xref: /openbmc/linux/drivers/ptp/ptp_dte.c (revision c8ec3743)
1 /*
2  * Copyright 2017 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation version 2.
7  *
8  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
9  * kind, whether express or implied; without even the implied warranty
10  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/mod_devicetable.h>
18 #include <linux/platform_device.h>
19 #include <linux/ptp_clock_kernel.h>
20 #include <linux/types.h>
21 
22 #define DTE_NCO_LOW_TIME_REG	0x00
23 #define DTE_NCO_TIME_REG	0x04
24 #define DTE_NCO_OVERFLOW_REG	0x08
25 #define DTE_NCO_INC_REG		0x0c
26 
27 #define DTE_NCO_SUM2_MASK	0xffffffff
28 #define DTE_NCO_SUM2_SHIFT	4ULL
29 
30 #define DTE_NCO_SUM3_MASK	0xff
31 #define DTE_NCO_SUM3_SHIFT	36ULL
32 #define DTE_NCO_SUM3_WR_SHIFT	8
33 
34 #define DTE_NCO_TS_WRAP_MASK	0xfff
35 #define DTE_NCO_TS_WRAP_LSHIFT	32
36 
37 #define DTE_NCO_INC_DEFAULT	0x80000000
38 #define DTE_NUM_REGS_TO_RESTORE	4
39 
40 /* Full wrap around is 44bits in ns (~4.887 hrs) */
41 #define DTE_WRAP_AROUND_NSEC_SHIFT 44
42 
43 /* 44 bits NCO */
44 #define DTE_NCO_MAX_NS	0xFFFFFFFFFFFLL
45 
46 /* 125MHz with 3.29 reg cfg */
47 #define DTE_PPB_ADJ(ppb) (u32)(div64_u64((((u64)abs(ppb) * BIT(28)) +\
48 				      62500000ULL), 125000000ULL))
49 
50 /* ptp dte priv structure */
51 struct ptp_dte {
52 	void __iomem *regs;
53 	struct ptp_clock *ptp_clk;
54 	struct ptp_clock_info caps;
55 	struct device *dev;
56 	u32 ts_ovf_last;
57 	u32 ts_wrap_cnt;
58 	spinlock_t lock;
59 	u32 reg_val[DTE_NUM_REGS_TO_RESTORE];
60 };
61 
62 static void dte_write_nco(void __iomem *regs, s64 ns)
63 {
64 	u32 sum2, sum3;
65 
66 	sum2 = (u32)((ns >> DTE_NCO_SUM2_SHIFT) & DTE_NCO_SUM2_MASK);
67 	/* compensate for ignoring sum1 */
68 	if (sum2 != DTE_NCO_SUM2_MASK)
69 		sum2++;
70 
71 	/* to write sum3, bits [15:8] needs to be written */
72 	sum3 = (u32)(((ns >> DTE_NCO_SUM3_SHIFT) & DTE_NCO_SUM3_MASK) <<
73 		     DTE_NCO_SUM3_WR_SHIFT);
74 
75 	writel(0, (regs + DTE_NCO_LOW_TIME_REG));
76 	writel(sum2, (regs + DTE_NCO_TIME_REG));
77 	writel(sum3, (regs + DTE_NCO_OVERFLOW_REG));
78 }
79 
80 static s64 dte_read_nco(void __iomem *regs)
81 {
82 	u32 sum2, sum3;
83 	s64 ns;
84 
85 	/*
86 	 * ignoring sum1 (4 bits) gives a 16ns resolution, which
87 	 * works due to the async register read.
88 	 */
89 	sum3 = readl(regs + DTE_NCO_OVERFLOW_REG) & DTE_NCO_SUM3_MASK;
90 	sum2 = readl(regs + DTE_NCO_TIME_REG);
91 	ns = ((s64)sum3 << DTE_NCO_SUM3_SHIFT) |
92 		 ((s64)sum2 << DTE_NCO_SUM2_SHIFT);
93 
94 	return ns;
95 }
96 
97 static void dte_write_nco_delta(struct ptp_dte *ptp_dte, s64 delta)
98 {
99 	s64 ns;
100 
101 	ns = dte_read_nco(ptp_dte->regs);
102 
103 	/* handle wraparound conditions */
104 	if ((delta < 0) && (abs(delta) > ns)) {
105 		if (ptp_dte->ts_wrap_cnt) {
106 			ns += DTE_NCO_MAX_NS + delta;
107 			ptp_dte->ts_wrap_cnt--;
108 		} else {
109 			ns = 0;
110 		}
111 	} else {
112 		ns += delta;
113 		if (ns > DTE_NCO_MAX_NS) {
114 			ptp_dte->ts_wrap_cnt++;
115 			ns -= DTE_NCO_MAX_NS;
116 		}
117 	}
118 
119 	dte_write_nco(ptp_dte->regs, ns);
120 
121 	ptp_dte->ts_ovf_last = (ns >> DTE_NCO_TS_WRAP_LSHIFT) &
122 			DTE_NCO_TS_WRAP_MASK;
123 }
124 
125 static s64 dte_read_nco_with_ovf(struct ptp_dte *ptp_dte)
126 {
127 	u32 ts_ovf;
128 	s64 ns = 0;
129 
130 	ns = dte_read_nco(ptp_dte->regs);
131 
132 	/*Timestamp overflow: 8 LSB bits of sum3, 4 MSB bits of sum2 */
133 	ts_ovf = (ns >> DTE_NCO_TS_WRAP_LSHIFT) & DTE_NCO_TS_WRAP_MASK;
134 
135 	/* Check for wrap around */
136 	if (ts_ovf < ptp_dte->ts_ovf_last)
137 		ptp_dte->ts_wrap_cnt++;
138 
139 	ptp_dte->ts_ovf_last = ts_ovf;
140 
141 	/* adjust for wraparounds */
142 	ns += (s64)(BIT_ULL(DTE_WRAP_AROUND_NSEC_SHIFT) * ptp_dte->ts_wrap_cnt);
143 
144 	return ns;
145 }
146 
147 static int ptp_dte_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
148 {
149 	u32 nco_incr;
150 	unsigned long flags;
151 	struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps);
152 
153 	if (abs(ppb) > ptp_dte->caps.max_adj) {
154 		dev_err(ptp_dte->dev, "ppb adj too big\n");
155 		return -EINVAL;
156 	}
157 
158 	if (ppb < 0)
159 		nco_incr = DTE_NCO_INC_DEFAULT - DTE_PPB_ADJ(ppb);
160 	else
161 		nco_incr = DTE_NCO_INC_DEFAULT + DTE_PPB_ADJ(ppb);
162 
163 	spin_lock_irqsave(&ptp_dte->lock, flags);
164 	writel(nco_incr, ptp_dte->regs + DTE_NCO_INC_REG);
165 	spin_unlock_irqrestore(&ptp_dte->lock, flags);
166 
167 	return 0;
168 }
169 
170 static int ptp_dte_adjtime(struct ptp_clock_info *ptp, s64 delta)
171 {
172 	unsigned long flags;
173 	struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps);
174 
175 	spin_lock_irqsave(&ptp_dte->lock, flags);
176 	dte_write_nco_delta(ptp_dte, delta);
177 	spin_unlock_irqrestore(&ptp_dte->lock, flags);
178 
179 	return 0;
180 }
181 
182 static int ptp_dte_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
183 {
184 	unsigned long flags;
185 	struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps);
186 
187 	spin_lock_irqsave(&ptp_dte->lock, flags);
188 	*ts = ns_to_timespec64(dte_read_nco_with_ovf(ptp_dte));
189 	spin_unlock_irqrestore(&ptp_dte->lock, flags);
190 
191 	return 0;
192 }
193 
194 static int ptp_dte_settime(struct ptp_clock_info *ptp,
195 			     const struct timespec64 *ts)
196 {
197 	unsigned long flags;
198 	struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps);
199 
200 	spin_lock_irqsave(&ptp_dte->lock, flags);
201 
202 	/* Disable nco increment */
203 	writel(0, ptp_dte->regs + DTE_NCO_INC_REG);
204 
205 	dte_write_nco(ptp_dte->regs, timespec64_to_ns(ts));
206 
207 	/* reset overflow and wrap counter */
208 	ptp_dte->ts_ovf_last = 0;
209 	ptp_dte->ts_wrap_cnt = 0;
210 
211 	/* Enable nco increment */
212 	writel(DTE_NCO_INC_DEFAULT, ptp_dte->regs + DTE_NCO_INC_REG);
213 
214 	spin_unlock_irqrestore(&ptp_dte->lock, flags);
215 
216 	return 0;
217 }
218 
219 static int ptp_dte_enable(struct ptp_clock_info *ptp,
220 			    struct ptp_clock_request *rq, int on)
221 {
222 	return -EOPNOTSUPP;
223 }
224 
225 static const struct ptp_clock_info ptp_dte_caps = {
226 	.owner		= THIS_MODULE,
227 	.name		= "DTE PTP timer",
228 	.max_adj	= 50000000,
229 	.n_ext_ts	= 0,
230 	.n_pins		= 0,
231 	.pps		= 0,
232 	.adjfreq	= ptp_dte_adjfreq,
233 	.adjtime	= ptp_dte_adjtime,
234 	.gettime64	= ptp_dte_gettime,
235 	.settime64	= ptp_dte_settime,
236 	.enable		= ptp_dte_enable,
237 };
238 
239 static int ptp_dte_probe(struct platform_device *pdev)
240 {
241 	struct ptp_dte *ptp_dte;
242 	struct device *dev = &pdev->dev;
243 	struct resource *res;
244 
245 	ptp_dte = devm_kzalloc(dev, sizeof(struct ptp_dte), GFP_KERNEL);
246 	if (!ptp_dte)
247 		return -ENOMEM;
248 
249 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
250 	ptp_dte->regs = devm_ioremap_resource(dev, res);
251 	if (IS_ERR(ptp_dte->regs)) {
252 		dev_err(dev,
253 			"%s: io remap failed\n", __func__);
254 		return PTR_ERR(ptp_dte->regs);
255 	}
256 
257 	spin_lock_init(&ptp_dte->lock);
258 
259 	ptp_dte->dev = dev;
260 	ptp_dte->caps = ptp_dte_caps;
261 	ptp_dte->ptp_clk = ptp_clock_register(&ptp_dte->caps, &pdev->dev);
262 	if (IS_ERR(ptp_dte->ptp_clk)) {
263 		dev_err(dev,
264 			"%s: Failed to register ptp clock\n", __func__);
265 		return PTR_ERR(ptp_dte->ptp_clk);
266 	}
267 
268 	platform_set_drvdata(pdev, ptp_dte);
269 
270 	dev_info(dev, "ptp clk probe done\n");
271 
272 	return 0;
273 }
274 
275 static int ptp_dte_remove(struct platform_device *pdev)
276 {
277 	struct ptp_dte *ptp_dte = platform_get_drvdata(pdev);
278 	u8 i;
279 
280 	ptp_clock_unregister(ptp_dte->ptp_clk);
281 
282 	for (i = 0; i < DTE_NUM_REGS_TO_RESTORE; i++)
283 		writel(0, ptp_dte->regs + (i * sizeof(u32)));
284 
285 	return 0;
286 }
287 
288 #ifdef CONFIG_PM_SLEEP
289 static int ptp_dte_suspend(struct device *dev)
290 {
291 	struct ptp_dte *ptp_dte = dev_get_drvdata(dev);
292 	u8 i;
293 
294 	for (i = 0; i < DTE_NUM_REGS_TO_RESTORE; i++) {
295 		ptp_dte->reg_val[i] =
296 			readl(ptp_dte->regs + (i * sizeof(u32)));
297 	}
298 
299 	/* disable the nco */
300 	writel(0, ptp_dte->regs + DTE_NCO_INC_REG);
301 
302 	return 0;
303 }
304 
305 static int ptp_dte_resume(struct device *dev)
306 {
307 	struct ptp_dte *ptp_dte = dev_get_drvdata(dev);
308 	u8 i;
309 
310 	for (i = 0; i < DTE_NUM_REGS_TO_RESTORE; i++) {
311 		if ((i * sizeof(u32)) != DTE_NCO_OVERFLOW_REG)
312 			writel(ptp_dte->reg_val[i],
313 				(ptp_dte->regs + (i * sizeof(u32))));
314 		else
315 			writel(((ptp_dte->reg_val[i] &
316 				DTE_NCO_SUM3_MASK) << DTE_NCO_SUM3_WR_SHIFT),
317 				(ptp_dte->regs + (i * sizeof(u32))));
318 	}
319 
320 	return 0;
321 }
322 
323 static const struct dev_pm_ops ptp_dte_pm_ops = {
324 	.suspend = ptp_dte_suspend,
325 	.resume = ptp_dte_resume
326 };
327 
328 #define PTP_DTE_PM_OPS	(&ptp_dte_pm_ops)
329 #else
330 #define PTP_DTE_PM_OPS	NULL
331 #endif
332 
333 static const struct of_device_id ptp_dte_of_match[] = {
334 	{ .compatible = "brcm,ptp-dte", },
335 	{},
336 };
337 MODULE_DEVICE_TABLE(of, ptp_dte_of_match);
338 
339 static struct platform_driver ptp_dte_driver = {
340 	.driver = {
341 		.name = "ptp-dte",
342 		.pm = PTP_DTE_PM_OPS,
343 		.of_match_table = ptp_dte_of_match,
344 	},
345 	.probe    = ptp_dte_probe,
346 	.remove   = ptp_dte_remove,
347 };
348 module_platform_driver(ptp_dte_driver);
349 
350 MODULE_AUTHOR("Broadcom");
351 MODULE_DESCRIPTION("Broadcom DTE PTP Clock driver");
352 MODULE_LICENSE("GPL v2");
353