xref: /openbmc/linux/drivers/ptp/ptp_clockmatrix.c (revision 61bf3293)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * PTP hardware clock driver for the IDT ClockMatrix(TM) family of timing and
4  * synchronization devices.
5  *
6  * Copyright (C) 2019 Integrated Device Technology, Inc., a Renesas Company.
7  */
8 #include <linux/firmware.h>
9 #include <linux/i2c.h>
10 #include <linux/module.h>
11 #include <linux/ptp_clock_kernel.h>
12 #include <linux/delay.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/timekeeping.h>
16 
17 #include "ptp_private.h"
18 #include "ptp_clockmatrix.h"
19 
20 MODULE_DESCRIPTION("Driver for IDT ClockMatrix(TM) family");
21 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
22 MODULE_AUTHOR("IDT support-1588 <IDT-support-1588@lm.renesas.com>");
23 MODULE_VERSION("1.0");
24 MODULE_LICENSE("GPL");
25 
26 #define SETTIME_CORRECTION (0)
27 
28 static long set_write_phase_ready(struct ptp_clock_info *ptp)
29 {
30 	struct idtcm_channel *channel =
31 		container_of(ptp, struct idtcm_channel, caps);
32 
33 	channel->write_phase_ready = 1;
34 
35 	return 0;
36 }
37 
38 static int char_array_to_timespec(u8 *buf,
39 				  u8 count,
40 				  struct timespec64 *ts)
41 {
42 	u8 i;
43 	u64 nsec;
44 	time64_t sec;
45 
46 	if (count < TOD_BYTE_COUNT)
47 		return 1;
48 
49 	/* Sub-nanoseconds are in buf[0]. */
50 	nsec = buf[4];
51 	for (i = 0; i < 3; i++) {
52 		nsec <<= 8;
53 		nsec |= buf[3 - i];
54 	}
55 
56 	sec = buf[10];
57 	for (i = 0; i < 5; i++) {
58 		sec <<= 8;
59 		sec |= buf[9 - i];
60 	}
61 
62 	ts->tv_sec = sec;
63 	ts->tv_nsec = nsec;
64 
65 	return 0;
66 }
67 
68 static int timespec_to_char_array(struct timespec64 const *ts,
69 				  u8 *buf,
70 				  u8 count)
71 {
72 	u8 i;
73 	s32 nsec;
74 	time64_t sec;
75 
76 	if (count < TOD_BYTE_COUNT)
77 		return 1;
78 
79 	nsec = ts->tv_nsec;
80 	sec = ts->tv_sec;
81 
82 	/* Sub-nanoseconds are in buf[0]. */
83 	buf[0] = 0;
84 	for (i = 1; i < 5; i++) {
85 		buf[i] = nsec & 0xff;
86 		nsec >>= 8;
87 	}
88 
89 	for (i = 5; i < TOD_BYTE_COUNT; i++) {
90 
91 		buf[i] = sec & 0xff;
92 		sec >>= 8;
93 	}
94 
95 	return 0;
96 }
97 
98 static int idtcm_xfer(struct idtcm *idtcm,
99 		      u8 regaddr,
100 		      u8 *buf,
101 		      u16 count,
102 		      bool write)
103 {
104 	struct i2c_client *client = idtcm->client;
105 	struct i2c_msg msg[2];
106 	int cnt;
107 
108 	msg[0].addr = client->addr;
109 	msg[0].flags = 0;
110 	msg[0].len = 1;
111 	msg[0].buf = &regaddr;
112 
113 	msg[1].addr = client->addr;
114 	msg[1].flags = write ? 0 : I2C_M_RD;
115 	msg[1].len = count;
116 	msg[1].buf = buf;
117 
118 	cnt = i2c_transfer(client->adapter, msg, 2);
119 
120 	if (cnt < 0) {
121 		dev_err(&client->dev, "i2c_transfer returned %d\n", cnt);
122 		return cnt;
123 	} else if (cnt != 2) {
124 		dev_err(&client->dev,
125 			"i2c_transfer sent only %d of %d messages\n", cnt, 2);
126 		return -EIO;
127 	}
128 
129 	return 0;
130 }
131 
132 static int idtcm_page_offset(struct idtcm *idtcm, u8 val)
133 {
134 	u8 buf[4];
135 	int err;
136 
137 	if (idtcm->page_offset == val)
138 		return 0;
139 
140 	buf[0] = 0x0;
141 	buf[1] = val;
142 	buf[2] = 0x10;
143 	buf[3] = 0x20;
144 
145 	err = idtcm_xfer(idtcm, PAGE_ADDR, buf, sizeof(buf), 1);
146 
147 	if (err)
148 		dev_err(&idtcm->client->dev, "failed to set page offset\n");
149 	else
150 		idtcm->page_offset = val;
151 
152 	return err;
153 }
154 
155 static int _idtcm_rdwr(struct idtcm *idtcm,
156 		       u16 regaddr,
157 		       u8 *buf,
158 		       u16 count,
159 		       bool write)
160 {
161 	u8 hi;
162 	u8 lo;
163 	int err;
164 
165 	hi = (regaddr >> 8) & 0xff;
166 	lo = regaddr & 0xff;
167 
168 	err = idtcm_page_offset(idtcm, hi);
169 
170 	if (err)
171 		goto out;
172 
173 	err = idtcm_xfer(idtcm, lo, buf, count, write);
174 out:
175 	return err;
176 }
177 
178 static int idtcm_read(struct idtcm *idtcm,
179 		      u16 module,
180 		      u16 regaddr,
181 		      u8 *buf,
182 		      u16 count)
183 {
184 	return _idtcm_rdwr(idtcm, module + regaddr, buf, count, false);
185 }
186 
187 static int idtcm_write(struct idtcm *idtcm,
188 		       u16 module,
189 		       u16 regaddr,
190 		       u8 *buf,
191 		       u16 count)
192 {
193 	return _idtcm_rdwr(idtcm, module + regaddr, buf, count, true);
194 }
195 
196 static int _idtcm_gettime(struct idtcm_channel *channel,
197 			  struct timespec64 *ts)
198 {
199 	struct idtcm *idtcm = channel->idtcm;
200 	u8 buf[TOD_BYTE_COUNT];
201 	u8 trigger;
202 	int err;
203 
204 	err = idtcm_read(idtcm, channel->tod_read_primary,
205 			 TOD_READ_PRIMARY_CMD, &trigger, sizeof(trigger));
206 	if (err)
207 		return err;
208 
209 	trigger &= ~(TOD_READ_TRIGGER_MASK << TOD_READ_TRIGGER_SHIFT);
210 	trigger |= (1 << TOD_READ_TRIGGER_SHIFT);
211 	trigger |= TOD_READ_TRIGGER_MODE;
212 
213 	err = idtcm_write(idtcm, channel->tod_read_primary,
214 			  TOD_READ_PRIMARY_CMD, &trigger, sizeof(trigger));
215 
216 	if (err)
217 		return err;
218 
219 	if (idtcm->calculate_overhead_flag)
220 		idtcm->start_time = ktime_get_raw();
221 
222 	err = idtcm_read(idtcm, channel->tod_read_primary,
223 			 TOD_READ_PRIMARY, buf, sizeof(buf));
224 
225 	if (err)
226 		return err;
227 
228 	err = char_array_to_timespec(buf, sizeof(buf), ts);
229 
230 	return err;
231 }
232 
233 static int _sync_pll_output(struct idtcm *idtcm,
234 			    u8 pll,
235 			    u8 sync_src,
236 			    u8 qn,
237 			    u8 qn_plus_1)
238 {
239 	int err;
240 	u8 val;
241 	u16 sync_ctrl0;
242 	u16 sync_ctrl1;
243 
244 	if ((qn == 0) && (qn_plus_1 == 0))
245 		return 0;
246 
247 	switch (pll) {
248 	case 0:
249 		sync_ctrl0 = HW_Q0_Q1_CH_SYNC_CTRL_0;
250 		sync_ctrl1 = HW_Q0_Q1_CH_SYNC_CTRL_1;
251 		break;
252 	case 1:
253 		sync_ctrl0 = HW_Q2_Q3_CH_SYNC_CTRL_0;
254 		sync_ctrl1 = HW_Q2_Q3_CH_SYNC_CTRL_1;
255 		break;
256 	case 2:
257 		sync_ctrl0 = HW_Q4_Q5_CH_SYNC_CTRL_0;
258 		sync_ctrl1 = HW_Q4_Q5_CH_SYNC_CTRL_1;
259 		break;
260 	case 3:
261 		sync_ctrl0 = HW_Q6_Q7_CH_SYNC_CTRL_0;
262 		sync_ctrl1 = HW_Q6_Q7_CH_SYNC_CTRL_1;
263 		break;
264 	case 4:
265 		sync_ctrl0 = HW_Q8_CH_SYNC_CTRL_0;
266 		sync_ctrl1 = HW_Q8_CH_SYNC_CTRL_1;
267 		break;
268 	case 5:
269 		sync_ctrl0 = HW_Q9_CH_SYNC_CTRL_0;
270 		sync_ctrl1 = HW_Q9_CH_SYNC_CTRL_1;
271 		break;
272 	case 6:
273 		sync_ctrl0 = HW_Q10_CH_SYNC_CTRL_0;
274 		sync_ctrl1 = HW_Q10_CH_SYNC_CTRL_1;
275 		break;
276 	case 7:
277 		sync_ctrl0 = HW_Q11_CH_SYNC_CTRL_0;
278 		sync_ctrl1 = HW_Q11_CH_SYNC_CTRL_1;
279 		break;
280 	default:
281 		return -EINVAL;
282 	}
283 
284 	val = SYNCTRL1_MASTER_SYNC_RST;
285 
286 	/* Place master sync in reset */
287 	err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val));
288 	if (err)
289 		return err;
290 
291 	err = idtcm_write(idtcm, 0, sync_ctrl0, &sync_src, sizeof(sync_src));
292 	if (err)
293 		return err;
294 
295 	/* Set sync trigger mask */
296 	val |= SYNCTRL1_FBDIV_FRAME_SYNC_TRIG | SYNCTRL1_FBDIV_SYNC_TRIG;
297 
298 	if (qn)
299 		val |= SYNCTRL1_Q0_DIV_SYNC_TRIG;
300 
301 	if (qn_plus_1)
302 		val |= SYNCTRL1_Q1_DIV_SYNC_TRIG;
303 
304 	err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val));
305 	if (err)
306 		return err;
307 
308 	/* Place master sync out of reset */
309 	val &= ~(SYNCTRL1_MASTER_SYNC_RST);
310 	err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val));
311 
312 	return err;
313 }
314 
315 static int idtcm_sync_pps_output(struct idtcm_channel *channel)
316 {
317 	struct idtcm *idtcm = channel->idtcm;
318 
319 	u8 pll;
320 	u8 sync_src;
321 	u8 qn;
322 	u8 qn_plus_1;
323 	int err = 0;
324 
325 	u16 output_mask = channel->output_mask;
326 
327 	switch (channel->dpll_n) {
328 	case DPLL_0:
329 		sync_src = SYNC_SOURCE_DPLL0_TOD_PPS;
330 		break;
331 	case DPLL_1:
332 		sync_src = SYNC_SOURCE_DPLL1_TOD_PPS;
333 		break;
334 	case DPLL_2:
335 		sync_src = SYNC_SOURCE_DPLL2_TOD_PPS;
336 		break;
337 	case DPLL_3:
338 		sync_src = SYNC_SOURCE_DPLL3_TOD_PPS;
339 		break;
340 	default:
341 		return -EINVAL;
342 	}
343 
344 	for (pll = 0; pll < 8; pll++) {
345 
346 		qn = output_mask & 0x1;
347 		output_mask = output_mask >> 1;
348 
349 		if (pll < 4) {
350 			/* First 4 pll has 2 outputs */
351 			qn_plus_1 = output_mask & 0x1;
352 			output_mask = output_mask >> 1;
353 		} else {
354 			qn_plus_1 = 0;
355 		}
356 
357 		if ((qn != 0) || (qn_plus_1 != 0))
358 			err = _sync_pll_output(idtcm, pll, sync_src, qn,
359 					       qn_plus_1);
360 
361 		if (err)
362 			return err;
363 	}
364 
365 	return err;
366 }
367 
368 static int _idtcm_set_dpll_tod(struct idtcm_channel *channel,
369 			       struct timespec64 const *ts,
370 			       enum hw_tod_write_trig_sel wr_trig)
371 {
372 	struct idtcm *idtcm = channel->idtcm;
373 
374 	u8 buf[TOD_BYTE_COUNT];
375 	u8 cmd;
376 	int err;
377 	struct timespec64 local_ts = *ts;
378 	s64 total_overhead_ns;
379 
380 	/* Configure HW TOD write trigger. */
381 	err = idtcm_read(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1,
382 			 &cmd, sizeof(cmd));
383 
384 	if (err)
385 		return err;
386 
387 	cmd &= ~(0x0f);
388 	cmd |= wr_trig | 0x08;
389 
390 	err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1,
391 			  &cmd, sizeof(cmd));
392 
393 	if (err)
394 		return err;
395 
396 	if (wr_trig  != HW_TOD_WR_TRIG_SEL_MSB) {
397 
398 		err = timespec_to_char_array(&local_ts, buf, sizeof(buf));
399 
400 		if (err)
401 			return err;
402 
403 		err = idtcm_write(idtcm, channel->hw_dpll_n,
404 				  HW_DPLL_TOD_OVR__0, buf, sizeof(buf));
405 
406 		if (err)
407 			return err;
408 	}
409 
410 	/* ARM HW TOD write trigger. */
411 	cmd &= ~(0x08);
412 
413 	err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1,
414 			  &cmd, sizeof(cmd));
415 
416 	if (wr_trig == HW_TOD_WR_TRIG_SEL_MSB) {
417 
418 		if (idtcm->calculate_overhead_flag) {
419 			/* Assumption: I2C @ 400KHz */
420 			total_overhead_ns =  ktime_to_ns(ktime_get_raw()
421 							 - idtcm->start_time)
422 					     + idtcm->tod_write_overhead_ns
423 					     + SETTIME_CORRECTION;
424 
425 			timespec64_add_ns(&local_ts, total_overhead_ns);
426 
427 			idtcm->calculate_overhead_flag = 0;
428 		}
429 
430 		err = timespec_to_char_array(&local_ts, buf, sizeof(buf));
431 
432 		if (err)
433 			return err;
434 
435 		err = idtcm_write(idtcm, channel->hw_dpll_n,
436 				  HW_DPLL_TOD_OVR__0, buf, sizeof(buf));
437 	}
438 
439 	return err;
440 }
441 
442 static int _idtcm_settime(struct idtcm_channel *channel,
443 			  struct timespec64 const *ts,
444 			  enum hw_tod_write_trig_sel wr_trig)
445 {
446 	struct idtcm *idtcm = channel->idtcm;
447 	s32 retval;
448 	int err;
449 	int i;
450 	u8 trig_sel;
451 
452 	err = _idtcm_set_dpll_tod(channel, ts, wr_trig);
453 
454 	if (err)
455 		return err;
456 
457 	/* Wait for the operation to complete. */
458 	for (i = 0; i < 10000; i++) {
459 		err = idtcm_read(idtcm, channel->hw_dpll_n,
460 				 HW_DPLL_TOD_CTRL_1, &trig_sel,
461 				 sizeof(trig_sel));
462 
463 		if (err)
464 			return err;
465 
466 		if (trig_sel == 0x4a)
467 			break;
468 
469 		err = 1;
470 	}
471 
472 	if (err)
473 		return err;
474 
475 	retval = idtcm_sync_pps_output(channel);
476 
477 	return retval;
478 }
479 
480 static int idtcm_set_phase_pull_in_offset(struct idtcm_channel *channel,
481 					  s32 offset_ns)
482 {
483 	int err;
484 	int i;
485 	struct idtcm *idtcm = channel->idtcm;
486 
487 	u8 buf[4];
488 
489 	for (i = 0; i < 4; i++) {
490 		buf[i] = 0xff & (offset_ns);
491 		offset_ns >>= 8;
492 	}
493 
494 	err = idtcm_write(idtcm, channel->dpll_phase_pull_in, PULL_IN_OFFSET,
495 			  buf, sizeof(buf));
496 
497 	return err;
498 }
499 
500 static int idtcm_set_phase_pull_in_slope_limit(struct idtcm_channel *channel,
501 					       u32 max_ffo_ppb)
502 {
503 	int err;
504 	u8 i;
505 	struct idtcm *idtcm = channel->idtcm;
506 
507 	u8 buf[3];
508 
509 	if (max_ffo_ppb & 0xff000000)
510 		max_ffo_ppb = 0;
511 
512 	for (i = 0; i < 3; i++) {
513 		buf[i] = 0xff & (max_ffo_ppb);
514 		max_ffo_ppb >>= 8;
515 	}
516 
517 	err = idtcm_write(idtcm, channel->dpll_phase_pull_in,
518 			  PULL_IN_SLOPE_LIMIT, buf, sizeof(buf));
519 
520 	return err;
521 }
522 
523 static int idtcm_start_phase_pull_in(struct idtcm_channel *channel)
524 {
525 	int err;
526 	struct idtcm *idtcm = channel->idtcm;
527 
528 	u8 buf;
529 
530 	err = idtcm_read(idtcm, channel->dpll_phase_pull_in, PULL_IN_CTRL,
531 			 &buf, sizeof(buf));
532 
533 	if (err)
534 		return err;
535 
536 	if (buf == 0) {
537 		buf = 0x01;
538 		err = idtcm_write(idtcm, channel->dpll_phase_pull_in,
539 				  PULL_IN_CTRL, &buf, sizeof(buf));
540 	} else {
541 		err = -EBUSY;
542 	}
543 
544 	return err;
545 }
546 
547 static int idtcm_do_phase_pull_in(struct idtcm_channel *channel,
548 				  s32 offset_ns,
549 				  u32 max_ffo_ppb)
550 {
551 	int err;
552 
553 	err = idtcm_set_phase_pull_in_offset(channel, -offset_ns);
554 
555 	if (err)
556 		return err;
557 
558 	err = idtcm_set_phase_pull_in_slope_limit(channel, max_ffo_ppb);
559 
560 	if (err)
561 		return err;
562 
563 	err = idtcm_start_phase_pull_in(channel);
564 
565 	return err;
566 }
567 
568 static int _idtcm_adjtime(struct idtcm_channel *channel, s64 delta)
569 {
570 	int err;
571 	struct idtcm *idtcm = channel->idtcm;
572 	struct timespec64 ts;
573 	s64 now;
574 
575 	if (abs(delta) < PHASE_PULL_IN_THRESHOLD_NS) {
576 		err = idtcm_do_phase_pull_in(channel, delta, 0);
577 	} else {
578 		idtcm->calculate_overhead_flag = 1;
579 
580 		err = _idtcm_gettime(channel, &ts);
581 
582 		if (err)
583 			return err;
584 
585 		now = timespec64_to_ns(&ts);
586 		now += delta;
587 
588 		ts = ns_to_timespec64(now);
589 
590 		err = _idtcm_settime(channel, &ts, HW_TOD_WR_TRIG_SEL_MSB);
591 	}
592 
593 	return err;
594 }
595 
596 static int idtcm_state_machine_reset(struct idtcm *idtcm)
597 {
598 	int err;
599 	u8 byte = SM_RESET_CMD;
600 
601 	err = idtcm_write(idtcm, RESET_CTRL, SM_RESET, &byte, sizeof(byte));
602 
603 	if (!err)
604 		msleep_interruptible(POST_SM_RESET_DELAY_MS);
605 
606 	return err;
607 }
608 
609 static int idtcm_read_hw_rev_id(struct idtcm *idtcm, u8 *hw_rev_id)
610 {
611 	return idtcm_read(idtcm, HW_REVISION, REV_ID, hw_rev_id, sizeof(u8));
612 }
613 
614 static int idtcm_read_product_id(struct idtcm *idtcm, u16 *product_id)
615 {
616 	int err;
617 	u8 buf[2] = {0};
618 
619 	err = idtcm_read(idtcm, GENERAL_STATUS, PRODUCT_ID, buf, sizeof(buf));
620 
621 	*product_id = (buf[1] << 8) | buf[0];
622 
623 	return err;
624 }
625 
626 static int idtcm_read_major_release(struct idtcm *idtcm, u8 *major)
627 {
628 	int err;
629 	u8 buf = 0;
630 
631 	err = idtcm_read(idtcm, GENERAL_STATUS, MAJ_REL, &buf, sizeof(buf));
632 
633 	*major = buf >> 1;
634 
635 	return err;
636 }
637 
638 static int idtcm_read_minor_release(struct idtcm *idtcm, u8 *minor)
639 {
640 	return idtcm_read(idtcm, GENERAL_STATUS, MIN_REL, minor, sizeof(u8));
641 }
642 
643 static int idtcm_read_hotfix_release(struct idtcm *idtcm, u8 *hotfix)
644 {
645 	return idtcm_read(idtcm,
646 			  GENERAL_STATUS,
647 			  HOTFIX_REL,
648 			  hotfix,
649 			  sizeof(u8));
650 }
651 
652 static int idtcm_read_otp_scsr_config_select(struct idtcm *idtcm,
653 					     u8 *config_select)
654 {
655 	return idtcm_read(idtcm, GENERAL_STATUS, OTP_SCSR_CONFIG_SELECT,
656 			  config_select, sizeof(u8));
657 }
658 
659 static int process_pll_mask(struct idtcm *idtcm, u32 addr, u8 val, u8 *mask)
660 {
661 	int err = 0;
662 
663 	if (addr == PLL_MASK_ADDR) {
664 		if ((val & 0xf0) || !(val & 0xf)) {
665 			dev_err(&idtcm->client->dev,
666 				"Invalid PLL mask 0x%hhx\n", val);
667 			err = -EINVAL;
668 		}
669 		*mask = val;
670 	}
671 
672 	return err;
673 }
674 
675 static int set_pll_output_mask(struct idtcm *idtcm, u16 addr, u8 val)
676 {
677 	int err = 0;
678 
679 	switch (addr) {
680 	case OUTPUT_MASK_PLL0_ADDR:
681 		SET_U16_LSB(idtcm->channel[0].output_mask, val);
682 		break;
683 	case OUTPUT_MASK_PLL0_ADDR + 1:
684 		SET_U16_MSB(idtcm->channel[0].output_mask, val);
685 		break;
686 	case OUTPUT_MASK_PLL1_ADDR:
687 		SET_U16_LSB(idtcm->channel[1].output_mask, val);
688 		break;
689 	case OUTPUT_MASK_PLL1_ADDR + 1:
690 		SET_U16_MSB(idtcm->channel[1].output_mask, val);
691 		break;
692 	case OUTPUT_MASK_PLL2_ADDR:
693 		SET_U16_LSB(idtcm->channel[2].output_mask, val);
694 		break;
695 	case OUTPUT_MASK_PLL2_ADDR + 1:
696 		SET_U16_MSB(idtcm->channel[2].output_mask, val);
697 		break;
698 	case OUTPUT_MASK_PLL3_ADDR:
699 		SET_U16_LSB(idtcm->channel[3].output_mask, val);
700 		break;
701 	case OUTPUT_MASK_PLL3_ADDR + 1:
702 		SET_U16_MSB(idtcm->channel[3].output_mask, val);
703 		break;
704 	default:
705 		err = -EINVAL;
706 		break;
707 	}
708 
709 	return err;
710 }
711 
712 static int check_and_set_masks(struct idtcm *idtcm,
713 			       u16 regaddr,
714 			       u8 val)
715 {
716 	int err = 0;
717 
718 	if (set_pll_output_mask(idtcm, regaddr, val)) {
719 		/* Not an output mask, check for pll mask */
720 		err = process_pll_mask(idtcm, regaddr, val, &idtcm->pll_mask);
721 	}
722 
723 	return err;
724 }
725 
726 static void display_pll_and_output_masks(struct idtcm *idtcm)
727 {
728 	u8 i;
729 	u8 mask;
730 
731 	dev_dbg(&idtcm->client->dev, "pllmask = 0x%02x\n", idtcm->pll_mask);
732 
733 	for (i = 0; i < MAX_PHC_PLL; i++) {
734 		mask = 1 << i;
735 
736 		if (mask & idtcm->pll_mask)
737 			dev_dbg(&idtcm->client->dev,
738 				"PLL%d output_mask = 0x%04x\n",
739 				i, idtcm->channel[i].output_mask);
740 	}
741 }
742 
743 static int idtcm_load_firmware(struct idtcm *idtcm,
744 			       struct device *dev)
745 {
746 	const struct firmware *fw;
747 	struct idtcm_fwrc *rec;
748 	u32 regaddr;
749 	int err;
750 	s32 len;
751 	u8 val;
752 	u8 loaddr;
753 
754 	dev_dbg(&idtcm->client->dev, "requesting firmware '%s'\n", FW_FILENAME);
755 
756 	err = request_firmware(&fw, FW_FILENAME, dev);
757 
758 	if (err)
759 		return err;
760 
761 	dev_dbg(&idtcm->client->dev, "firmware size %zu bytes\n", fw->size);
762 
763 	rec = (struct idtcm_fwrc *) fw->data;
764 
765 	if (fw->size > 0)
766 		idtcm_state_machine_reset(idtcm);
767 
768 	for (len = fw->size; len > 0; len -= sizeof(*rec)) {
769 
770 		if (rec->reserved) {
771 			dev_err(&idtcm->client->dev,
772 				"bad firmware, reserved field non-zero\n");
773 			err = -EINVAL;
774 		} else {
775 			regaddr = rec->hiaddr << 8;
776 			regaddr |= rec->loaddr;
777 
778 			val = rec->value;
779 			loaddr = rec->loaddr;
780 
781 			rec++;
782 
783 			err = check_and_set_masks(idtcm, regaddr, val);
784 		}
785 
786 		if (err == 0) {
787 			/* Top (status registers) and bottom are read-only */
788 			if ((regaddr < GPIO_USER_CONTROL)
789 			    || (regaddr >= SCRATCH))
790 				continue;
791 
792 			/* Page size 128, last 4 bytes of page skipped */
793 			if (((loaddr > 0x7b) && (loaddr <= 0x7f))
794 			     || loaddr > 0xfb)
795 				continue;
796 
797 			err = idtcm_write(idtcm, regaddr, 0, &val, sizeof(val));
798 		}
799 
800 		if (err)
801 			goto out;
802 	}
803 
804 	display_pll_and_output_masks(idtcm);
805 
806 out:
807 	release_firmware(fw);
808 	return err;
809 }
810 
811 static int idtcm_pps_enable(struct idtcm_channel *channel, bool enable)
812 {
813 	struct idtcm *idtcm = channel->idtcm;
814 	u32 module;
815 	u8 val;
816 	int err;
817 
818 	/*
819 	 * This assumes that the 1-PPS is on the second of the two
820 	 * output.  But is this always true?
821 	 */
822 	switch (channel->dpll_n) {
823 	case DPLL_0:
824 		module = OUTPUT_1;
825 		break;
826 	case DPLL_1:
827 		module = OUTPUT_3;
828 		break;
829 	case DPLL_2:
830 		module = OUTPUT_5;
831 		break;
832 	case DPLL_3:
833 		module = OUTPUT_7;
834 		break;
835 	default:
836 		return -EINVAL;
837 	}
838 
839 	err = idtcm_read(idtcm, module, OUT_CTRL_1, &val, sizeof(val));
840 
841 	if (err)
842 		return err;
843 
844 	if (enable)
845 		val |= SQUELCH_DISABLE;
846 	else
847 		val &= ~SQUELCH_DISABLE;
848 
849 	err = idtcm_write(idtcm, module, OUT_CTRL_1, &val, sizeof(val));
850 
851 	if (err)
852 		return err;
853 
854 	return 0;
855 }
856 
857 static int idtcm_set_pll_mode(struct idtcm_channel *channel,
858 			      enum pll_mode pll_mode)
859 {
860 	struct idtcm *idtcm = channel->idtcm;
861 	int err;
862 	u8 dpll_mode;
863 
864 	err = idtcm_read(idtcm, channel->dpll_n, DPLL_MODE,
865 			 &dpll_mode, sizeof(dpll_mode));
866 	if (err)
867 		return err;
868 
869 	dpll_mode &= ~(PLL_MODE_MASK << PLL_MODE_SHIFT);
870 
871 	dpll_mode |= (pll_mode << PLL_MODE_SHIFT);
872 
873 	channel->pll_mode = pll_mode;
874 
875 	err = idtcm_write(idtcm, channel->dpll_n, DPLL_MODE,
876 			  &dpll_mode, sizeof(dpll_mode));
877 	if (err)
878 		return err;
879 
880 	return 0;
881 }
882 
883 /* PTP Hardware Clock interface */
884 
885 /**
886  * @brief Maximum absolute value for write phase offset in picoseconds
887  *
888  * Destination signed register is 32-bit register in resolution of 50ps
889  *
890  * 0x7fffffff * 50 =  2147483647 * 50 = 107374182350
891  */
892 static int _idtcm_adjphase(struct idtcm_channel *channel, s32 delta_ns)
893 {
894 	struct idtcm *idtcm = channel->idtcm;
895 
896 	int err;
897 	u8 i;
898 	u8 buf[4] = {0};
899 	s32 phase_50ps;
900 	s64 offset_ps;
901 
902 	if (channel->pll_mode != PLL_MODE_WRITE_PHASE) {
903 
904 		err = idtcm_set_pll_mode(channel, PLL_MODE_WRITE_PHASE);
905 
906 		if (err)
907 			return err;
908 
909 		channel->write_phase_ready = 0;
910 
911 		ptp_schedule_worker(channel->ptp_clock,
912 				    msecs_to_jiffies(WR_PHASE_SETUP_MS));
913 	}
914 
915 	if (!channel->write_phase_ready)
916 		delta_ns = 0;
917 
918 	offset_ps = (s64)delta_ns * 1000;
919 
920 	/*
921 	 * Check for 32-bit signed max * 50:
922 	 *
923 	 * 0x7fffffff * 50 =  2147483647 * 50 = 107374182350
924 	 */
925 	if (offset_ps > MAX_ABS_WRITE_PHASE_PICOSECONDS)
926 		offset_ps = MAX_ABS_WRITE_PHASE_PICOSECONDS;
927 	else if (offset_ps < -MAX_ABS_WRITE_PHASE_PICOSECONDS)
928 		offset_ps = -MAX_ABS_WRITE_PHASE_PICOSECONDS;
929 
930 	phase_50ps = DIV_ROUND_CLOSEST(div64_s64(offset_ps, 50), 1);
931 
932 	for (i = 0; i < 4; i++) {
933 		buf[i] = phase_50ps & 0xff;
934 		phase_50ps >>= 8;
935 	}
936 
937 	err = idtcm_write(idtcm, channel->dpll_phase, DPLL_WR_PHASE,
938 			  buf, sizeof(buf));
939 
940 	return err;
941 }
942 
943 static int idtcm_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
944 {
945 	struct idtcm_channel *channel =
946 		container_of(ptp, struct idtcm_channel, caps);
947 	struct idtcm *idtcm = channel->idtcm;
948 	u8 i;
949 	bool neg_adj = 0;
950 	int err;
951 	u8 buf[6] = {0};
952 	s64 fcw;
953 
954 	if (channel->pll_mode  != PLL_MODE_WRITE_FREQUENCY) {
955 		err = idtcm_set_pll_mode(channel, PLL_MODE_WRITE_FREQUENCY);
956 		if (err)
957 			return err;
958 	}
959 
960 	/*
961 	 * Frequency Control Word unit is: 1.11 * 10^-10 ppm
962 	 *
963 	 * adjfreq:
964 	 *       ppb * 10^9
965 	 * FCW = ----------
966 	 *          111
967 	 *
968 	 * adjfine:
969 	 *       ppm_16 * 5^12
970 	 * FCW = -------------
971 	 *         111 * 2^4
972 	 */
973 	if (ppb < 0) {
974 		neg_adj = 1;
975 		ppb = -ppb;
976 	}
977 
978 	/* 2 ^ -53 = 1.1102230246251565404236316680908e-16 */
979 	fcw = ppb * 1000000000000ULL;
980 
981 	fcw = div_u64(fcw, 111022);
982 
983 	if (neg_adj)
984 		fcw = -fcw;
985 
986 	for (i = 0; i < 6; i++) {
987 		buf[i] = fcw & 0xff;
988 		fcw >>= 8;
989 	}
990 
991 	mutex_lock(&idtcm->reg_lock);
992 
993 	err = idtcm_write(idtcm, channel->dpll_freq, DPLL_WR_FREQ,
994 			  buf, sizeof(buf));
995 
996 	mutex_unlock(&idtcm->reg_lock);
997 	return err;
998 }
999 
1000 static int idtcm_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
1001 {
1002 	struct idtcm_channel *channel =
1003 		container_of(ptp, struct idtcm_channel, caps);
1004 	struct idtcm *idtcm = channel->idtcm;
1005 	int err;
1006 
1007 	mutex_lock(&idtcm->reg_lock);
1008 
1009 	err = _idtcm_gettime(channel, ts);
1010 
1011 	mutex_unlock(&idtcm->reg_lock);
1012 
1013 	return err;
1014 }
1015 
1016 static int idtcm_settime(struct ptp_clock_info *ptp,
1017 			 const struct timespec64 *ts)
1018 {
1019 	struct idtcm_channel *channel =
1020 		container_of(ptp, struct idtcm_channel, caps);
1021 	struct idtcm *idtcm = channel->idtcm;
1022 	int err;
1023 
1024 	mutex_lock(&idtcm->reg_lock);
1025 
1026 	err = _idtcm_settime(channel, ts, HW_TOD_WR_TRIG_SEL_MSB);
1027 
1028 	mutex_unlock(&idtcm->reg_lock);
1029 
1030 	return err;
1031 }
1032 
1033 static int idtcm_adjtime(struct ptp_clock_info *ptp, s64 delta)
1034 {
1035 	struct idtcm_channel *channel =
1036 		container_of(ptp, struct idtcm_channel, caps);
1037 	struct idtcm *idtcm = channel->idtcm;
1038 	int err;
1039 
1040 	mutex_lock(&idtcm->reg_lock);
1041 
1042 	err = _idtcm_adjtime(channel, delta);
1043 
1044 	mutex_unlock(&idtcm->reg_lock);
1045 
1046 	return err;
1047 }
1048 
1049 static int idtcm_adjphase(struct ptp_clock_info *ptp, s32 delta)
1050 {
1051 	struct idtcm_channel *channel =
1052 		container_of(ptp, struct idtcm_channel, caps);
1053 
1054 	struct idtcm *idtcm = channel->idtcm;
1055 
1056 	int err;
1057 
1058 	mutex_lock(&idtcm->reg_lock);
1059 
1060 	err = _idtcm_adjphase(channel, delta);
1061 
1062 	mutex_unlock(&idtcm->reg_lock);
1063 
1064 	return err;
1065 }
1066 
1067 static int idtcm_enable(struct ptp_clock_info *ptp,
1068 			struct ptp_clock_request *rq, int on)
1069 {
1070 	struct idtcm_channel *channel =
1071 		container_of(ptp, struct idtcm_channel, caps);
1072 
1073 	switch (rq->type) {
1074 	case PTP_CLK_REQ_PEROUT:
1075 		if (!on)
1076 			return idtcm_pps_enable(channel, false);
1077 
1078 		/* Only accept a 1-PPS aligned to the second. */
1079 		if (rq->perout.start.nsec || rq->perout.period.sec != 1 ||
1080 		    rq->perout.period.nsec)
1081 			return -ERANGE;
1082 
1083 		return idtcm_pps_enable(channel, true);
1084 	default:
1085 		break;
1086 	}
1087 
1088 	return -EOPNOTSUPP;
1089 }
1090 
1091 static int idtcm_enable_tod(struct idtcm_channel *channel)
1092 {
1093 	struct idtcm *idtcm = channel->idtcm;
1094 	struct timespec64 ts = {0, 0};
1095 	u8 cfg;
1096 	int err;
1097 
1098 	err = idtcm_pps_enable(channel, false);
1099 	if (err)
1100 		return err;
1101 
1102 	/*
1103 	 * Start the TOD clock ticking.
1104 	 */
1105 	err = idtcm_read(idtcm, channel->tod_n, TOD_CFG, &cfg, sizeof(cfg));
1106 	if (err)
1107 		return err;
1108 
1109 	cfg |= TOD_ENABLE;
1110 
1111 	err = idtcm_write(idtcm, channel->tod_n, TOD_CFG, &cfg, sizeof(cfg));
1112 	if (err)
1113 		return err;
1114 
1115 	return _idtcm_settime(channel, &ts, HW_TOD_WR_TRIG_SEL_MSB);
1116 }
1117 
1118 static void idtcm_display_version_info(struct idtcm *idtcm)
1119 {
1120 	u8 major;
1121 	u8 minor;
1122 	u8 hotfix;
1123 	u16 product_id;
1124 	u8 hw_rev_id;
1125 	u8 config_select;
1126 	char *fmt = "%d.%d.%d, Id: 0x%04x  HW Rev: %d  OTP Config Select: %d\n";
1127 
1128 	idtcm_read_major_release(idtcm, &major);
1129 	idtcm_read_minor_release(idtcm, &minor);
1130 	idtcm_read_hotfix_release(idtcm, &hotfix);
1131 
1132 	idtcm_read_product_id(idtcm, &product_id);
1133 	idtcm_read_hw_rev_id(idtcm, &hw_rev_id);
1134 
1135 	idtcm_read_otp_scsr_config_select(idtcm, &config_select);
1136 
1137 	dev_info(&idtcm->client->dev, fmt, major, minor, hotfix,
1138 		 product_id, hw_rev_id, config_select);
1139 }
1140 
1141 static const struct ptp_clock_info idtcm_caps = {
1142 	.owner		= THIS_MODULE,
1143 	.max_adj	= 244000,
1144 	.n_per_out	= 1,
1145 	.adjphase	= &idtcm_adjphase,
1146 	.adjfreq	= &idtcm_adjfreq,
1147 	.adjtime	= &idtcm_adjtime,
1148 	.gettime64	= &idtcm_gettime,
1149 	.settime64	= &idtcm_settime,
1150 	.enable		= &idtcm_enable,
1151 	.do_aux_work	= &set_write_phase_ready,
1152 };
1153 
1154 
1155 static int idtcm_enable_channel(struct idtcm *idtcm, u32 index)
1156 {
1157 	struct idtcm_channel *channel;
1158 	int err;
1159 
1160 	if (!(index < MAX_PHC_PLL))
1161 		return -EINVAL;
1162 
1163 	channel = &idtcm->channel[index];
1164 
1165 	switch (index) {
1166 	case 0:
1167 		channel->dpll_freq = DPLL_FREQ_0;
1168 		channel->dpll_n = DPLL_0;
1169 		channel->tod_read_primary = TOD_READ_PRIMARY_0;
1170 		channel->tod_write = TOD_WRITE_0;
1171 		channel->tod_n = TOD_0;
1172 		channel->hw_dpll_n = HW_DPLL_0;
1173 		channel->dpll_phase = DPLL_PHASE_0;
1174 		channel->dpll_ctrl_n = DPLL_CTRL_0;
1175 		channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_0;
1176 		break;
1177 	case 1:
1178 		channel->dpll_freq = DPLL_FREQ_1;
1179 		channel->dpll_n = DPLL_1;
1180 		channel->tod_read_primary = TOD_READ_PRIMARY_1;
1181 		channel->tod_write = TOD_WRITE_1;
1182 		channel->tod_n = TOD_1;
1183 		channel->hw_dpll_n = HW_DPLL_1;
1184 		channel->dpll_phase = DPLL_PHASE_1;
1185 		channel->dpll_ctrl_n = DPLL_CTRL_1;
1186 		channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_1;
1187 		break;
1188 	case 2:
1189 		channel->dpll_freq = DPLL_FREQ_2;
1190 		channel->dpll_n = DPLL_2;
1191 		channel->tod_read_primary = TOD_READ_PRIMARY_2;
1192 		channel->tod_write = TOD_WRITE_2;
1193 		channel->tod_n = TOD_2;
1194 		channel->hw_dpll_n = HW_DPLL_2;
1195 		channel->dpll_phase = DPLL_PHASE_2;
1196 		channel->dpll_ctrl_n = DPLL_CTRL_2;
1197 		channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_2;
1198 		break;
1199 	case 3:
1200 		channel->dpll_freq = DPLL_FREQ_3;
1201 		channel->dpll_n = DPLL_3;
1202 		channel->tod_read_primary = TOD_READ_PRIMARY_3;
1203 		channel->tod_write = TOD_WRITE_3;
1204 		channel->tod_n = TOD_3;
1205 		channel->hw_dpll_n = HW_DPLL_3;
1206 		channel->dpll_phase = DPLL_PHASE_3;
1207 		channel->dpll_ctrl_n = DPLL_CTRL_3;
1208 		channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_3;
1209 		break;
1210 	default:
1211 		return -EINVAL;
1212 	}
1213 
1214 	channel->idtcm = idtcm;
1215 
1216 	channel->caps = idtcm_caps;
1217 	snprintf(channel->caps.name, sizeof(channel->caps.name),
1218 		 "IDT CM PLL%u", index);
1219 
1220 	err = idtcm_set_pll_mode(channel, PLL_MODE_WRITE_FREQUENCY);
1221 	if (err)
1222 		return err;
1223 
1224 	err = idtcm_enable_tod(channel);
1225 	if (err)
1226 		return err;
1227 
1228 	channel->ptp_clock = ptp_clock_register(&channel->caps, NULL);
1229 
1230 	if (IS_ERR(channel->ptp_clock)) {
1231 		err = PTR_ERR(channel->ptp_clock);
1232 		channel->ptp_clock = NULL;
1233 		return err;
1234 	}
1235 
1236 	if (!channel->ptp_clock)
1237 		return -ENOTSUPP;
1238 
1239 	channel->write_phase_ready = 0;
1240 
1241 	dev_info(&idtcm->client->dev, "PLL%d registered as ptp%d\n",
1242 		 index, channel->ptp_clock->index);
1243 
1244 	return 0;
1245 }
1246 
1247 static void ptp_clock_unregister_all(struct idtcm *idtcm)
1248 {
1249 	u8 i;
1250 	struct idtcm_channel *channel;
1251 
1252 	for (i = 0; i < MAX_PHC_PLL; i++) {
1253 
1254 		channel = &idtcm->channel[i];
1255 
1256 		if (channel->ptp_clock)
1257 			ptp_clock_unregister(channel->ptp_clock);
1258 	}
1259 }
1260 
1261 static void set_default_masks(struct idtcm *idtcm)
1262 {
1263 	idtcm->pll_mask = DEFAULT_PLL_MASK;
1264 
1265 	idtcm->channel[0].output_mask = DEFAULT_OUTPUT_MASK_PLL0;
1266 	idtcm->channel[1].output_mask = DEFAULT_OUTPUT_MASK_PLL1;
1267 	idtcm->channel[2].output_mask = DEFAULT_OUTPUT_MASK_PLL2;
1268 	idtcm->channel[3].output_mask = DEFAULT_OUTPUT_MASK_PLL3;
1269 }
1270 
1271 static int set_tod_write_overhead(struct idtcm *idtcm)
1272 {
1273 	int err;
1274 	u8 i;
1275 
1276 	s64 total_ns = 0;
1277 
1278 	ktime_t start;
1279 	ktime_t stop;
1280 
1281 	char buf[TOD_BYTE_COUNT];
1282 
1283 	struct idtcm_channel *channel = &idtcm->channel[2];
1284 
1285 	/* Set page offset */
1286 	idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_OVR__0,
1287 		    buf, sizeof(buf));
1288 
1289 	for (i = 0; i < TOD_WRITE_OVERHEAD_COUNT_MAX; i++) {
1290 
1291 		start = ktime_get_raw();
1292 
1293 		err = idtcm_write(idtcm, channel->hw_dpll_n,
1294 				  HW_DPLL_TOD_OVR__0, buf, sizeof(buf));
1295 
1296 		if (err)
1297 			return err;
1298 
1299 		stop = ktime_get_raw();
1300 
1301 		total_ns += ktime_to_ns(stop - start);
1302 	}
1303 
1304 	idtcm->tod_write_overhead_ns = div_s64(total_ns,
1305 					       TOD_WRITE_OVERHEAD_COUNT_MAX);
1306 
1307 	return err;
1308 }
1309 
1310 static int idtcm_probe(struct i2c_client *client,
1311 		       const struct i2c_device_id *id)
1312 {
1313 	struct idtcm *idtcm;
1314 	int err;
1315 	u8 i;
1316 
1317 	/* Unused for now */
1318 	(void)id;
1319 
1320 	idtcm = devm_kzalloc(&client->dev, sizeof(struct idtcm), GFP_KERNEL);
1321 
1322 	if (!idtcm)
1323 		return -ENOMEM;
1324 
1325 	idtcm->client = client;
1326 	idtcm->page_offset = 0xff;
1327 	idtcm->calculate_overhead_flag = 0;
1328 
1329 	set_default_masks(idtcm);
1330 
1331 	mutex_init(&idtcm->reg_lock);
1332 	mutex_lock(&idtcm->reg_lock);
1333 
1334 	idtcm_display_version_info(idtcm);
1335 
1336 	err = set_tod_write_overhead(idtcm);
1337 
1338 	if (err) {
1339 		mutex_unlock(&idtcm->reg_lock);
1340 		return err;
1341 	}
1342 
1343 	err = idtcm_load_firmware(idtcm, &client->dev);
1344 
1345 	if (err)
1346 		dev_warn(&idtcm->client->dev,
1347 			 "loading firmware failed with %d\n", err);
1348 
1349 	if (idtcm->pll_mask) {
1350 		for (i = 0; i < MAX_PHC_PLL; i++) {
1351 			if (idtcm->pll_mask & (1 << i)) {
1352 				err = idtcm_enable_channel(idtcm, i);
1353 				if (err)
1354 					break;
1355 			}
1356 		}
1357 	} else {
1358 		dev_err(&idtcm->client->dev,
1359 			"no PLLs flagged as PHCs, nothing to do\n");
1360 		err = -ENODEV;
1361 	}
1362 
1363 	mutex_unlock(&idtcm->reg_lock);
1364 
1365 	if (err) {
1366 		ptp_clock_unregister_all(idtcm);
1367 		return err;
1368 	}
1369 
1370 	i2c_set_clientdata(client, idtcm);
1371 
1372 	return 0;
1373 }
1374 
1375 static int idtcm_remove(struct i2c_client *client)
1376 {
1377 	struct idtcm *idtcm = i2c_get_clientdata(client);
1378 
1379 	ptp_clock_unregister_all(idtcm);
1380 
1381 	mutex_destroy(&idtcm->reg_lock);
1382 
1383 	return 0;
1384 }
1385 
1386 #ifdef CONFIG_OF
1387 static const struct of_device_id idtcm_dt_id[] = {
1388 	{ .compatible = "idt,8a34000" },
1389 	{ .compatible = "idt,8a34001" },
1390 	{ .compatible = "idt,8a34002" },
1391 	{ .compatible = "idt,8a34003" },
1392 	{ .compatible = "idt,8a34004" },
1393 	{ .compatible = "idt,8a34005" },
1394 	{ .compatible = "idt,8a34006" },
1395 	{ .compatible = "idt,8a34007" },
1396 	{ .compatible = "idt,8a34008" },
1397 	{ .compatible = "idt,8a34009" },
1398 	{ .compatible = "idt,8a34010" },
1399 	{ .compatible = "idt,8a34011" },
1400 	{ .compatible = "idt,8a34012" },
1401 	{ .compatible = "idt,8a34013" },
1402 	{ .compatible = "idt,8a34014" },
1403 	{ .compatible = "idt,8a34015" },
1404 	{ .compatible = "idt,8a34016" },
1405 	{ .compatible = "idt,8a34017" },
1406 	{ .compatible = "idt,8a34018" },
1407 	{ .compatible = "idt,8a34019" },
1408 	{ .compatible = "idt,8a34040" },
1409 	{ .compatible = "idt,8a34041" },
1410 	{ .compatible = "idt,8a34042" },
1411 	{ .compatible = "idt,8a34043" },
1412 	{ .compatible = "idt,8a34044" },
1413 	{ .compatible = "idt,8a34045" },
1414 	{ .compatible = "idt,8a34046" },
1415 	{ .compatible = "idt,8a34047" },
1416 	{ .compatible = "idt,8a34048" },
1417 	{ .compatible = "idt,8a34049" },
1418 	{},
1419 };
1420 MODULE_DEVICE_TABLE(of, idtcm_dt_id);
1421 #endif
1422 
1423 static const struct i2c_device_id idtcm_i2c_id[] = {
1424 	{ "8a34000" },
1425 	{ "8a34001" },
1426 	{ "8a34002" },
1427 	{ "8a34003" },
1428 	{ "8a34004" },
1429 	{ "8a34005" },
1430 	{ "8a34006" },
1431 	{ "8a34007" },
1432 	{ "8a34008" },
1433 	{ "8a34009" },
1434 	{ "8a34010" },
1435 	{ "8a34011" },
1436 	{ "8a34012" },
1437 	{ "8a34013" },
1438 	{ "8a34014" },
1439 	{ "8a34015" },
1440 	{ "8a34016" },
1441 	{ "8a34017" },
1442 	{ "8a34018" },
1443 	{ "8a34019" },
1444 	{ "8a34040" },
1445 	{ "8a34041" },
1446 	{ "8a34042" },
1447 	{ "8a34043" },
1448 	{ "8a34044" },
1449 	{ "8a34045" },
1450 	{ "8a34046" },
1451 	{ "8a34047" },
1452 	{ "8a34048" },
1453 	{ "8a34049" },
1454 	{},
1455 };
1456 MODULE_DEVICE_TABLE(i2c, idtcm_i2c_id);
1457 
1458 static struct i2c_driver idtcm_driver = {
1459 	.driver = {
1460 		.of_match_table	= of_match_ptr(idtcm_dt_id),
1461 		.name		= "idtcm",
1462 	},
1463 	.probe		= idtcm_probe,
1464 	.remove		= idtcm_remove,
1465 	.id_table	= idtcm_i2c_id,
1466 };
1467 
1468 module_i2c_driver(idtcm_driver);
1469