1 /* 2 * Copyright 2017 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License as 6 * published by the Free Software Foundation version 2. 7 * 8 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 9 * kind, whether express or implied; without even the implied warranty 10 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 */ 13 14 #include <linux/err.h> 15 #include <linux/io.h> 16 #include <linux/module.h> 17 #include <linux/mod_devicetable.h> 18 #include <linux/platform_device.h> 19 #include <linux/ptp_clock_kernel.h> 20 #include <linux/types.h> 21 22 #define DTE_NCO_LOW_TIME_REG 0x00 23 #define DTE_NCO_TIME_REG 0x04 24 #define DTE_NCO_OVERFLOW_REG 0x08 25 #define DTE_NCO_INC_REG 0x0c 26 27 #define DTE_NCO_SUM2_MASK 0xffffffff 28 #define DTE_NCO_SUM2_SHIFT 4ULL 29 30 #define DTE_NCO_SUM3_MASK 0xff 31 #define DTE_NCO_SUM3_SHIFT 36ULL 32 #define DTE_NCO_SUM3_WR_SHIFT 8 33 34 #define DTE_NCO_TS_WRAP_MASK 0xfff 35 #define DTE_NCO_TS_WRAP_LSHIFT 32 36 37 #define DTE_NCO_INC_DEFAULT 0x80000000 38 #define DTE_NUM_REGS_TO_RESTORE 4 39 40 /* Full wrap around is 44bits in ns (~4.887 hrs) */ 41 #define DTE_WRAP_AROUND_NSEC_SHIFT 44 42 43 /* 44 bits NCO */ 44 #define DTE_NCO_MAX_NS 0xFFFFFFFFFFFLL 45 46 /* 125MHz with 3.29 reg cfg */ 47 #define DTE_PPB_ADJ(ppb) (u32)(div64_u64((((u64)abs(ppb) * BIT(28)) +\ 48 62500000ULL), 125000000ULL)) 49 50 /* ptp dte priv structure */ 51 struct ptp_dte { 52 void __iomem *regs; 53 struct ptp_clock *ptp_clk; 54 struct ptp_clock_info caps; 55 struct device *dev; 56 u32 ts_ovf_last; 57 u32 ts_wrap_cnt; 58 spinlock_t lock; 59 u32 reg_val[DTE_NUM_REGS_TO_RESTORE]; 60 }; 61 62 static void dte_write_nco(void __iomem *regs, s64 ns) 63 { 64 u32 sum2, sum3; 65 66 sum2 = (u32)((ns >> DTE_NCO_SUM2_SHIFT) & DTE_NCO_SUM2_MASK); 67 /* compensate for ignoring sum1 */ 68 if (sum2 != DTE_NCO_SUM2_MASK) 69 sum2++; 70 71 /* to write sum3, bits [15:8] needs to be written */ 72 sum3 = (u32)(((ns >> DTE_NCO_SUM3_SHIFT) & DTE_NCO_SUM3_MASK) << 73 DTE_NCO_SUM3_WR_SHIFT); 74 75 writel(0, (regs + DTE_NCO_LOW_TIME_REG)); 76 writel(sum2, (regs + DTE_NCO_TIME_REG)); 77 writel(sum3, (regs + DTE_NCO_OVERFLOW_REG)); 78 } 79 80 static s64 dte_read_nco(void __iomem *regs) 81 { 82 u32 sum2, sum3; 83 s64 ns; 84 85 /* 86 * ignoring sum1 (4 bits) gives a 16ns resolution, which 87 * works due to the async register read. 88 */ 89 sum3 = readl(regs + DTE_NCO_OVERFLOW_REG) & DTE_NCO_SUM3_MASK; 90 sum2 = readl(regs + DTE_NCO_TIME_REG); 91 ns = ((s64)sum3 << DTE_NCO_SUM3_SHIFT) | 92 ((s64)sum2 << DTE_NCO_SUM2_SHIFT); 93 94 return ns; 95 } 96 97 static void dte_write_nco_delta(struct ptp_dte *ptp_dte, s64 delta) 98 { 99 s64 ns; 100 101 ns = dte_read_nco(ptp_dte->regs); 102 103 /* handle wraparound conditions */ 104 if ((delta < 0) && (abs(delta) > ns)) { 105 if (ptp_dte->ts_wrap_cnt) { 106 ns += DTE_NCO_MAX_NS + delta; 107 ptp_dte->ts_wrap_cnt--; 108 } else { 109 ns = 0; 110 } 111 } else { 112 ns += delta; 113 if (ns > DTE_NCO_MAX_NS) { 114 ptp_dte->ts_wrap_cnt++; 115 ns -= DTE_NCO_MAX_NS; 116 } 117 } 118 119 dte_write_nco(ptp_dte->regs, ns); 120 121 ptp_dte->ts_ovf_last = (ns >> DTE_NCO_TS_WRAP_LSHIFT) & 122 DTE_NCO_TS_WRAP_MASK; 123 } 124 125 static s64 dte_read_nco_with_ovf(struct ptp_dte *ptp_dte) 126 { 127 u32 ts_ovf; 128 s64 ns = 0; 129 130 ns = dte_read_nco(ptp_dte->regs); 131 132 /*Timestamp overflow: 8 LSB bits of sum3, 4 MSB bits of sum2 */ 133 ts_ovf = (ns >> DTE_NCO_TS_WRAP_LSHIFT) & DTE_NCO_TS_WRAP_MASK; 134 135 /* Check for wrap around */ 136 if (ts_ovf < ptp_dte->ts_ovf_last) 137 ptp_dte->ts_wrap_cnt++; 138 139 ptp_dte->ts_ovf_last = ts_ovf; 140 141 /* adjust for wraparounds */ 142 ns += (s64)(BIT_ULL(DTE_WRAP_AROUND_NSEC_SHIFT) * ptp_dte->ts_wrap_cnt); 143 144 return ns; 145 } 146 147 static int ptp_dte_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 148 { 149 u32 nco_incr; 150 unsigned long flags; 151 struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps); 152 153 if (abs(ppb) > ptp_dte->caps.max_adj) { 154 dev_err(ptp_dte->dev, "ppb adj too big\n"); 155 return -EINVAL; 156 } 157 158 if (ppb < 0) 159 nco_incr = DTE_NCO_INC_DEFAULT - DTE_PPB_ADJ(ppb); 160 else 161 nco_incr = DTE_NCO_INC_DEFAULT + DTE_PPB_ADJ(ppb); 162 163 spin_lock_irqsave(&ptp_dte->lock, flags); 164 writel(nco_incr, ptp_dte->regs + DTE_NCO_INC_REG); 165 spin_unlock_irqrestore(&ptp_dte->lock, flags); 166 167 return 0; 168 } 169 170 static int ptp_dte_adjtime(struct ptp_clock_info *ptp, s64 delta) 171 { 172 unsigned long flags; 173 struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps); 174 175 spin_lock_irqsave(&ptp_dte->lock, flags); 176 dte_write_nco_delta(ptp_dte, delta); 177 spin_unlock_irqrestore(&ptp_dte->lock, flags); 178 179 return 0; 180 } 181 182 static int ptp_dte_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 183 { 184 unsigned long flags; 185 struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps); 186 187 spin_lock_irqsave(&ptp_dte->lock, flags); 188 *ts = ns_to_timespec64(dte_read_nco_with_ovf(ptp_dte)); 189 spin_unlock_irqrestore(&ptp_dte->lock, flags); 190 191 return 0; 192 } 193 194 static int ptp_dte_settime(struct ptp_clock_info *ptp, 195 const struct timespec64 *ts) 196 { 197 unsigned long flags; 198 struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps); 199 200 spin_lock_irqsave(&ptp_dte->lock, flags); 201 202 /* Disable nco increment */ 203 writel(0, ptp_dte->regs + DTE_NCO_INC_REG); 204 205 dte_write_nco(ptp_dte->regs, timespec64_to_ns(ts)); 206 207 /* reset overflow and wrap counter */ 208 ptp_dte->ts_ovf_last = 0; 209 ptp_dte->ts_wrap_cnt = 0; 210 211 /* Enable nco increment */ 212 writel(DTE_NCO_INC_DEFAULT, ptp_dte->regs + DTE_NCO_INC_REG); 213 214 spin_unlock_irqrestore(&ptp_dte->lock, flags); 215 216 return 0; 217 } 218 219 static int ptp_dte_enable(struct ptp_clock_info *ptp, 220 struct ptp_clock_request *rq, int on) 221 { 222 return -EOPNOTSUPP; 223 } 224 225 static const struct ptp_clock_info ptp_dte_caps = { 226 .owner = THIS_MODULE, 227 .name = "DTE PTP timer", 228 .max_adj = 50000000, 229 .n_ext_ts = 0, 230 .n_pins = 0, 231 .pps = 0, 232 .adjfreq = ptp_dte_adjfreq, 233 .adjtime = ptp_dte_adjtime, 234 .gettime64 = ptp_dte_gettime, 235 .settime64 = ptp_dte_settime, 236 .enable = ptp_dte_enable, 237 }; 238 239 static int ptp_dte_probe(struct platform_device *pdev) 240 { 241 struct ptp_dte *ptp_dte; 242 struct device *dev = &pdev->dev; 243 struct resource *res; 244 245 ptp_dte = devm_kzalloc(dev, sizeof(struct ptp_dte), GFP_KERNEL); 246 if (!ptp_dte) 247 return -ENOMEM; 248 249 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 250 ptp_dte->regs = devm_ioremap_resource(dev, res); 251 if (IS_ERR(ptp_dte->regs)) { 252 dev_err(dev, 253 "%s: io remap failed\n", __func__); 254 return PTR_ERR(ptp_dte->regs); 255 } 256 257 spin_lock_init(&ptp_dte->lock); 258 259 ptp_dte->dev = dev; 260 ptp_dte->caps = ptp_dte_caps; 261 ptp_dte->ptp_clk = ptp_clock_register(&ptp_dte->caps, &pdev->dev); 262 if (IS_ERR(ptp_dte->ptp_clk)) { 263 dev_err(dev, 264 "%s: Failed to register ptp clock\n", __func__); 265 return PTR_ERR(ptp_dte->ptp_clk); 266 } 267 268 platform_set_drvdata(pdev, ptp_dte); 269 270 dev_info(dev, "ptp clk probe done\n"); 271 272 return 0; 273 } 274 275 static int ptp_dte_remove(struct platform_device *pdev) 276 { 277 struct ptp_dte *ptp_dte = platform_get_drvdata(pdev); 278 u8 i; 279 280 ptp_clock_unregister(ptp_dte->ptp_clk); 281 282 for (i = 0; i < DTE_NUM_REGS_TO_RESTORE; i++) 283 writel(0, ptp_dte->regs + (i * sizeof(u32))); 284 285 return 0; 286 } 287 288 #ifdef CONFIG_PM_SLEEP 289 static int ptp_dte_suspend(struct device *dev) 290 { 291 struct platform_device *pdev = to_platform_device(dev); 292 struct ptp_dte *ptp_dte = platform_get_drvdata(pdev); 293 u8 i; 294 295 for (i = 0; i < DTE_NUM_REGS_TO_RESTORE; i++) { 296 ptp_dte->reg_val[i] = 297 readl(ptp_dte->regs + (i * sizeof(u32))); 298 } 299 300 /* disable the nco */ 301 writel(0, ptp_dte->regs + DTE_NCO_INC_REG); 302 303 return 0; 304 } 305 306 static int ptp_dte_resume(struct device *dev) 307 { 308 struct platform_device *pdev = to_platform_device(dev); 309 struct ptp_dte *ptp_dte = platform_get_drvdata(pdev); 310 u8 i; 311 312 for (i = 0; i < DTE_NUM_REGS_TO_RESTORE; i++) { 313 if ((i * sizeof(u32)) != DTE_NCO_OVERFLOW_REG) 314 writel(ptp_dte->reg_val[i], 315 (ptp_dte->regs + (i * sizeof(u32)))); 316 else 317 writel(((ptp_dte->reg_val[i] & 318 DTE_NCO_SUM3_MASK) << DTE_NCO_SUM3_WR_SHIFT), 319 (ptp_dte->regs + (i * sizeof(u32)))); 320 } 321 322 return 0; 323 } 324 325 static const struct dev_pm_ops ptp_dte_pm_ops = { 326 .suspend = ptp_dte_suspend, 327 .resume = ptp_dte_resume 328 }; 329 330 #define PTP_DTE_PM_OPS (&ptp_dte_pm_ops) 331 #else 332 #define PTP_DTE_PM_OPS NULL 333 #endif 334 335 static const struct of_device_id ptp_dte_of_match[] = { 336 { .compatible = "brcm,ptp-dte", }, 337 {}, 338 }; 339 MODULE_DEVICE_TABLE(of, ptp_dte_of_match); 340 341 static struct platform_driver ptp_dte_driver = { 342 .driver = { 343 .name = "ptp-dte", 344 .pm = PTP_DTE_PM_OPS, 345 .of_match_table = ptp_dte_of_match, 346 }, 347 .probe = ptp_dte_probe, 348 .remove = ptp_dte_remove, 349 }; 350 module_platform_driver(ptp_dte_driver); 351 352 MODULE_AUTHOR("Broadcom"); 353 MODULE_DESCRIPTION("Broadcom DTE PTP Clock driver"); 354 MODULE_LICENSE("GPL v2"); 355