1 // SPDX-License-Identifier: GPL-2.0-only 2 // Copyright 2017 Broadcom 3 4 #include <linux/err.h> 5 #include <linux/io.h> 6 #include <linux/module.h> 7 #include <linux/mod_devicetable.h> 8 #include <linux/platform_device.h> 9 #include <linux/ptp_clock_kernel.h> 10 #include <linux/types.h> 11 12 #define DTE_NCO_LOW_TIME_REG 0x00 13 #define DTE_NCO_TIME_REG 0x04 14 #define DTE_NCO_OVERFLOW_REG 0x08 15 #define DTE_NCO_INC_REG 0x0c 16 17 #define DTE_NCO_SUM2_MASK 0xffffffff 18 #define DTE_NCO_SUM2_SHIFT 4ULL 19 20 #define DTE_NCO_SUM3_MASK 0xff 21 #define DTE_NCO_SUM3_SHIFT 36ULL 22 #define DTE_NCO_SUM3_WR_SHIFT 8 23 24 #define DTE_NCO_TS_WRAP_MASK 0xfff 25 #define DTE_NCO_TS_WRAP_LSHIFT 32 26 27 #define DTE_NCO_INC_DEFAULT 0x80000000 28 #define DTE_NUM_REGS_TO_RESTORE 4 29 30 /* Full wrap around is 44bits in ns (~4.887 hrs) */ 31 #define DTE_WRAP_AROUND_NSEC_SHIFT 44 32 33 /* 44 bits NCO */ 34 #define DTE_NCO_MAX_NS 0xFFFFFFFFFFFLL 35 36 /* 125MHz with 3.29 reg cfg */ 37 #define DTE_PPB_ADJ(ppb) (u32)(div64_u64((((u64)abs(ppb) * BIT(28)) +\ 38 62500000ULL), 125000000ULL)) 39 40 /* ptp dte priv structure */ 41 struct ptp_dte { 42 void __iomem *regs; 43 struct ptp_clock *ptp_clk; 44 struct ptp_clock_info caps; 45 struct device *dev; 46 u32 ts_ovf_last; 47 u32 ts_wrap_cnt; 48 spinlock_t lock; 49 u32 reg_val[DTE_NUM_REGS_TO_RESTORE]; 50 }; 51 52 static void dte_write_nco(void __iomem *regs, s64 ns) 53 { 54 u32 sum2, sum3; 55 56 sum2 = (u32)((ns >> DTE_NCO_SUM2_SHIFT) & DTE_NCO_SUM2_MASK); 57 /* compensate for ignoring sum1 */ 58 if (sum2 != DTE_NCO_SUM2_MASK) 59 sum2++; 60 61 /* to write sum3, bits [15:8] needs to be written */ 62 sum3 = (u32)(((ns >> DTE_NCO_SUM3_SHIFT) & DTE_NCO_SUM3_MASK) << 63 DTE_NCO_SUM3_WR_SHIFT); 64 65 writel(0, (regs + DTE_NCO_LOW_TIME_REG)); 66 writel(sum2, (regs + DTE_NCO_TIME_REG)); 67 writel(sum3, (regs + DTE_NCO_OVERFLOW_REG)); 68 } 69 70 static s64 dte_read_nco(void __iomem *regs) 71 { 72 u32 sum2, sum3; 73 s64 ns; 74 75 /* 76 * ignoring sum1 (4 bits) gives a 16ns resolution, which 77 * works due to the async register read. 78 */ 79 sum3 = readl(regs + DTE_NCO_OVERFLOW_REG) & DTE_NCO_SUM3_MASK; 80 sum2 = readl(regs + DTE_NCO_TIME_REG); 81 ns = ((s64)sum3 << DTE_NCO_SUM3_SHIFT) | 82 ((s64)sum2 << DTE_NCO_SUM2_SHIFT); 83 84 return ns; 85 } 86 87 static void dte_write_nco_delta(struct ptp_dte *ptp_dte, s64 delta) 88 { 89 s64 ns; 90 91 ns = dte_read_nco(ptp_dte->regs); 92 93 /* handle wraparound conditions */ 94 if ((delta < 0) && (abs(delta) > ns)) { 95 if (ptp_dte->ts_wrap_cnt) { 96 ns += DTE_NCO_MAX_NS + delta; 97 ptp_dte->ts_wrap_cnt--; 98 } else { 99 ns = 0; 100 } 101 } else { 102 ns += delta; 103 if (ns > DTE_NCO_MAX_NS) { 104 ptp_dte->ts_wrap_cnt++; 105 ns -= DTE_NCO_MAX_NS; 106 } 107 } 108 109 dte_write_nco(ptp_dte->regs, ns); 110 111 ptp_dte->ts_ovf_last = (ns >> DTE_NCO_TS_WRAP_LSHIFT) & 112 DTE_NCO_TS_WRAP_MASK; 113 } 114 115 static s64 dte_read_nco_with_ovf(struct ptp_dte *ptp_dte) 116 { 117 u32 ts_ovf; 118 s64 ns = 0; 119 120 ns = dte_read_nco(ptp_dte->regs); 121 122 /*Timestamp overflow: 8 LSB bits of sum3, 4 MSB bits of sum2 */ 123 ts_ovf = (ns >> DTE_NCO_TS_WRAP_LSHIFT) & DTE_NCO_TS_WRAP_MASK; 124 125 /* Check for wrap around */ 126 if (ts_ovf < ptp_dte->ts_ovf_last) 127 ptp_dte->ts_wrap_cnt++; 128 129 ptp_dte->ts_ovf_last = ts_ovf; 130 131 /* adjust for wraparounds */ 132 ns += (s64)(BIT_ULL(DTE_WRAP_AROUND_NSEC_SHIFT) * ptp_dte->ts_wrap_cnt); 133 134 return ns; 135 } 136 137 static int ptp_dte_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 138 { 139 s32 ppb = scaled_ppm_to_ppb(scaled_ppm); 140 u32 nco_incr; 141 unsigned long flags; 142 struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps); 143 144 if (abs(ppb) > ptp_dte->caps.max_adj) { 145 dev_err(ptp_dte->dev, "ppb adj too big\n"); 146 return -EINVAL; 147 } 148 149 if (ppb < 0) 150 nco_incr = DTE_NCO_INC_DEFAULT - DTE_PPB_ADJ(ppb); 151 else 152 nco_incr = DTE_NCO_INC_DEFAULT + DTE_PPB_ADJ(ppb); 153 154 spin_lock_irqsave(&ptp_dte->lock, flags); 155 writel(nco_incr, ptp_dte->regs + DTE_NCO_INC_REG); 156 spin_unlock_irqrestore(&ptp_dte->lock, flags); 157 158 return 0; 159 } 160 161 static int ptp_dte_adjtime(struct ptp_clock_info *ptp, s64 delta) 162 { 163 unsigned long flags; 164 struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps); 165 166 spin_lock_irqsave(&ptp_dte->lock, flags); 167 dte_write_nco_delta(ptp_dte, delta); 168 spin_unlock_irqrestore(&ptp_dte->lock, flags); 169 170 return 0; 171 } 172 173 static int ptp_dte_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 174 { 175 unsigned long flags; 176 struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps); 177 178 spin_lock_irqsave(&ptp_dte->lock, flags); 179 *ts = ns_to_timespec64(dte_read_nco_with_ovf(ptp_dte)); 180 spin_unlock_irqrestore(&ptp_dte->lock, flags); 181 182 return 0; 183 } 184 185 static int ptp_dte_settime(struct ptp_clock_info *ptp, 186 const struct timespec64 *ts) 187 { 188 unsigned long flags; 189 struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps); 190 191 spin_lock_irqsave(&ptp_dte->lock, flags); 192 193 /* Disable nco increment */ 194 writel(0, ptp_dte->regs + DTE_NCO_INC_REG); 195 196 dte_write_nco(ptp_dte->regs, timespec64_to_ns(ts)); 197 198 /* reset overflow and wrap counter */ 199 ptp_dte->ts_ovf_last = 0; 200 ptp_dte->ts_wrap_cnt = 0; 201 202 /* Enable nco increment */ 203 writel(DTE_NCO_INC_DEFAULT, ptp_dte->regs + DTE_NCO_INC_REG); 204 205 spin_unlock_irqrestore(&ptp_dte->lock, flags); 206 207 return 0; 208 } 209 210 static int ptp_dte_enable(struct ptp_clock_info *ptp, 211 struct ptp_clock_request *rq, int on) 212 { 213 return -EOPNOTSUPP; 214 } 215 216 static const struct ptp_clock_info ptp_dte_caps = { 217 .owner = THIS_MODULE, 218 .name = "DTE PTP timer", 219 .max_adj = 50000000, 220 .n_ext_ts = 0, 221 .n_pins = 0, 222 .pps = 0, 223 .adjfine = ptp_dte_adjfine, 224 .adjtime = ptp_dte_adjtime, 225 .gettime64 = ptp_dte_gettime, 226 .settime64 = ptp_dte_settime, 227 .enable = ptp_dte_enable, 228 }; 229 230 static int ptp_dte_probe(struct platform_device *pdev) 231 { 232 struct ptp_dte *ptp_dte; 233 struct device *dev = &pdev->dev; 234 235 ptp_dte = devm_kzalloc(dev, sizeof(struct ptp_dte), GFP_KERNEL); 236 if (!ptp_dte) 237 return -ENOMEM; 238 239 ptp_dte->regs = devm_platform_ioremap_resource(pdev, 0); 240 if (IS_ERR(ptp_dte->regs)) 241 return PTR_ERR(ptp_dte->regs); 242 243 spin_lock_init(&ptp_dte->lock); 244 245 ptp_dte->dev = dev; 246 ptp_dte->caps = ptp_dte_caps; 247 ptp_dte->ptp_clk = ptp_clock_register(&ptp_dte->caps, &pdev->dev); 248 if (IS_ERR(ptp_dte->ptp_clk)) { 249 dev_err(dev, 250 "%s: Failed to register ptp clock\n", __func__); 251 return PTR_ERR(ptp_dte->ptp_clk); 252 } 253 254 platform_set_drvdata(pdev, ptp_dte); 255 256 dev_info(dev, "ptp clk probe done\n"); 257 258 return 0; 259 } 260 261 static int ptp_dte_remove(struct platform_device *pdev) 262 { 263 struct ptp_dte *ptp_dte = platform_get_drvdata(pdev); 264 u8 i; 265 266 ptp_clock_unregister(ptp_dte->ptp_clk); 267 268 for (i = 0; i < DTE_NUM_REGS_TO_RESTORE; i++) 269 writel(0, ptp_dte->regs + (i * sizeof(u32))); 270 271 return 0; 272 } 273 274 #ifdef CONFIG_PM_SLEEP 275 static int ptp_dte_suspend(struct device *dev) 276 { 277 struct ptp_dte *ptp_dte = dev_get_drvdata(dev); 278 u8 i; 279 280 for (i = 0; i < DTE_NUM_REGS_TO_RESTORE; i++) { 281 ptp_dte->reg_val[i] = 282 readl(ptp_dte->regs + (i * sizeof(u32))); 283 } 284 285 /* disable the nco */ 286 writel(0, ptp_dte->regs + DTE_NCO_INC_REG); 287 288 return 0; 289 } 290 291 static int ptp_dte_resume(struct device *dev) 292 { 293 struct ptp_dte *ptp_dte = dev_get_drvdata(dev); 294 u8 i; 295 296 for (i = 0; i < DTE_NUM_REGS_TO_RESTORE; i++) { 297 if ((i * sizeof(u32)) != DTE_NCO_OVERFLOW_REG) 298 writel(ptp_dte->reg_val[i], 299 (ptp_dte->regs + (i * sizeof(u32)))); 300 else 301 writel(((ptp_dte->reg_val[i] & 302 DTE_NCO_SUM3_MASK) << DTE_NCO_SUM3_WR_SHIFT), 303 (ptp_dte->regs + (i * sizeof(u32)))); 304 } 305 306 return 0; 307 } 308 309 static const struct dev_pm_ops ptp_dte_pm_ops = { 310 .suspend = ptp_dte_suspend, 311 .resume = ptp_dte_resume 312 }; 313 314 #define PTP_DTE_PM_OPS (&ptp_dte_pm_ops) 315 #else 316 #define PTP_DTE_PM_OPS NULL 317 #endif 318 319 static const struct of_device_id ptp_dte_of_match[] = { 320 { .compatible = "brcm,ptp-dte", }, 321 {}, 322 }; 323 MODULE_DEVICE_TABLE(of, ptp_dte_of_match); 324 325 static struct platform_driver ptp_dte_driver = { 326 .driver = { 327 .name = "ptp-dte", 328 .pm = PTP_DTE_PM_OPS, 329 .of_match_table = ptp_dte_of_match, 330 }, 331 .probe = ptp_dte_probe, 332 .remove = ptp_dte_remove, 333 }; 334 module_platform_driver(ptp_dte_driver); 335 336 MODULE_AUTHOR("Broadcom"); 337 MODULE_DESCRIPTION("Broadcom DTE PTP Clock driver"); 338 MODULE_LICENSE("GPL v2"); 339