xref: /openbmc/linux/drivers/ptp/ptp_dte.c (revision 5d0e4d78)
1 /*
2  * Copyright 2017 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation version 2.
7  *
8  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
9  * kind, whether express or implied; without even the implied warranty
10  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/platform_device.h>
18 #include <linux/ptp_clock_kernel.h>
19 #include <linux/types.h>
20 
21 #define DTE_NCO_LOW_TIME_REG	0x00
22 #define DTE_NCO_TIME_REG	0x04
23 #define DTE_NCO_OVERFLOW_REG	0x08
24 #define DTE_NCO_INC_REG		0x0c
25 
26 #define DTE_NCO_SUM2_MASK	0xffffffff
27 #define DTE_NCO_SUM2_SHIFT	4ULL
28 
29 #define DTE_NCO_SUM3_MASK	0xff
30 #define DTE_NCO_SUM3_SHIFT	36ULL
31 #define DTE_NCO_SUM3_WR_SHIFT	8
32 
33 #define DTE_NCO_TS_WRAP_MASK	0xfff
34 #define DTE_NCO_TS_WRAP_LSHIFT	32
35 
36 #define DTE_NCO_INC_DEFAULT	0x80000000
37 #define DTE_NUM_REGS_TO_RESTORE	4
38 
39 /* Full wrap around is 44bits in ns (~4.887 hrs) */
40 #define DTE_WRAP_AROUND_NSEC_SHIFT 44
41 
42 /* 44 bits NCO */
43 #define DTE_NCO_MAX_NS	0xFFFFFFFFFFFLL
44 
45 /* 125MHz with 3.29 reg cfg */
46 #define DTE_PPB_ADJ(ppb) (u32)(div64_u64((((u64)abs(ppb) * BIT(28)) +\
47 				      62500000ULL), 125000000ULL))
48 
49 /* ptp dte priv structure */
50 struct ptp_dte {
51 	void __iomem *regs;
52 	struct ptp_clock *ptp_clk;
53 	struct ptp_clock_info caps;
54 	struct device *dev;
55 	u32 ts_ovf_last;
56 	u32 ts_wrap_cnt;
57 	spinlock_t lock;
58 	u32 reg_val[DTE_NUM_REGS_TO_RESTORE];
59 };
60 
61 static void dte_write_nco(void __iomem *regs, s64 ns)
62 {
63 	u32 sum2, sum3;
64 
65 	sum2 = (u32)((ns >> DTE_NCO_SUM2_SHIFT) & DTE_NCO_SUM2_MASK);
66 	/* compensate for ignoring sum1 */
67 	if (sum2 != DTE_NCO_SUM2_MASK)
68 		sum2++;
69 
70 	/* to write sum3, bits [15:8] needs to be written */
71 	sum3 = (u32)(((ns >> DTE_NCO_SUM3_SHIFT) & DTE_NCO_SUM3_MASK) <<
72 		     DTE_NCO_SUM3_WR_SHIFT);
73 
74 	writel(0, (regs + DTE_NCO_LOW_TIME_REG));
75 	writel(sum2, (regs + DTE_NCO_TIME_REG));
76 	writel(sum3, (regs + DTE_NCO_OVERFLOW_REG));
77 }
78 
79 static s64 dte_read_nco(void __iomem *regs)
80 {
81 	u32 sum2, sum3;
82 	s64 ns;
83 
84 	/*
85 	 * ignoring sum1 (4 bits) gives a 16ns resolution, which
86 	 * works due to the async register read.
87 	 */
88 	sum3 = readl(regs + DTE_NCO_OVERFLOW_REG) & DTE_NCO_SUM3_MASK;
89 	sum2 = readl(regs + DTE_NCO_TIME_REG);
90 	ns = ((s64)sum3 << DTE_NCO_SUM3_SHIFT) |
91 		 ((s64)sum2 << DTE_NCO_SUM2_SHIFT);
92 
93 	return ns;
94 }
95 
96 static void dte_write_nco_delta(struct ptp_dte *ptp_dte, s64 delta)
97 {
98 	s64 ns;
99 
100 	ns = dte_read_nco(ptp_dte->regs);
101 
102 	/* handle wraparound conditions */
103 	if ((delta < 0) && (abs(delta) > ns)) {
104 		if (ptp_dte->ts_wrap_cnt) {
105 			ns += DTE_NCO_MAX_NS + delta;
106 			ptp_dte->ts_wrap_cnt--;
107 		} else {
108 			ns = 0;
109 		}
110 	} else {
111 		ns += delta;
112 		if (ns > DTE_NCO_MAX_NS) {
113 			ptp_dte->ts_wrap_cnt++;
114 			ns -= DTE_NCO_MAX_NS;
115 		}
116 	}
117 
118 	dte_write_nco(ptp_dte->regs, ns);
119 
120 	ptp_dte->ts_ovf_last = (ns >> DTE_NCO_TS_WRAP_LSHIFT) &
121 			DTE_NCO_TS_WRAP_MASK;
122 }
123 
124 static s64 dte_read_nco_with_ovf(struct ptp_dte *ptp_dte)
125 {
126 	u32 ts_ovf;
127 	s64 ns = 0;
128 
129 	ns = dte_read_nco(ptp_dte->regs);
130 
131 	/*Timestamp overflow: 8 LSB bits of sum3, 4 MSB bits of sum2 */
132 	ts_ovf = (ns >> DTE_NCO_TS_WRAP_LSHIFT) & DTE_NCO_TS_WRAP_MASK;
133 
134 	/* Check for wrap around */
135 	if (ts_ovf < ptp_dte->ts_ovf_last)
136 		ptp_dte->ts_wrap_cnt++;
137 
138 	ptp_dte->ts_ovf_last = ts_ovf;
139 
140 	/* adjust for wraparounds */
141 	ns += (s64)(BIT_ULL(DTE_WRAP_AROUND_NSEC_SHIFT) * ptp_dte->ts_wrap_cnt);
142 
143 	return ns;
144 }
145 
146 static int ptp_dte_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
147 {
148 	u32 nco_incr;
149 	unsigned long flags;
150 	struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps);
151 
152 	if (abs(ppb) > ptp_dte->caps.max_adj) {
153 		dev_err(ptp_dte->dev, "ppb adj too big\n");
154 		return -EINVAL;
155 	}
156 
157 	if (ppb < 0)
158 		nco_incr = DTE_NCO_INC_DEFAULT - DTE_PPB_ADJ(ppb);
159 	else
160 		nco_incr = DTE_NCO_INC_DEFAULT + DTE_PPB_ADJ(ppb);
161 
162 	spin_lock_irqsave(&ptp_dte->lock, flags);
163 	writel(nco_incr, ptp_dte->regs + DTE_NCO_INC_REG);
164 	spin_unlock_irqrestore(&ptp_dte->lock, flags);
165 
166 	return 0;
167 }
168 
169 static int ptp_dte_adjtime(struct ptp_clock_info *ptp, s64 delta)
170 {
171 	unsigned long flags;
172 	struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps);
173 
174 	spin_lock_irqsave(&ptp_dte->lock, flags);
175 	dte_write_nco_delta(ptp_dte, delta);
176 	spin_unlock_irqrestore(&ptp_dte->lock, flags);
177 
178 	return 0;
179 }
180 
181 static int ptp_dte_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
182 {
183 	unsigned long flags;
184 	struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps);
185 
186 	spin_lock_irqsave(&ptp_dte->lock, flags);
187 	*ts = ns_to_timespec64(dte_read_nco_with_ovf(ptp_dte));
188 	spin_unlock_irqrestore(&ptp_dte->lock, flags);
189 
190 	return 0;
191 }
192 
193 static int ptp_dte_settime(struct ptp_clock_info *ptp,
194 			     const struct timespec64 *ts)
195 {
196 	unsigned long flags;
197 	struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps);
198 
199 	spin_lock_irqsave(&ptp_dte->lock, flags);
200 
201 	/* Disable nco increment */
202 	writel(0, ptp_dte->regs + DTE_NCO_INC_REG);
203 
204 	dte_write_nco(ptp_dte->regs, timespec64_to_ns(ts));
205 
206 	/* reset overflow and wrap counter */
207 	ptp_dte->ts_ovf_last = 0;
208 	ptp_dte->ts_wrap_cnt = 0;
209 
210 	/* Enable nco increment */
211 	writel(DTE_NCO_INC_DEFAULT, ptp_dte->regs + DTE_NCO_INC_REG);
212 
213 	spin_unlock_irqrestore(&ptp_dte->lock, flags);
214 
215 	return 0;
216 }
217 
218 static int ptp_dte_enable(struct ptp_clock_info *ptp,
219 			    struct ptp_clock_request *rq, int on)
220 {
221 	return -EOPNOTSUPP;
222 }
223 
224 static struct ptp_clock_info ptp_dte_caps = {
225 	.owner		= THIS_MODULE,
226 	.name		= "DTE PTP timer",
227 	.max_adj	= 50000000,
228 	.n_ext_ts	= 0,
229 	.n_pins		= 0,
230 	.pps		= 0,
231 	.adjfreq	= ptp_dte_adjfreq,
232 	.adjtime	= ptp_dte_adjtime,
233 	.gettime64	= ptp_dte_gettime,
234 	.settime64	= ptp_dte_settime,
235 	.enable		= ptp_dte_enable,
236 };
237 
238 static int ptp_dte_probe(struct platform_device *pdev)
239 {
240 	struct ptp_dte *ptp_dte;
241 	struct device *dev = &pdev->dev;
242 	struct resource *res;
243 
244 	ptp_dte = devm_kzalloc(dev, sizeof(struct ptp_dte), GFP_KERNEL);
245 	if (!ptp_dte)
246 		return -ENOMEM;
247 
248 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
249 	ptp_dte->regs = devm_ioremap_resource(dev, res);
250 	if (IS_ERR(ptp_dte->regs)) {
251 		dev_err(dev,
252 			"%s: io remap failed\n", __func__);
253 		return PTR_ERR(ptp_dte->regs);
254 	}
255 
256 	spin_lock_init(&ptp_dte->lock);
257 
258 	ptp_dte->dev = dev;
259 	ptp_dte->caps = ptp_dte_caps;
260 	ptp_dte->ptp_clk = ptp_clock_register(&ptp_dte->caps, &pdev->dev);
261 	if (IS_ERR(ptp_dte->ptp_clk)) {
262 		dev_err(dev,
263 			"%s: Failed to register ptp clock\n", __func__);
264 		return PTR_ERR(ptp_dte->ptp_clk);
265 	}
266 
267 	platform_set_drvdata(pdev, ptp_dte);
268 
269 	dev_info(dev, "ptp clk probe done\n");
270 
271 	return 0;
272 }
273 
274 static int ptp_dte_remove(struct platform_device *pdev)
275 {
276 	struct ptp_dte *ptp_dte = platform_get_drvdata(pdev);
277 	u8 i;
278 
279 	ptp_clock_unregister(ptp_dte->ptp_clk);
280 
281 	for (i = 0; i < DTE_NUM_REGS_TO_RESTORE; i++)
282 		writel(0, ptp_dte->regs + (i * sizeof(u32)));
283 
284 	return 0;
285 }
286 
287 #ifdef CONFIG_PM_SLEEP
288 static int ptp_dte_suspend(struct device *dev)
289 {
290 	struct platform_device *pdev = to_platform_device(dev);
291 	struct ptp_dte *ptp_dte = platform_get_drvdata(pdev);
292 	u8 i;
293 
294 	for (i = 0; i < DTE_NUM_REGS_TO_RESTORE; i++) {
295 		ptp_dte->reg_val[i] =
296 			readl(ptp_dte->regs + (i * sizeof(u32)));
297 	}
298 
299 	/* disable the nco */
300 	writel(0, ptp_dte->regs + DTE_NCO_INC_REG);
301 
302 	return 0;
303 }
304 
305 static int ptp_dte_resume(struct device *dev)
306 {
307 	struct platform_device *pdev = to_platform_device(dev);
308 	struct ptp_dte *ptp_dte = platform_get_drvdata(pdev);
309 	u8 i;
310 
311 	for (i = 0; i < DTE_NUM_REGS_TO_RESTORE; i++) {
312 		if ((i * sizeof(u32)) != DTE_NCO_OVERFLOW_REG)
313 			writel(ptp_dte->reg_val[i],
314 				(ptp_dte->regs + (i * sizeof(u32))));
315 		else
316 			writel(((ptp_dte->reg_val[i] &
317 				DTE_NCO_SUM3_MASK) << DTE_NCO_SUM3_WR_SHIFT),
318 				(ptp_dte->regs + (i * sizeof(u32))));
319 	}
320 
321 	return 0;
322 }
323 
324 static const struct dev_pm_ops ptp_dte_pm_ops = {
325 	.suspend = ptp_dte_suspend,
326 	.resume = ptp_dte_resume
327 };
328 
329 #define PTP_DTE_PM_OPS	(&ptp_dte_pm_ops)
330 #else
331 #define PTP_DTE_PM_OPS	NULL
332 #endif
333 
334 static const struct of_device_id ptp_dte_of_match[] = {
335 	{ .compatible = "brcm,ptp-dte", },
336 	{},
337 };
338 MODULE_DEVICE_TABLE(of, ptp_dte_of_match);
339 
340 static struct platform_driver ptp_dte_driver = {
341 	.driver = {
342 		.name = "ptp-dte",
343 		.pm = PTP_DTE_PM_OPS,
344 		.of_match_table = ptp_dte_of_match,
345 	},
346 	.probe    = ptp_dte_probe,
347 	.remove   = ptp_dte_remove,
348 };
349 module_platform_driver(ptp_dte_driver);
350 
351 MODULE_AUTHOR("Broadcom");
352 MODULE_DESCRIPTION("Broadcom DTE PTP Clock driver");
353 MODULE_LICENSE("GPL v2");
354