 /* if lower 16 bits are empty, this is the fw loader. */ 2181 if ((version & 0xffff) == 0) { 2182 version = version >> 16; 2183 bp->fw_loader = true; 2184 } 2185 2186 bp->fw_tag = version >> 15; 2187 bp->fw_version = version & 0x7fff; 2188 2189 if (bp->fw_tag) { 2190 /* FPGA firmware */ 2191 if (version >= 5) 2192 cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ; 2193 } else { 2194 /* SOM firmware */ 2195 if (version >= 19) 2196 cap |= OCP_CAP_SIGNAL; 2197 if (version >= 20) 2198 cap |= OCP_CAP_FREQ; 2199 } 2200 2201 bp->fw_cap = cap; 2202 } 2203 2204 /* FB specific board initializers; last "resource" registered. */ 2205 static int 2206 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r) 2207 { 2208 int err; 2209 2210 bp->flash_start = 1024 * 4096; 2211 bp->eeprom_map = fb_eeprom_map; 2212 bp->fw_version = ioread32(&bp->image->version); 2213 bp->sma_op = &ocp_fb_sma_op; 2214 2215 ptp_ocp_fb_set_version(bp); 2216 2217 ptp_ocp_tod_init(bp); 2218 ptp_ocp_nmea_out_init(bp); 2219 ptp_ocp_sma_init(bp); 2220 ptp_ocp_signal_init(bp); 2221 2222 err = ptp_ocp_attr_group_add(bp, fb_timecard_groups); 2223 if (err) 2224 return err; 2225 2226 err = ptp_ocp_fb_set_pins(bp); 2227 if (err) 2228 return err; 2229 2230 return ptp_ocp_init_clock(bp); 2231 } 2232 2233 static bool 2234 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r) 2235 { 2236 bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs; 2237 2238 if (!allow) 2239 dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n", 2240 r->irq_vec, r->name); 2241 return allow; 2242 } 2243 2244 static int 2245 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data) 2246 { 2247 struct ocp_resource *r, *table; 2248 int err = 0; 2249 2250 table = (struct ocp_resource *)driver_data; 2251 for (r = table; r->setup; r++) { 2252 if (!ptp_ocp_allow_irq(bp, r)) 2253 continue; 2254 err = r->setup(bp, r); 2255 if (err) { 2256 dev_err(&bp->pdev->dev, 2257 "Could not register %s: err %d\n", 2258 r->name, err); 2259 break; 2260 } 2261 } 2262 return err; 2263 } 2264 2265 static ssize_t 2266 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf, 2267 int def_val) 2268 { 2269 const char *name; 2270 ssize_t count; 2271 2272 count = sysfs_emit(buf, "OUT: "); 2273 name = ptp_ocp_select_name_from_val(tbl, val); 2274 if (!name) 2275 name = ptp_ocp_select_name_from_val(tbl, def_val); 2276 count += sysfs_emit_at(buf, count, "%s\n", name); 2277 return count; 2278 } 2279 2280 static ssize_t 2281 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf, 2282 int def_val) 2283 { 2284 const char *name; 2285 ssize_t count; 2286 int i; 2287 2288 count = sysfs_emit(buf, "IN: "); 2289 for (i = 0; tbl[i].name; i++) { 2290 if (val & tbl[i].value) { 2291 name = tbl[i].name; 2292 count += sysfs_emit_at(buf, count, "%s ", name); 2293 } 2294 } 2295 if (!val && def_val >= 0) { 2296 name = ptp_ocp_select_name_from_val(tbl, def_val); 2297 count += sysfs_emit_at(buf, count, "%s ", name); 2298 } 2299 if (count) 2300 count--; 2301 count += sysfs_emit_at(buf, count, "\n"); 2302 return count; 2303 } 2304 2305 static int 2306 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf, 2307 enum ptp_ocp_sma_mode *mode) 2308 { 2309 int idx, count, dir; 2310 char **argv; 2311 int ret; 2312 2313 argv = argv_split(GFP_KERNEL, buf, &count); 2314 if (!argv) 2315 return -ENOMEM; 2316 2317 ret = -EINVAL; 2318 if (!count) 2319 goto out; 2320 2321 idx = 0; 2322 dir = *mode == SMA_MODE_IN ? 0 : 1; 2323 if (!strcasecmp("IN:", argv[0])) { 2324 dir = 0; 2325 idx++; 2326 } 2327 if (!strcasecmp("OUT:", argv[0])) { 2328 dir = 1; 2329 idx++; 2330 } 2331 *mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT; 2332 2333 ret = 0; 2334 for (; idx < count; idx++) 2335 ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]); 2336 if (ret < 0) 2337 ret = -EINVAL; 2338 2339 out: 2340 argv_free(argv); 2341 return ret; 2342 } 2343 2344 static ssize_t 2345 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf, 2346 int default_in_val, int default_out_val) 2347 { 2348 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1]; 2349 const struct ocp_selector * const *tbl; 2350 u32 val; 2351 2352 tbl = bp->sma_op->tbl; 2353 val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK; 2354 2355 if (sma->mode == SMA_MODE_IN) { 2356 if (sma->disabled) 2357 val = SMA_DISABLE; 2358 return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val); 2359 } 2360 2361 return ptp_ocp_show_output(tbl[1], val, buf, default_out_val); 2362 } 2363 2364 static ssize_t 2365 sma1_show(struct device *dev, struct device_attribute *attr, char *buf) 2366 { 2367 struct ptp_ocp *bp = dev_get_drvdata(dev); 2368 2369 return ptp_ocp_sma_show(bp, 1, buf, 0, 1); 2370 } 2371 2372 static ssize_t 2373 sma2_show(struct device *dev, struct device_attribute *attr, char *buf) 2374 { 2375 struct ptp_ocp *bp = dev_get_drvdata(dev); 2376 2377 return ptp_ocp_sma_show(bp, 2, buf, -1, 1); 2378 } 2379 2380 static ssize_t 2381 sma3_show(struct device *dev, struct device_attribute *attr, char *buf) 2382 { 2383 struct ptp_ocp *bp = dev_get_drvdata(dev); 2384 2385 return ptp_ocp_sma_show(bp, 3, buf, -1, 0); 2386 } 2387 2388 static ssize_t 2389 sma4_show(struct device *dev, struct device_attribute *attr, char *buf) 2390 { 2391 struct ptp_ocp *bp = dev_get_drvdata(dev); 2392 2393 return ptp_ocp_sma_show(bp, 4, buf, -1, 1); 2394 } 2395 2396 static int 2397 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr) 2398 { 2399 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1]; 2400 enum ptp_ocp_sma_mode mode; 2401 int val; 2402 2403 mode = sma->mode; 2404 val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode); 2405 if (val < 0) 2406 return val; 2407 2408 if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE)) 2409 return -EOPNOTSUPP; 2410 2411 if (sma->fixed_fcn) { 2412 if (val != sma->default_fcn) 2413 return -EOPNOTSUPP; 2414 return 0; 2415 } 2416 2417 sma->disabled = !!(val & SMA_DISABLE); 2418 2419 if (mode != sma->mode) { 2420 if (mode == SMA_MODE_IN) 2421 ptp_ocp_sma_set_output(bp, sma_nr, 0); 2422 else 2423 ptp_ocp_sma_set_inputs(bp, sma_nr, 0); 2424 sma->mode = mode; 2425 } 2426 2427 if (!sma->fixed_dir) 2428 val |= SMA_ENABLE; /* add enable bit */ 2429 2430 if (sma->disabled) 2431 val = 0; 2432 2433 if (mode == SMA_MODE_IN) 2434 val = ptp_ocp_sma_set_inputs(bp, sma_nr, val); 2435 else 2436 val = ptp_ocp_sma_set_output(bp, sma_nr, val); 2437 2438 return val; 2439 } 2440 2441 static ssize_t 2442 sma1_store(struct device *dev, struct device_attribute *attr, 2443 const char *buf, size_t count) 2444 { 2445 struct ptp_ocp *bp = dev_get_drvdata(dev); 2446 int err; 2447 2448 err = ptp_ocp_sma_store(bp, buf, 1); 2449 return err ? err : count; 2450 } 2451 2452 static ssize_t 2453 sma2_store(struct device *dev, struct device_attribute *attr, 2454 const char *buf, size_t count) 2455 { 2456 struct ptp_ocp *bp = dev_get_drvdata(dev); 2457 int err; 2458 2459 err = ptp_ocp_sma_store(bp, buf, 2); 2460 return err ? err : count; 2461 } 2462 2463 static ssize_t 2464 sma3_store(struct device *dev, struct device_attribute *attr, 2465 const char *buf, size_t count) 2466 { 2467 struct ptp_ocp *bp = dev_get_drvdata(dev); 2468 int err; 2469 2470 err = ptp_ocp_sma_store(bp, buf, 3); 2471 return err ? err : count; 2472 } 2473 2474 static ssize_t 2475 sma4_store(struct device *dev, struct device_attribute *attr, 2476 const char *buf, size_t count) 2477 { 2478 struct ptp_ocp *bp = dev_get_drvdata(dev); 2479 int err; 2480 2481 err = ptp_ocp_sma_store(bp, buf, 4); 2482 return err ? err : count; 2483 } 2484 static DEVICE_ATTR_RW(sma1); 2485 static DEVICE_ATTR_RW(sma2); 2486 static DEVICE_ATTR_RW(sma3); 2487 static DEVICE_ATTR_RW(sma4); 2488 2489 static ssize_t 2490 available_sma_inputs_show(struct device *dev, 2491 struct device_attribute *attr, char *buf) 2492 { 2493 struct ptp_ocp *bp = dev_get_drvdata(dev); 2494 2495 return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf); 2496 } 2497 static DEVICE_ATTR_RO(available_sma_inputs); 2498 2499 static ssize_t 2500 available_sma_outputs_show(struct device *dev, 2501 struct device_attribute *attr, char *buf) 2502 { 2503 struct ptp_ocp *bp = dev_get_drvdata(dev); 2504 2505 return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf); 2506 } 2507 static DEVICE_ATTR_RO(available_sma_outputs); 2508 2509 #define EXT_ATTR_RO(_group, _name, _val) \ 2510 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \ 2511 { __ATTR_RO(_name), (void *)_val } 2512 #define EXT_ATTR_RW(_group, _name, _val) \ 2513 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \ 2514 { __ATTR_RW(_name), (void *)_val } 2515 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2516 2517 /* period [duty [phase [polarity]]] */ 2518 static ssize_t 2519 signal_store(struct device *dev, struct device_attribute *attr, 2520 const char *buf, size_t count) 2521 { 2522 struct dev_ext_attribute *ea = to_ext_attr(attr); 2523 struct ptp_ocp *bp = dev_get_drvdata(dev); 2524 struct ptp_ocp_signal s = { }; 2525 int gen = (uintptr_t)ea->var; 2526 int argc, err; 2527 char **argv; 2528 2529 argv = argv_split(GFP_KERNEL, buf, &argc); 2530 if (!argv) 2531 return -ENOMEM; 2532 2533 err = -EINVAL; 2534 s.duty = bp->signal[gen].duty; 2535 s.phase = bp->signal[gen].phase; 2536 s.period = bp->signal[gen].period; 2537 s.polarity = bp->signal[gen].polarity; 2538 2539 switch (argc) { 2540 case 4: 2541 argc--; 2542 err = kstrtobool(argv[argc], &s.polarity); 2543 if (err) 2544 goto out; 2545 fallthrough; 2546 case 3: 2547 argc--; 2548 err = kstrtou64(argv[argc], 0, &s.phase); 2549 if (err) 2550 goto out; 2551 fallthrough; 2552 case 2: 2553 argc--; 2554 err = kstrtoint(argv[argc], 0, &s.duty); 2555 if (err) 2556 goto out; 2557 fallthrough; 2558 case 1: 2559 argc--; 2560 err = kstrtou64(argv[argc], 0, &s.period); 2561 if (err) 2562 goto out; 2563 break; 2564 default: 2565 goto out; 2566 } 2567 2568 err = ptp_ocp_signal_set(bp, gen, &s); 2569 if (err) 2570 goto out; 2571 2572 err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0); 2573 2574 out: 2575 argv_free(argv); 2576 return err ? err : count; 2577 } 2578 2579 static ssize_t 2580 signal_show(struct device *dev, struct device_attribute *attr, char *buf) 2581 { 2582 struct dev_ext_attribute *ea = to_ext_attr(attr); 2583 struct ptp_ocp *bp = dev_get_drvdata(dev); 2584 struct ptp_ocp_signal *signal; 2585 struct timespec64 ts; 2586 ssize_t count; 2587 int i; 2588 2589 i = (uintptr_t)ea->var; 2590 signal = &bp->signal[i]; 2591 2592 count = sysfs_emit(buf, "%llu %d %llu %d", signal->period, 2593 signal->duty, signal->phase, signal->polarity); 2594 2595 ts = ktime_to_timespec64(signal->start); 2596 count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts); 2597 2598 return count; 2599 } 2600 static EXT_ATTR_RW(signal, signal, 0); 2601 static EXT_ATTR_RW(signal, signal, 1); 2602 static EXT_ATTR_RW(signal, signal, 2); 2603 static EXT_ATTR_RW(signal, signal, 3); 2604 2605 static ssize_t 2606 duty_show(struct device *dev, struct device_attribute *attr, char *buf) 2607 { 2608 struct dev_ext_attribute *ea = to_ext_attr(attr); 2609 struct ptp_ocp *bp = dev_get_drvdata(dev); 2610 int i = (uintptr_t)ea->var; 2611 2612 return sysfs_emit(buf, "%d\n", bp->signal[i].duty); 2613 } 2614 static EXT_ATTR_RO(signal, duty, 0); 2615 static EXT_ATTR_RO(signal, duty, 1); 2616 static EXT_ATTR_RO(signal, duty, 2); 2617 static EXT_ATTR_RO(signal, duty, 3); 2618 2619 static ssize_t 2620 period_show(struct device *dev, struct device_attribute *attr, char *buf) 2621 { 2622 struct dev_ext_attribute *ea = to_ext_attr(attr); 2623 struct ptp_ocp *bp = dev_get_drvdata(dev); 2624 int i = (uintptr_t)ea->var; 2625 2626 return sysfs_emit(buf, "%llu\n", bp->signal[i].period); 2627 } 2628 static EXT_ATTR_RO(signal, period, 0); 2629 static EXT_ATTR_RO(signal, period, 1); 2630 static EXT_ATTR_RO(signal, period, 2); 2631 static EXT_ATTR_RO(signal, period, 3); 2632 2633 static ssize_t 2634 phase_show(struct device *dev, struct device_attribute *attr, char *buf) 2635 { 2636 struct dev_ext_attribute *ea = to_ext_attr(attr); 2637 struct ptp_ocp *bp = dev_get_drvdata(dev); 2638 int i = (uintptr_t)ea->var; 2639 2640 return sysfs_emit(buf, "%llu\n", bp->signal[i].phase); 2641 } 2642 static EXT_ATTR_RO(signal, phase, 0); 2643 static EXT_ATTR_RO(signal, phase, 1); 2644 static EXT_ATTR_RO(signal, phase, 2); 2645 static EXT_ATTR_RO(signal, phase, 3); 2646 2647 static ssize_t 2648 polarity_show(struct device *dev, struct device_attribute *attr, 2649 char *buf) 2650 { 2651 struct dev_ext_attribute *ea = to_ext_attr(attr); 2652 struct ptp_ocp *bp = dev_get_drvdata(dev); 2653 int i = (uintptr_t)ea->var; 2654 2655 return sysfs_emit(buf, "%d\n", bp->signal[i].polarity); 2656 } 2657 static EXT_ATTR_RO(signal, polarity, 0); 2658 static EXT_ATTR_RO(signal, polarity, 1); 2659 static EXT_ATTR_RO(signal, polarity, 2); 2660 static EXT_ATTR_RO(signal, polarity, 3); 2661 2662 static ssize_t 2663 running_show(struct device *dev, struct device_attribute *attr, char *buf) 2664 { 2665 struct dev_ext_attribute *ea = to_ext_attr(attr); 2666 struct ptp_ocp *bp = dev_get_drvdata(dev); 2667 int i = (uintptr_t)ea->var; 2668 2669 return sysfs_emit(buf, "%d\n", bp->signal[i].running); 2670 } 2671 static EXT_ATTR_RO(signal, running, 0); 2672 static EXT_ATTR_RO(signal, running, 1); 2673 static EXT_ATTR_RO(signal, running, 2); 2674 static EXT_ATTR_RO(signal, running, 3); 2675 2676 static ssize_t 2677 start_show(struct device *dev, struct device_attribute *attr, char *buf) 2678 { 2679 struct dev_ext_attribute *ea = to_ext_attr(attr); 2680 struct ptp_ocp *bp = dev_get_drvdata(dev); 2681 int i = (uintptr_t)ea->var; 2682 struct timespec64 ts; 2683 2684 ts = ktime_to_timespec64(bp->signal[i].start); 2685 return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec); 2686 } 2687 static EXT_ATTR_RO(signal, start, 0); 2688 static EXT_ATTR_RO(signal, start, 1); 2689 static EXT_ATTR_RO(signal, start, 2); 2690 static EXT_ATTR_RO(signal, start, 3); 2691 2692 static ssize_t 2693 seconds_store(struct device *dev, struct device_attribute *attr, 2694 const char *buf, size_t count) 2695 { 2696 struct dev_ext_attribute *ea = to_ext_attr(attr); 2697 struct ptp_ocp *bp = dev_get_drvdata(dev); 2698 int idx = (uintptr_t)ea->var; 2699 u32 val; 2700 int err; 2701 2702 err = kstrtou32(buf, 0, &val); 2703 if (err) 2704 return err; 2705 if (val > 0xff) 2706 return -EINVAL; 2707 2708 if (val) 2709 val = (val << 8) | 0x1; 2710 2711 iowrite32(val, &bp->freq_in[idx]->ctrl); 2712 2713 return count; 2714 } 2715 2716 static ssize_t 2717 seconds_show(struct device *dev, struct device_attribute *attr, char *buf) 2718 { 2719 struct dev_ext_attribute *ea = to_ext_attr(attr); 2720 struct ptp_ocp *bp = dev_get_drvdata(dev); 2721 int idx = (uintptr_t)ea->var; 2722 u32 val; 2723 2724 val = ioread32(&bp->freq_in[idx]->ctrl); 2725 if (val & 1) 2726 val = (val >> 8) & 0xff; 2727 else 2728 val = 0; 2729 2730 return sysfs_emit(buf, "%u\n", val); 2731 } 2732 static EXT_ATTR_RW(freq, seconds, 0); 2733 static EXT_ATTR_RW(freq, seconds, 1); 2734 static EXT_ATTR_RW(freq, seconds, 2); 2735 static EXT_ATTR_RW(freq, seconds, 3); 2736 2737 static ssize_t 2738 frequency_show(struct device *dev, struct device_attribute *attr, char *buf) 2739 { 2740 struct dev_ext_attribute *ea = to_ext_attr(attr); 2741 struct ptp_ocp *bp = dev_get_drvdata(dev); 2742 int idx = (uintptr_t)ea->var; 2743 u32 val; 2744 2745 val = ioread32(&bp->freq_in[idx]->status); 2746 if (val & FREQ_STATUS_ERROR) 2747 return sysfs_emit(buf, "error\n"); 2748 if (val & FREQ_STATUS_OVERRUN) 2749 return sysfs_emit(buf, "overrun\n"); 2750 if (val & FREQ_STATUS_VALID) 2751 return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK); 2752 return 0; 2753 } 2754 static EXT_ATTR_RO(freq, frequency, 0); 2755 static EXT_ATTR_RO(freq, frequency, 1); 2756 static EXT_ATTR_RO(freq, frequency, 2); 2757 static EXT_ATTR_RO(freq, frequency, 3); 2758 2759 static ssize_t 2760 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf) 2761 { 2762 struct ptp_ocp *bp = dev_get_drvdata(dev); 2763 2764 if (!bp->has_eeprom_data) 2765 ptp_ocp_read_eeprom(bp); 2766 2767 return sysfs_emit(buf, "%pM\n", bp->serial); 2768 } 2769 static DEVICE_ATTR_RO(serialnum); 2770 2771 static ssize_t 2772 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf) 2773 { 2774 struct ptp_ocp *bp = dev_get_drvdata(dev); 2775 ssize_t ret; 2776 2777 if (bp->gnss_lost) 2778 ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost); 2779 else 2780 ret = sysfs_emit(buf, "SYNC\n"); 2781 2782 return ret; 2783 } 2784 static DEVICE_ATTR_RO(gnss_sync); 2785 2786 static ssize_t 2787 utc_tai_offset_show(struct device *dev, 2788 struct device_attribute *attr, char *buf) 2789 { 2790 struct ptp_ocp *bp = dev_get_drvdata(dev); 2791 2792 return sysfs_emit(buf, "%d\n", bp->utc_tai_offset); 2793 } 2794 2795 static ssize_t 2796 utc_tai_offset_store(struct device *dev, 2797 struct device_attribute *attr, 2798 const char *buf, size_t count) 2799 { 2800 struct ptp_ocp *bp = dev_get_drvdata(dev); 2801 int err; 2802 u32 val; 2803 2804 err = kstrtou32(buf, 0, &val); 2805 if (err) 2806 return err; 2807 2808 ptp_ocp_utc_distribute(bp, val); 2809 2810 return count; 2811 } 2812 static DEVICE_ATTR_RW(utc_tai_offset); 2813 2814 static ssize_t 2815 ts_window_adjust_show(struct device *dev, 2816 struct device_attribute *attr, char *buf) 2817 { 2818 struct ptp_ocp *bp = dev_get_drvdata(dev); 2819 2820 return sysfs_emit(buf, "%d\n", bp->ts_window_adjust); 2821 } 2822 2823 static ssize_t 2824 ts_window_adjust_store(struct device *dev, 2825 struct device_attribute *attr, 2826 const char *buf, size_t count) 2827 { 2828 struct ptp_ocp *bp = dev_get_drvdata(dev); 2829 int err; 2830 u32 val; 2831 2832 err = kstrtou32(buf, 0, &val); 2833 if (err) 2834 return err; 2835 2836 bp->ts_window_adjust = val; 2837 2838 return count; 2839 } 2840 static DEVICE_ATTR_RW(ts_window_adjust); 2841 2842 static ssize_t 2843 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf) 2844 { 2845 struct ptp_ocp *bp = dev_get_drvdata(dev); 2846 u32 val; 2847 2848 val = ioread32(&bp->irig_out->ctrl); 2849 val = (val >> 16) & 0x07; 2850 return sysfs_emit(buf, "%d\n", val); 2851 } 2852 2853 static ssize_t 2854 irig_b_mode_store(struct device *dev, 2855 struct device_attribute *attr, 2856 const char *buf, size_t count) 2857 { 2858 struct ptp_ocp *bp = dev_get_drvdata(dev); 2859 unsigned long flags; 2860 int err; 2861 u32 reg; 2862 u8 val; 2863 2864 err = kstrtou8(buf, 0, &val); 2865 if (err) 2866 return err; 2867 if (val > 7) 2868 return -EINVAL; 2869 2870 reg = ((val & 0x7) << 16); 2871 2872 spin_lock_irqsave(&bp->lock, flags); 2873 iowrite32(0, &bp->irig_out->ctrl); /* disable */ 2874 iowrite32(reg, &bp->irig_out->ctrl); /* change mode */ 2875 iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl); 2876 spin_unlock_irqrestore(&bp->lock, flags); 2877 2878 return count; 2879 } 2880 static DEVICE_ATTR_RW(irig_b_mode); 2881 2882 static ssize_t 2883 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf) 2884 { 2885 struct ptp_ocp *bp = dev_get_drvdata(dev); 2886 const char *p; 2887 u32 select; 2888 2889 select = ioread32(&bp->reg->select); 2890 p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16); 2891 2892 return sysfs_emit(buf, "%s\n", p); 2893 } 2894 2895 static ssize_t 2896 clock_source_store(struct device *dev, struct device_attribute *attr, 2897 const char *buf, size_t count) 2898 { 2899 struct ptp_ocp *bp = dev_get_drvdata(dev); 2900 unsigned long flags; 2901 int val; 2902 2903 val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf); 2904 if (val < 0) 2905 return val; 2906 2907 spin_lock_irqsave(&bp->lock, flags); 2908 iowrite32(val, &bp->reg->select); 2909 spin_unlock_irqrestore(&bp->lock, flags); 2910 2911 return count; 2912 } 2913 static DEVICE_ATTR_RW(clock_source); 2914 2915 static ssize_t 2916 available_clock_sources_show(struct device *dev, 2917 struct device_attribute *attr, char *buf) 2918 { 2919 return ptp_ocp_select_table_show(ptp_ocp_clock, buf); 2920 } 2921 static DEVICE_ATTR_RO(available_clock_sources); 2922 2923 static ssize_t 2924 clock_status_drift_show(struct device *dev, 2925 struct device_attribute *attr, char *buf) 2926 { 2927 struct ptp_ocp *bp = dev_get_drvdata(dev); 2928 u32 val; 2929 int res; 2930 2931 val = ioread32(&bp->reg->status_drift); 2932 res = (val & ~INT_MAX) ? -1 : 1; 2933 res *= (val & INT_MAX); 2934 return sysfs_emit(buf, "%d\n", res); 2935 } 2936 static DEVICE_ATTR_RO(clock_status_drift); 2937 2938 static ssize_t 2939 clock_status_offset_show(struct device *dev, 2940 struct device_attribute *attr, char *buf) 2941 { 2942 struct ptp_ocp *bp = dev_get_drvdata(dev); 2943 u32 val; 2944 int res; 2945 2946 val = ioread32(&bp->reg->status_offset); 2947 res = (val & ~INT_MAX) ? -1 : 1; 2948 res *= (val & INT_MAX); 2949 return sysfs_emit(buf, "%d\n", res); 2950 } 2951 static DEVICE_ATTR_RO(clock_status_offset); 2952 2953 static ssize_t 2954 tod_correction_show(struct device *dev, 2955 struct device_attribute *attr, char *buf) 2956 { 2957 struct ptp_ocp *bp = dev_get_drvdata(dev); 2958 u32 val; 2959 int res; 2960 2961 val = ioread32(&bp->tod->adj_sec); 2962 res = (val & ~INT_MAX) ? -1 : 1; 2963 res *= (val & INT_MAX); 2964 return sysfs_emit(buf, "%d\n", res); 2965 } 2966 2967 static ssize_t 2968 tod_correction_store(struct device *dev, struct device_attribute *attr, 2969 const char *buf, size_t count) 2970 { 2971 struct ptp_ocp *bp = dev_get_drvdata(dev); 2972 unsigned long flags; 2973 int err, res; 2974 u32 val = 0; 2975 2976 err = kstrtos32(buf, 0, &res); 2977 if (err) 2978 return err; 2979 if (res < 0) { 2980 res *= -1; 2981 val |= BIT(31); 2982 } 2983 val |= res; 2984 2985 spin_lock_irqsave(&bp->lock, flags); 2986 iowrite32(val, &bp->tod->adj_sec); 2987 spin_unlock_irqrestore(&bp->lock, flags); 2988 2989 return count; 2990 } 2991 static DEVICE_ATTR_RW(tod_correction); 2992 2993 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr) \ 2994 static struct attribute *fb_timecard_signal##_nr##_attrs[] = { \ 2995 &dev_attr_signal##_nr##_signal.attr.attr, \ 2996 &dev_attr_signal##_nr##_duty.attr.attr, \ 2997 &dev_attr_signal##_nr##_phase.attr.attr, \ 2998 &dev_attr_signal##_nr##_period.attr.attr, \ 2999 &dev_attr_signal##_nr##_polarity.attr.attr, \ 3000 &dev_attr_signal##_nr##_running.attr.attr, \ 3001 &dev_attr_signal##_nr##_start.attr.attr, \ 3002 NULL, \ 3003 } 3004 3005 #define DEVICE_SIGNAL_GROUP(_name, _nr) \ 3006 _DEVICE_SIGNAL_GROUP_ATTRS(_nr); \ 3007 static const struct attribute_group \ 3008 fb_timecard_signal##_nr##_group = { \ 3009 .name = #_name, \ 3010 .attrs = fb_timecard_signal##_nr##_attrs, \ 3011 } 3012 3013 DEVICE_SIGNAL_GROUP(gen1, 0); 3014 DEVICE_SIGNAL_GROUP(gen2, 1); 3015 DEVICE_SIGNAL_GROUP(gen3, 2); 3016 DEVICE_SIGNAL_GROUP(gen4, 3); 3017 3018 #define _DEVICE_FREQ_GROUP_ATTRS(_nr) \ 3019 static struct attribute *fb_timecard_freq##_nr##_attrs[] = { \ 3020 &dev_attr_freq##_nr##_seconds.attr.attr, \ 3021 &dev_attr_freq##_nr##_frequency.attr.attr, \ 3022 NULL, \ 3023 } 3024 3025 #define DEVICE_FREQ_GROUP(_name, _nr) \ 3026 _DEVICE_FREQ_GROUP_ATTRS(_nr); \ 3027 static const struct attribute_group \ 3028 fb_timecard_freq##_nr##_group = { \ 3029 .name = #_name, \ 3030 .attrs = fb_timecard_freq##_nr##_attrs, \ 3031 } 3032 3033 DEVICE_FREQ_GROUP(freq1, 0); 3034 DEVICE_FREQ_GROUP(freq2, 1); 3035 DEVICE_FREQ_GROUP(freq3, 2); 3036 DEVICE_FREQ_GROUP(freq4, 3); 3037 3038 static struct attribute *fb_timecard_attrs[] = { 3039 &dev_attr_serialnum.attr, 3040 &dev_attr_gnss_sync.attr, 3041 &dev_attr_clock_source.attr, 3042 &dev_attr_available_clock_sources.attr, 3043 &dev_attr_sma1.attr, 3044 &dev_attr_sma2.attr, 3045 &dev_attr_sma3.attr, 3046 &dev_attr_sma4.attr, 3047 &dev_attr_available_sma_inputs.attr, 3048 &dev_attr_available_sma_outputs.attr, 3049 &dev_attr_clock_status_drift.attr, 3050 &dev_attr_clock_status_offset.attr, 3051 &dev_attr_irig_b_mode.attr, 3052 &dev_attr_utc_tai_offset.attr, 3053 &dev_attr_ts_window_adjust.attr, 3054 &dev_attr_tod_correction.attr, 3055 NULL, 3056 }; 3057 static const struct attribute_group fb_timecard_group = { 3058 .attrs = fb_timecard_attrs, 3059 }; 3060 static const struct ocp_attr_group fb_timecard_groups[] = { 3061 { .cap = OCP_CAP_BASIC, .group = &fb_timecard_group }, 3062 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group }, 3063 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group }, 3064 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal2_group }, 3065 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal3_group }, 3066 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group }, 3067 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group }, 3068 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq2_group }, 3069 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq3_group }, 3070 { }, 3071 }; 3072 3073 static void 3074 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit, 3075 const char *def) 3076 { 3077 int i; 3078 3079 for (i = 0; i < 4; i++) { 3080 if (bp->sma[i].mode != SMA_MODE_IN) 3081 continue; 3082 if (map[i][0] & (1 << bit)) { 3083 sprintf(buf, "sma%d", i + 1); 3084 return; 3085 } 3086 } 3087 if (!def) 3088 def = "----"; 3089 strcpy(buf, def); 3090 } 3091 3092 static void 3093 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit) 3094 { 3095 char *ans = buf; 3096 int i; 3097 3098 strcpy(ans, "----"); 3099 for (i = 0; i < 4; i++) { 3100 if (bp->sma[i].mode != SMA_MODE_OUT) 3101 continue; 3102 if (map[i][1] & (1 << bit)) 3103 ans += sprintf(ans, "sma%d ", i + 1); 3104 } 3105 } 3106 3107 static void 3108 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr) 3109 { 3110 struct signal_reg __iomem *reg = bp->signal_out[nr]->mem; 3111 struct ptp_ocp_signal *signal = &bp->signal[nr]; 3112 char label[8]; 3113 bool on; 3114 u32 val; 3115 3116 if (!signal) 3117 return; 3118 3119 on = signal->running; 3120 sprintf(label, "GEN%d", nr + 1); 3121 seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d", 3122 label, on ? " ON" : "OFF", 3123 signal->period, signal->duty, signal->phase, 3124 signal->polarity); 3125 3126 val = ioread32(®->enable); 3127 seq_printf(s, " [%x", val); 3128 val = ioread32(®->status); 3129 seq_printf(s, " %x]", val); 3130 3131 seq_printf(s, " start:%llu\n", signal->start); 3132 } 3133 3134 static void 3135 _frequency_summary_show(struct seq_file *s, int nr, 3136 struct frequency_reg __iomem *reg) 3137 { 3138 char label[8]; 3139 bool on; 3140 u32 val; 3141 3142 if (!reg) 3143 return; 3144 3145 sprintf(label, "FREQ%d", nr + 1); 3146 val = ioread32(®->ctrl); 3147 on = val & 1; 3148 val = (val >> 8) & 0xff; 3149 seq_printf(s, "%7s: %s, sec:%u", 3150 label, 3151 on ? " ON" : "OFF", 3152 val); 3153 3154 val = ioread32(®->status); 3155 if (val & FREQ_STATUS_ERROR) 3156 seq_printf(s, ", error"); 3157 if (val & FREQ_STATUS_OVERRUN) 3158 seq_printf(s, ", overrun"); 3159 if (val & FREQ_STATUS_VALID) 3160 seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK); 3161 seq_printf(s, " reg:%x\n", val); 3162 } 3163 3164 static int 3165 ptp_ocp_summary_show(struct seq_file *s, void *data) 3166 { 3167 struct device *dev = s->private; 3168 struct ptp_system_timestamp sts; 3169 struct ts_reg __iomem *ts_reg; 3170 char *buf, *src, *mac_src; 3171 struct timespec64 ts; 3172 struct ptp_ocp *bp; 3173 u16 sma_val[4][2]; 3174 u32 ctrl, val; 3175 bool on, map; 3176 int i; 3177 3178 buf = (char *)__get_free_page(GFP_KERNEL); 3179 if (!buf) 3180 return -ENOMEM; 3181 3182 bp = dev_get_drvdata(dev); 3183 3184 seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp)); 3185 if (bp->gnss_port != -1) 3186 seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS1", bp->gnss_port); 3187 if (bp->gnss2_port != -1) 3188 seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS2", bp->gnss2_port); 3189 if (bp->mac_port != -1) 3190 seq_printf(s, "%7s: /dev/ttyS%d\n", "MAC", bp->mac_port); 3191 if (bp->nmea_port != -1) 3192 seq_printf(s, "%7s: /dev/ttyS%d\n", "NMEA", bp->nmea_port); 3193 3194 memset(sma_val, 0xff, sizeof(sma_val)); 3195 if (bp->sma_map1) { 3196 u32 reg; 3197 3198 reg = ioread32(&bp->sma_map1->gpio1); 3199 sma_val[0][0] = reg & 0xffff; 3200 sma_val[1][0] = reg >> 16; 3201 3202 reg = ioread32(&bp->sma_map1->gpio2); 3203 sma_val[2][1] = reg & 0xffff; 3204 sma_val[3][1] = reg >> 16; 3205 3206 reg = ioread32(&bp->sma_map2->gpio1); 3207 sma_val[2][0] = reg & 0xffff; 3208 sma_val[3][0] = reg >> 16; 3209 3210 reg = ioread32(&bp->sma_map2->gpio2); 3211 sma_val[0][1] = reg & 0xffff; 3212 sma_val[1][1] = reg >> 16; 3213 } 3214 3215 sma1_show(dev, NULL, buf); 3216 seq_printf(s, " sma1: %04x,%04x %s", 3217 sma_val[0][0], sma_val[0][1], buf); 3218 3219 sma2_show(dev, NULL, buf); 3220 seq_printf(s, " sma2: %04x,%04x %s", 3221 sma_val[1][0], sma_val[1][1], buf); 3222 3223 sma3_show(dev, NULL, buf); 3224 seq_printf(s, " sma3: %04x,%04x %s", 3225 sma_val[2][0], sma_val[2][1], buf); 3226 3227 sma4_show(dev, NULL, buf); 3228 seq_printf(s, " sma4: %04x,%04x %s", 3229 sma_val[3][0], sma_val[3][1], buf); 3230 3231 if (bp->ts0) { 3232 ts_reg = bp->ts0->mem; 3233 on = ioread32(&ts_reg->enable); 3234 src = "GNSS1"; 3235 seq_printf(s, "%7s: %s, src: %s\n", "TS0", 3236 on ? " ON" : "OFF", src); 3237 } 3238 3239 if (bp->ts1) { 3240 ts_reg = bp->ts1->mem; 3241 on = ioread32(&ts_reg->enable); 3242 gpio_input_map(buf, bp, sma_val, 2, NULL); 3243 seq_printf(s, "%7s: %s, src: %s\n", "TS1", 3244 on ? " ON" : "OFF", buf); 3245 } 3246 3247 if (bp->ts2) { 3248 ts_reg = bp->ts2->mem; 3249 on = ioread32(&ts_reg->enable); 3250 gpio_input_map(buf, bp, sma_val, 3, NULL); 3251 seq_printf(s, "%7s: %s, src: %s\n", "TS2", 3252 on ? " ON" : "OFF", buf); 3253 } 3254 3255 if (bp->ts3) { 3256 ts_reg = bp->ts3->mem; 3257 on = ioread32(&ts_reg->enable); 3258 gpio_input_map(buf, bp, sma_val, 6, NULL); 3259 seq_printf(s, "%7s: %s, src: %s\n", "TS3", 3260 on ? " ON" : "OFF", buf); 3261 } 3262 3263 if (bp->ts4) { 3264 ts_reg = bp->ts4->mem; 3265 on = ioread32(&ts_reg->enable); 3266 gpio_input_map(buf, bp, sma_val, 7, NULL); 3267 seq_printf(s, "%7s: %s, src: %s\n", "TS4", 3268 on ? " ON" : "OFF", buf); 3269 } 3270 3271 if (bp->pps) { 3272 ts_reg = bp->pps->mem; 3273 src = "PHC"; 3274 on = ioread32(&ts_reg->enable); 3275 map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP); 3276 seq_printf(s, "%7s: %s, src: %s\n", "TS5", 3277 on && map ? " ON" : "OFF", src); 3278 3279 map = !!(bp->pps_req_map & OCP_REQ_PPS); 3280 seq_printf(s, "%7s: %s, src: %s\n", "PPS", 3281 on && map ? " ON" : "OFF", src); 3282 } 3283 3284 if (bp->fw_cap & OCP_CAP_SIGNAL) 3285 for (i = 0; i < 4; i++) 3286 _signal_summary_show(s, bp, i); 3287 3288 if (bp->fw_cap & OCP_CAP_FREQ) 3289 for (i = 0; i < 4; i++) 3290 _frequency_summary_show(s, i, bp->freq_in[i]); 3291 3292 if (bp->irig_out) { 3293 ctrl = ioread32(&bp->irig_out->ctrl); 3294 on = ctrl & IRIG_M_CTRL_ENABLE; 3295 val = ioread32(&bp->irig_out->status); 3296 gpio_output_map(buf, bp, sma_val, 4); 3297 seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG", 3298 on ? " ON" : "OFF", val, (ctrl >> 16), buf); 3299 } 3300 3301 if (bp->irig_in) { 3302 on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE; 3303 val = ioread32(&bp->irig_in->status); 3304 gpio_input_map(buf, bp, sma_val, 4, NULL); 3305 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in", 3306 on ? " ON" : "OFF", val, buf); 3307 } 3308 3309 if (bp->dcf_out) { 3310 on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE; 3311 val = ioread32(&bp->dcf_out->status); 3312 gpio_output_map(buf, bp, sma_val, 5); 3313 seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF", 3314 on ? " ON" : "OFF", val, buf); 3315 } 3316 3317 if (bp->dcf_in) { 3318 on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE; 3319 val = ioread32(&bp->dcf_in->status); 3320 gpio_input_map(buf, bp, sma_val, 5, NULL); 3321 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in", 3322 on ? " ON" : "OFF", val, buf); 3323 } 3324 3325 if (bp->nmea_out) { 3326 on = ioread32(&bp->nmea_out->ctrl) & 1; 3327 val = ioread32(&bp->nmea_out->status); 3328 seq_printf(s, "%7s: %s, error: %d\n", "NMEA", 3329 on ? " ON" : "OFF", val); 3330 } 3331 3332 /* compute src for PPS1, used below. */ 3333 if (bp->pps_select) { 3334 val = ioread32(&bp->pps_select->gpio1); 3335 src = &buf[80]; 3336 mac_src = "GNSS1"; 3337 if (val & 0x01) { 3338 gpio_input_map(src, bp, sma_val, 0, NULL); 3339 mac_src = src; 3340 } else if (val & 0x02) { 3341 src = "MAC"; 3342 } else if (val & 0x04) { 3343 src = "GNSS1"; 3344 } else { 3345 src = "----"; 3346 mac_src = src; 3347 } 3348 } else { 3349 src = "?"; 3350 mac_src = src; 3351 } 3352 seq_printf(s, "MAC PPS1 src: %s\n", mac_src); 3353 3354 gpio_input_map(buf, bp, sma_val, 1, "GNSS2"); 3355 seq_printf(s, "MAC PPS2 src: %s\n", buf); 3356 3357 /* assumes automatic switchover/selection */ 3358 val = ioread32(&bp->reg->select); 3359 switch (val >> 16) { 3360 case 0: 3361 sprintf(buf, "----"); 3362 break; 3363 case 2: 3364 sprintf(buf, "IRIG"); 3365 break; 3366 case 3: 3367 sprintf(buf, "%s via PPS1", src); 3368 break; 3369 case 6: 3370 sprintf(buf, "DCF"); 3371 break; 3372 default: 3373 strcpy(buf, "unknown"); 3374 break; 3375 } 3376 val = ioread32(&bp->reg->status); 3377 seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf, 3378 val & OCP_STATUS_IN_SYNC ? "sync" : "unsynced"); 3379 3380 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) { 3381 struct timespec64 sys_ts; 3382 s64 pre_ns, post_ns, ns; 3383 3384 pre_ns = timespec64_to_ns(&sts.pre_ts); 3385 post_ns = timespec64_to_ns(&sts.post_ts); 3386 ns = (pre_ns + post_ns) / 2; 3387 ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC; 3388 sys_ts = ns_to_timespec64(ns); 3389 3390 seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC", 3391 ts.tv_sec, ts.tv_nsec, &ts); 3392 seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS", 3393 sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts, 3394 bp->utc_tai_offset); 3395 seq_printf(s, "%7s: PHC:SYS offset: %lld window: %lld\n", "", 3396 timespec64_to_ns(&ts) - ns, 3397 post_ns - pre_ns); 3398 } 3399 3400 free_page((unsigned long)buf); 3401 return 0; 3402 } 3403 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary); 3404 3405 static int 3406 ptp_ocp_tod_status_show(struct seq_file *s, void *data) 3407 { 3408 struct device *dev = s->private; 3409 struct ptp_ocp *bp; 3410 u32 val; 3411 int idx; 3412 3413 bp = dev_get_drvdata(dev); 3414 3415 val = ioread32(&bp->tod->ctrl); 3416 if (!(val & TOD_CTRL_ENABLE)) { 3417 seq_printf(s, "TOD Slave disabled\n"); 3418 return 0; 3419 } 3420 seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val); 3421 3422 idx = val & TOD_CTRL_PROTOCOL ? 4 : 0; 3423 idx += (val >> 16) & 3; 3424 seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx)); 3425 3426 idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK; 3427 seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx)); 3428 3429 val = ioread32(&bp->tod->version); 3430 seq_printf(s, "TOD Version %d.%d.%d\n", 3431 val >> 24, (val >> 16) & 0xff, val & 0xffff); 3432 3433 val = ioread32(&bp->tod->status); 3434 seq_printf(s, "Status register: 0x%08X\n", val); 3435 3436 val = ioread32(&bp->tod->adj_sec); 3437 idx = (val & ~INT_MAX) ? -1 : 1; 3438 idx *= (val & INT_MAX); 3439 seq_printf(s, "Correction seconds: %d\n", idx); 3440 3441 val = ioread32(&bp->tod->utc_status); 3442 seq_printf(s, "UTC status register: 0x%08X\n", val); 3443 seq_printf(s, "UTC offset: %d valid:%d\n", 3444 val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0); 3445 seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n", 3446 val & TOD_STATUS_LEAP_VALID ? 1 : 0, 3447 val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0); 3448 3449 val = ioread32(&bp->tod->leap); 3450 seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val); 3451 3452 return 0; 3453 } 3454 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status); 3455 3456 static struct dentry *ptp_ocp_debugfs_root; 3457 3458 static void 3459 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp) 3460 { 3461 struct dentry *d; 3462 3463 d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root); 3464 bp->debug_root = d; 3465 debugfs_create_file("summary", 0444, bp->debug_root, 3466 &bp->dev, &ptp_ocp_summary_fops); 3467 if (bp->tod) 3468 debugfs_create_file("tod_status", 0444, bp->debug_root, 3469 &bp->dev, &ptp_ocp_tod_status_fops); 3470 } 3471 3472 static void 3473 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp) 3474 { 3475 debugfs_remove_recursive(bp->debug_root); 3476 } 3477 3478 static void 3479 ptp_ocp_debugfs_init(void) 3480 { 3481 ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL); 3482 } 3483 3484 static void 3485 ptp_ocp_debugfs_fini(void) 3486 { 3487 debugfs_remove_recursive(ptp_ocp_debugfs_root); 3488 } 3489 3490 static void 3491 ptp_ocp_dev_release(struct device *dev) 3492 { 3493 struct ptp_ocp *bp = dev_get_drvdata(dev); 3494 3495 mutex_lock(&ptp_ocp_lock); 3496 idr_remove(&ptp_ocp_idr, bp->id); 3497 mutex_unlock(&ptp_ocp_lock); 3498 } 3499 3500 static int 3501 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev) 3502 { 3503 int err; 3504 3505 mutex_lock(&ptp_ocp_lock); 3506 err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL); 3507 mutex_unlock(&ptp_ocp_lock); 3508 if (err < 0) { 3509 dev_err(&pdev->dev, "idr_alloc failed: %d\n", err); 3510 return err; 3511 } 3512 bp->id = err; 3513 3514 bp->ptp_info = ptp_ocp_clock_info; 3515 spin_lock_init(&bp->lock); 3516 bp->gnss_port = -1; 3517 bp->gnss2_port = -1; 3518 bp->mac_port = -1; 3519 bp->nmea_port = -1; 3520 bp->pdev = pdev; 3521 3522 device_initialize(&bp->dev); 3523 dev_set_name(&bp->dev, "ocp%d", bp->id); 3524 bp->dev.class = &timecard_class; 3525 bp->dev.parent = &pdev->dev; 3526 bp->dev.release = ptp_ocp_dev_release; 3527 dev_set_drvdata(&bp->dev, bp); 3528 3529 err = device_add(&bp->dev); 3530 if (err) { 3531 dev_err(&bp->dev, "device add failed: %d\n", err); 3532 goto out; 3533 } 3534 3535 pci_set_drvdata(pdev, bp); 3536 3537 return 0; 3538 3539 out: 3540 ptp_ocp_dev_release(&bp->dev); 3541 put_device(&bp->dev); 3542 return err; 3543 } 3544 3545 static void 3546 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link) 3547 { 3548 struct device *dev = &bp->dev; 3549 3550 if (sysfs_create_link(&dev->kobj, &child->kobj, link)) 3551 dev_err(dev, "%s symlink failed\n", link); 3552 } 3553 3554 static void 3555 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link) 3556 { 3557 struct device *dev, *child; 3558 3559 dev = &bp->pdev->dev; 3560 3561 child = device_find_child_by_name(dev, name); 3562 if (!child) { 3563 dev_err(dev, "Could not find device %s\n", name); 3564 return; 3565 } 3566 3567 ptp_ocp_symlink(bp, child, link); 3568 put_device(child); 3569 } 3570 3571 static int 3572 ptp_ocp_complete(struct ptp_ocp *bp) 3573 { 3574 struct pps_device *pps; 3575 char buf[32]; 3576 3577 if (bp->gnss_port != -1) { 3578 sprintf(buf, "ttyS%d", bp->gnss_port); 3579 ptp_ocp_link_child(bp, buf, "ttyGNSS"); 3580 } 3581 if (bp->gnss2_port != -1) { 3582 sprintf(buf, "ttyS%d", bp->gnss2_port); 3583 ptp_ocp_link_child(bp, buf, "ttyGNSS2"); 3584 } 3585 if (bp->mac_port != -1) { 3586 sprintf(buf, "ttyS%d", bp->mac_port); 3587 ptp_ocp_link_child(bp, buf, "ttyMAC"); 3588 } 3589 if (bp->nmea_port != -1) { 3590 sprintf(buf, "ttyS%d", bp->nmea_port); 3591 ptp_ocp_link_child(bp, buf, "ttyNMEA"); 3592 } 3593 sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp)); 3594 ptp_ocp_link_child(bp, buf, "ptp"); 3595 3596 pps = pps_lookup_dev(bp->ptp); 3597 if (pps) 3598 ptp_ocp_symlink(bp, pps->dev, "pps"); 3599 3600 ptp_ocp_debugfs_add_device(bp); 3601 3602 return 0; 3603 } 3604 3605 static void 3606 ptp_ocp_phc_info(struct ptp_ocp *bp) 3607 { 3608 struct timespec64 ts; 3609 u32 version, select; 3610 bool sync; 3611 3612 version = ioread32(&bp->reg->version); 3613 select = ioread32(&bp->reg->select); 3614 dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n", 3615 version >> 24, (version >> 16) & 0xff, version & 0xffff, 3616 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16), 3617 ptp_clock_index(bp->ptp)); 3618 3619 sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC; 3620 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL)) 3621 dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n", 3622 ts.tv_sec, ts.tv_nsec, 3623 sync ? "in-sync" : "UNSYNCED"); 3624 } 3625 3626 static void 3627 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud) 3628 { 3629 if (port != -1) 3630 dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud); 3631 } 3632 3633 static void 3634 ptp_ocp_info(struct ptp_ocp *bp) 3635 { 3636 static int nmea_baud[] = { 3637 1200, 2400, 4800, 9600, 19200, 38400, 3638 57600, 115200, 230400, 460800, 921600, 3639 1000000, 2000000 3640 }; 3641 struct device *dev = &bp->pdev->dev; 3642 u32 reg; 3643 3644 ptp_ocp_phc_info(bp); 3645 3646 ptp_ocp_serial_info(dev, "GNSS", bp->gnss_port, 115200); 3647 ptp_ocp_serial_info(dev, "GNSS2", bp->gnss2_port, 115200); 3648 ptp_ocp_serial_info(dev, "MAC", bp->mac_port, 57600); 3649 if (bp->nmea_out && bp->nmea_port != -1) { 3650 int baud = -1; 3651 3652 reg = ioread32(&bp->nmea_out->uart_baud); 3653 if (reg < ARRAY_SIZE(nmea_baud)) 3654 baud = nmea_baud[reg]; 3655 ptp_ocp_serial_info(dev, "NMEA", bp->nmea_port, baud); 3656 } 3657 } 3658 3659 static void 3660 ptp_ocp_detach_sysfs(struct ptp_ocp *bp) 3661 { 3662 struct device *dev = &bp->dev; 3663 3664 sysfs_remove_link(&dev->kobj, "ttyGNSS"); 3665 sysfs_remove_link(&dev->kobj, "ttyMAC"); 3666 sysfs_remove_link(&dev->kobj, "ptp"); 3667 sysfs_remove_link(&dev->kobj, "pps"); 3668 } 3669 3670 static void 3671 ptp_ocp_detach(struct ptp_ocp *bp) 3672 { 3673 int i; 3674 3675 ptp_ocp_debugfs_remove_device(bp); 3676 ptp_ocp_detach_sysfs(bp); 3677 ptp_ocp_attr_group_del(bp); 3678 if (timer_pending(&bp->watchdog)) 3679 del_timer_sync(&bp->watchdog); 3680 if (bp->ts0) 3681 ptp_ocp_unregister_ext(bp->ts0); 3682 if (bp->ts1) 3683 ptp_ocp_unregister_ext(bp->ts1); 3684 if (bp->ts2) 3685 ptp_ocp_unregister_ext(bp->ts2); 3686 if (bp->ts3) 3687 ptp_ocp_unregister_ext(bp->ts3); 3688 if (bp->ts4) 3689 ptp_ocp_unregister_ext(bp->ts4); 3690 if (bp->pps) 3691 ptp_ocp_unregister_ext(bp->pps); 3692 for (i = 0; i < 4; i++) 3693 if (bp->signal_out[i]) 3694 ptp_ocp_unregister_ext(bp->signal_out[i]); 3695 if (bp->gnss_port != -1) 3696 serial8250_unregister_port(bp->gnss_port); 3697 if (bp->gnss2_port != -1) 3698 serial8250_unregister_port(bp->gnss2_port); 3699 if (bp->mac_port != -1) 3700 serial8250_unregister_port(bp->mac_port); 3701 if (bp->nmea_port != -1) 3702 serial8250_unregister_port(bp->nmea_port); 3703 if (bp->spi_flash) 3704 platform_device_unregister(bp->spi_flash); 3705 if (bp->i2c_ctrl) 3706 platform_device_unregister(bp->i2c_ctrl); 3707 if (bp->i2c_clk) 3708 clk_hw_unregister_fixed_rate(bp->i2c_clk); 3709 if (bp->n_irqs) 3710 pci_free_irq_vectors(bp->pdev); 3711 if (bp->ptp) 3712 ptp_clock_unregister(bp->ptp); 3713 kfree(bp->ptp_info.pin_config); 3714 device_unregister(&bp->dev); 3715 } 3716 3717 static int 3718 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3719 { 3720 struct devlink *devlink; 3721 struct ptp_ocp *bp; 3722 int err; 3723 3724 devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev); 3725 if (!devlink) { 3726 dev_err(&pdev->dev, "devlink_alloc failed\n"); 3727 return -ENOMEM; 3728 } 3729 3730 err = pci_enable_device(pdev); 3731 if (err) { 3732 dev_err(&pdev->dev, "pci_enable_device\n"); 3733 goto out_free; 3734 } 3735 3736 bp = devlink_priv(devlink); 3737 err = ptp_ocp_device_init(bp, pdev); 3738 if (err) 3739 goto out_disable; 3740 3741 /* compat mode. 3742 * Older FPGA firmware only returns 2 irq's. 3743 * allow this - if not all of the IRQ's are returned, skip the 3744 * extra devices and just register the clock. 3745 */ 3746 err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX); 3747 if (err < 0) { 3748 dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err); 3749 goto out; 3750 } 3751 bp->n_irqs = err; 3752 pci_set_master(pdev); 3753 3754 err = ptp_ocp_register_resources(bp, id->driver_data); 3755 if (err) 3756 goto out; 3757 3758 bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev); 3759 if (IS_ERR(bp->ptp)) { 3760 err = PTR_ERR(bp->ptp); 3761 dev_err(&pdev->dev, "ptp_clock_register: %d\n", err); 3762 bp->ptp = NULL; 3763 goto out; 3764 } 3765 3766 err = ptp_ocp_complete(bp); 3767 if (err) 3768 goto out; 3769 3770 ptp_ocp_info(bp); 3771 devlink_register(devlink); 3772 return 0; 3773 3774 out: 3775 ptp_ocp_detach(bp); 3776 pci_set_drvdata(pdev, NULL); 3777 out_disable: 3778 pci_disable_device(pdev); 3779 out_free: 3780 devlink_free(devlink); 3781 return err; 3782 } 3783 3784 static void 3785 ptp_ocp_remove(struct pci_dev *pdev) 3786 { 3787 struct ptp_ocp *bp = pci_get_drvdata(pdev); 3788 struct devlink *devlink = priv_to_devlink(bp); 3789 3790 devlink_unregister(devlink); 3791 ptp_ocp_detach(bp); 3792 pci_set_drvdata(pdev, NULL); 3793 pci_disable_device(pdev); 3794 3795 devlink_free(devlink); 3796 } 3797 3798 static struct pci_driver ptp_ocp_driver = { 3799 .name = KBUILD_MODNAME, 3800 .id_table = ptp_ocp_pcidev_id, 3801 .probe = ptp_ocp_probe, 3802 .remove = ptp_ocp_remove, 3803 }; 3804 3805 static int 3806 ptp_ocp_i2c_notifier_call(struct notifier_block *nb, 3807 unsigned long action, void *data) 3808 { 3809 struct device *dev, *child = data; 3810 struct ptp_ocp *bp; 3811 bool add; 3812 3813 switch (action) { 3814 case BUS_NOTIFY_ADD_DEVICE: 3815 case BUS_NOTIFY_DEL_DEVICE: 3816 add = action == BUS_NOTIFY_ADD_DEVICE; 3817 break; 3818 default: 3819 return 0; 3820 } 3821 3822 if (!i2c_verify_adapter(child)) 3823 return 0; 3824 3825 dev = child; 3826 while ((dev = dev->parent)) 3827 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME)) 3828 goto found; 3829 return 0; 3830 3831 found: 3832 bp = dev_get_drvdata(dev); 3833 if (add) 3834 ptp_ocp_symlink(bp, child, "i2c"); 3835 else 3836 sysfs_remove_link(&bp->dev.kobj, "i2c"); 3837 3838 return 0; 3839 } 3840 3841 static struct notifier_block ptp_ocp_i2c_notifier = { 3842 .notifier_call = ptp_ocp_i2c_notifier_call, 3843 }; 3844 3845 static int __init 3846 ptp_ocp_init(void) 3847 { 3848 const char *what; 3849 int err; 3850 3851 ptp_ocp_debugfs_init(); 3852 3853 what = "timecard class"; 3854 err = class_register(&timecard_class); 3855 if (err) 3856 goto out; 3857 3858 what = "i2c notifier"; 3859 err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); 3860 if (err) 3861 goto out_notifier; 3862 3863 what = "ptp_ocp driver"; 3864 err = pci_register_driver(&ptp_ocp_driver); 3865 if (err) 3866 goto out_register; 3867 3868 return 0; 3869 3870 out_register: 3871 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); 3872 out_notifier: 3873 class_unregister(&timecard_class); 3874 out: 3875 ptp_ocp_debugfs_fini(); 3876 pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err); 3877 return err; 3878 } 3879 3880 static void __exit 3881 ptp_ocp_fini(void) 3882 { 3883 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); 3884 pci_unregister_driver(&ptp_ocp_driver); 3885 class_unregister(&timecard_class); 3886 ptp_ocp_debugfs_fini(); 3887 } 3888 3889 module_init(ptp_ocp_init); 3890 module_exit(ptp_ocp_fini); 3891 3892 MODULE_DESCRIPTION("OpenCompute TimeCard driver"); 3893 MODULE_LICENSE("GPL v2"); 3894