xref: /openbmc/linux/drivers/ptp/ptp_clock.c (revision d2574c33)
1 /*
2  * PTP 1588 clock support
3  *
4  * Copyright (C) 2010 OMICRON electronics GmbH
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/idr.h>
21 #include <linux/device.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/posix-clock.h>
27 #include <linux/pps_kernel.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/uaccess.h>
31 #include <uapi/linux/sched/types.h>
32 
33 #include "ptp_private.h"
34 
35 #define PTP_MAX_ALARMS 4
36 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
37 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
38 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
39 
40 /* private globals */
41 
42 static dev_t ptp_devt;
43 static struct class *ptp_class;
44 
45 static DEFINE_IDA(ptp_clocks_map);
46 
47 /* time stamp event queue operations */
48 
49 static inline int queue_free(struct timestamp_event_queue *q)
50 {
51 	return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
52 }
53 
54 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
55 				       struct ptp_clock_event *src)
56 {
57 	struct ptp_extts_event *dst;
58 	unsigned long flags;
59 	s64 seconds;
60 	u32 remainder;
61 
62 	seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
63 
64 	spin_lock_irqsave(&queue->lock, flags);
65 
66 	dst = &queue->buf[queue->tail];
67 	dst->index = src->index;
68 	dst->t.sec = seconds;
69 	dst->t.nsec = remainder;
70 
71 	if (!queue_free(queue))
72 		queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
73 
74 	queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
75 
76 	spin_unlock_irqrestore(&queue->lock, flags);
77 }
78 
79 static s32 scaled_ppm_to_ppb(long ppm)
80 {
81 	/*
82 	 * The 'freq' field in the 'struct timex' is in parts per
83 	 * million, but with a 16 bit binary fractional field.
84 	 *
85 	 * We want to calculate
86 	 *
87 	 *    ppb = scaled_ppm * 1000 / 2^16
88 	 *
89 	 * which simplifies to
90 	 *
91 	 *    ppb = scaled_ppm * 125 / 2^13
92 	 */
93 	s64 ppb = 1 + ppm;
94 	ppb *= 125;
95 	ppb >>= 13;
96 	return (s32) ppb;
97 }
98 
99 /* posix clock implementation */
100 
101 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
102 {
103 	tp->tv_sec = 0;
104 	tp->tv_nsec = 1;
105 	return 0;
106 }
107 
108 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
109 {
110 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
111 
112 	return  ptp->info->settime64(ptp->info, tp);
113 }
114 
115 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
116 {
117 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
118 	int err;
119 
120 	if (ptp->info->gettimex64)
121 		err = ptp->info->gettimex64(ptp->info, tp, NULL);
122 	else
123 		err = ptp->info->gettime64(ptp->info, tp);
124 	return err;
125 }
126 
127 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
128 {
129 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
130 	struct ptp_clock_info *ops;
131 	int err = -EOPNOTSUPP;
132 
133 	ops = ptp->info;
134 
135 	if (tx->modes & ADJ_SETOFFSET) {
136 		struct timespec64 ts;
137 		ktime_t kt;
138 		s64 delta;
139 
140 		ts.tv_sec  = tx->time.tv_sec;
141 		ts.tv_nsec = tx->time.tv_usec;
142 
143 		if (!(tx->modes & ADJ_NANO))
144 			ts.tv_nsec *= 1000;
145 
146 		if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
147 			return -EINVAL;
148 
149 		kt = timespec64_to_ktime(ts);
150 		delta = ktime_to_ns(kt);
151 		err = ops->adjtime(ops, delta);
152 	} else if (tx->modes & ADJ_FREQUENCY) {
153 		s32 ppb = scaled_ppm_to_ppb(tx->freq);
154 		if (ppb > ops->max_adj || ppb < -ops->max_adj)
155 			return -ERANGE;
156 		if (ops->adjfine)
157 			err = ops->adjfine(ops, tx->freq);
158 		else
159 			err = ops->adjfreq(ops, ppb);
160 		ptp->dialed_frequency = tx->freq;
161 	} else if (tx->modes == 0) {
162 		tx->freq = ptp->dialed_frequency;
163 		err = 0;
164 	}
165 
166 	return err;
167 }
168 
169 static struct posix_clock_operations ptp_clock_ops = {
170 	.owner		= THIS_MODULE,
171 	.clock_adjtime	= ptp_clock_adjtime,
172 	.clock_gettime	= ptp_clock_gettime,
173 	.clock_getres	= ptp_clock_getres,
174 	.clock_settime	= ptp_clock_settime,
175 	.ioctl		= ptp_ioctl,
176 	.open		= ptp_open,
177 	.poll		= ptp_poll,
178 	.read		= ptp_read,
179 };
180 
181 static void delete_ptp_clock(struct posix_clock *pc)
182 {
183 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
184 
185 	mutex_destroy(&ptp->tsevq_mux);
186 	mutex_destroy(&ptp->pincfg_mux);
187 	ida_simple_remove(&ptp_clocks_map, ptp->index);
188 	kfree(ptp);
189 }
190 
191 static void ptp_aux_kworker(struct kthread_work *work)
192 {
193 	struct ptp_clock *ptp = container_of(work, struct ptp_clock,
194 					     aux_work.work);
195 	struct ptp_clock_info *info = ptp->info;
196 	long delay;
197 
198 	delay = info->do_aux_work(info);
199 
200 	if (delay >= 0)
201 		kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
202 }
203 
204 /* public interface */
205 
206 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
207 				     struct device *parent)
208 {
209 	struct ptp_clock *ptp;
210 	int err = 0, index, major = MAJOR(ptp_devt);
211 
212 	if (info->n_alarm > PTP_MAX_ALARMS)
213 		return ERR_PTR(-EINVAL);
214 
215 	/* Initialize a clock structure. */
216 	err = -ENOMEM;
217 	ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
218 	if (ptp == NULL)
219 		goto no_memory;
220 
221 	index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
222 	if (index < 0) {
223 		err = index;
224 		goto no_slot;
225 	}
226 
227 	ptp->clock.ops = ptp_clock_ops;
228 	ptp->clock.release = delete_ptp_clock;
229 	ptp->info = info;
230 	ptp->devid = MKDEV(major, index);
231 	ptp->index = index;
232 	spin_lock_init(&ptp->tsevq.lock);
233 	mutex_init(&ptp->tsevq_mux);
234 	mutex_init(&ptp->pincfg_mux);
235 	init_waitqueue_head(&ptp->tsev_wq);
236 
237 	if (ptp->info->do_aux_work) {
238 		kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
239 		ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
240 		if (IS_ERR(ptp->kworker)) {
241 			err = PTR_ERR(ptp->kworker);
242 			pr_err("failed to create ptp aux_worker %d\n", err);
243 			goto kworker_err;
244 		}
245 	}
246 
247 	err = ptp_populate_pin_groups(ptp);
248 	if (err)
249 		goto no_pin_groups;
250 
251 	/* Create a new device in our class. */
252 	ptp->dev = device_create_with_groups(ptp_class, parent, ptp->devid,
253 					     ptp, ptp->pin_attr_groups,
254 					     "ptp%d", ptp->index);
255 	if (IS_ERR(ptp->dev)) {
256 		err = PTR_ERR(ptp->dev);
257 		goto no_device;
258 	}
259 
260 	/* Register a new PPS source. */
261 	if (info->pps) {
262 		struct pps_source_info pps;
263 		memset(&pps, 0, sizeof(pps));
264 		snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
265 		pps.mode = PTP_PPS_MODE;
266 		pps.owner = info->owner;
267 		ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
268 		if (IS_ERR(ptp->pps_source)) {
269 			err = PTR_ERR(ptp->pps_source);
270 			pr_err("failed to register pps source\n");
271 			goto no_pps;
272 		}
273 	}
274 
275 	/* Create a posix clock. */
276 	err = posix_clock_register(&ptp->clock, ptp->devid);
277 	if (err) {
278 		pr_err("failed to create posix clock\n");
279 		goto no_clock;
280 	}
281 
282 	return ptp;
283 
284 no_clock:
285 	if (ptp->pps_source)
286 		pps_unregister_source(ptp->pps_source);
287 no_pps:
288 	device_destroy(ptp_class, ptp->devid);
289 no_device:
290 	ptp_cleanup_pin_groups(ptp);
291 no_pin_groups:
292 	if (ptp->kworker)
293 		kthread_destroy_worker(ptp->kworker);
294 kworker_err:
295 	mutex_destroy(&ptp->tsevq_mux);
296 	mutex_destroy(&ptp->pincfg_mux);
297 	ida_simple_remove(&ptp_clocks_map, index);
298 no_slot:
299 	kfree(ptp);
300 no_memory:
301 	return ERR_PTR(err);
302 }
303 EXPORT_SYMBOL(ptp_clock_register);
304 
305 int ptp_clock_unregister(struct ptp_clock *ptp)
306 {
307 	ptp->defunct = 1;
308 	wake_up_interruptible(&ptp->tsev_wq);
309 
310 	if (ptp->kworker) {
311 		kthread_cancel_delayed_work_sync(&ptp->aux_work);
312 		kthread_destroy_worker(ptp->kworker);
313 	}
314 
315 	/* Release the clock's resources. */
316 	if (ptp->pps_source)
317 		pps_unregister_source(ptp->pps_source);
318 
319 	device_destroy(ptp_class, ptp->devid);
320 	ptp_cleanup_pin_groups(ptp);
321 
322 	posix_clock_unregister(&ptp->clock);
323 	return 0;
324 }
325 EXPORT_SYMBOL(ptp_clock_unregister);
326 
327 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
328 {
329 	struct pps_event_time evt;
330 
331 	switch (event->type) {
332 
333 	case PTP_CLOCK_ALARM:
334 		break;
335 
336 	case PTP_CLOCK_EXTTS:
337 		enqueue_external_timestamp(&ptp->tsevq, event);
338 		wake_up_interruptible(&ptp->tsev_wq);
339 		break;
340 
341 	case PTP_CLOCK_PPS:
342 		pps_get_ts(&evt);
343 		pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
344 		break;
345 
346 	case PTP_CLOCK_PPSUSR:
347 		pps_event(ptp->pps_source, &event->pps_times,
348 			  PTP_PPS_EVENT, NULL);
349 		break;
350 	}
351 }
352 EXPORT_SYMBOL(ptp_clock_event);
353 
354 int ptp_clock_index(struct ptp_clock *ptp)
355 {
356 	return ptp->index;
357 }
358 EXPORT_SYMBOL(ptp_clock_index);
359 
360 int ptp_find_pin(struct ptp_clock *ptp,
361 		 enum ptp_pin_function func, unsigned int chan)
362 {
363 	struct ptp_pin_desc *pin = NULL;
364 	int i;
365 
366 	mutex_lock(&ptp->pincfg_mux);
367 	for (i = 0; i < ptp->info->n_pins; i++) {
368 		if (ptp->info->pin_config[i].func == func &&
369 		    ptp->info->pin_config[i].chan == chan) {
370 			pin = &ptp->info->pin_config[i];
371 			break;
372 		}
373 	}
374 	mutex_unlock(&ptp->pincfg_mux);
375 
376 	return pin ? i : -1;
377 }
378 EXPORT_SYMBOL(ptp_find_pin);
379 
380 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
381 {
382 	return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
383 }
384 EXPORT_SYMBOL(ptp_schedule_worker);
385 
386 /* module operations */
387 
388 static void __exit ptp_exit(void)
389 {
390 	class_destroy(ptp_class);
391 	unregister_chrdev_region(ptp_devt, MINORMASK + 1);
392 	ida_destroy(&ptp_clocks_map);
393 }
394 
395 static int __init ptp_init(void)
396 {
397 	int err;
398 
399 	ptp_class = class_create(THIS_MODULE, "ptp");
400 	if (IS_ERR(ptp_class)) {
401 		pr_err("ptp: failed to allocate class\n");
402 		return PTR_ERR(ptp_class);
403 	}
404 
405 	err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
406 	if (err < 0) {
407 		pr_err("ptp: failed to allocate device region\n");
408 		goto no_region;
409 	}
410 
411 	ptp_class->dev_groups = ptp_groups;
412 	pr_info("PTP clock support registered\n");
413 	return 0;
414 
415 no_region:
416 	class_destroy(ptp_class);
417 	return err;
418 }
419 
420 subsys_initcall(ptp_init);
421 module_exit(ptp_exit);
422 
423 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
424 MODULE_DESCRIPTION("PTP clocks support");
425 MODULE_LICENSE("GPL");
426