xref: /openbmc/linux/drivers/ptp/ptp_clock.c (revision 29d97219)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PTP 1588 clock support
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 #include <linux/idr.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/posix-clock.h>
14 #include <linux/pps_kernel.h>
15 #include <linux/slab.h>
16 #include <linux/syscalls.h>
17 #include <linux/uaccess.h>
18 #include <uapi/linux/sched/types.h>
19 
20 #include "ptp_private.h"
21 
22 #define PTP_MAX_ALARMS 4
23 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
24 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
25 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
26 
27 /* private globals */
28 
29 static dev_t ptp_devt;
30 static struct class *ptp_class;
31 
32 static DEFINE_IDA(ptp_clocks_map);
33 
34 /* time stamp event queue operations */
35 
36 static inline int queue_free(struct timestamp_event_queue *q)
37 {
38 	return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
39 }
40 
41 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
42 				       struct ptp_clock_event *src)
43 {
44 	struct ptp_extts_event *dst;
45 	unsigned long flags;
46 	s64 seconds;
47 	u32 remainder;
48 
49 	seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
50 
51 	spin_lock_irqsave(&queue->lock, flags);
52 
53 	dst = &queue->buf[queue->tail];
54 	dst->index = src->index;
55 	dst->t.sec = seconds;
56 	dst->t.nsec = remainder;
57 
58 	if (!queue_free(queue))
59 		queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
60 
61 	queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
62 
63 	spin_unlock_irqrestore(&queue->lock, flags);
64 }
65 
66 /* posix clock implementation */
67 
68 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
69 {
70 	tp->tv_sec = 0;
71 	tp->tv_nsec = 1;
72 	return 0;
73 }
74 
75 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
76 {
77 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
78 
79 	return  ptp->info->settime64(ptp->info, tp);
80 }
81 
82 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
83 {
84 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
85 	int err;
86 
87 	if (ptp->info->gettimex64)
88 		err = ptp->info->gettimex64(ptp->info, tp, NULL);
89 	else
90 		err = ptp->info->gettime64(ptp->info, tp);
91 	return err;
92 }
93 
94 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
95 {
96 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
97 	struct ptp_clock_info *ops;
98 	int err = -EOPNOTSUPP;
99 
100 	ops = ptp->info;
101 
102 	if (tx->modes & ADJ_SETOFFSET) {
103 		struct timespec64 ts;
104 		ktime_t kt;
105 		s64 delta;
106 
107 		ts.tv_sec  = tx->time.tv_sec;
108 		ts.tv_nsec = tx->time.tv_usec;
109 
110 		if (!(tx->modes & ADJ_NANO))
111 			ts.tv_nsec *= 1000;
112 
113 		if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
114 			return -EINVAL;
115 
116 		kt = timespec64_to_ktime(ts);
117 		delta = ktime_to_ns(kt);
118 		err = ops->adjtime(ops, delta);
119 	} else if (tx->modes & ADJ_FREQUENCY) {
120 		s32 ppb = scaled_ppm_to_ppb(tx->freq);
121 		if (ppb > ops->max_adj || ppb < -ops->max_adj)
122 			return -ERANGE;
123 		if (ops->adjfine)
124 			err = ops->adjfine(ops, tx->freq);
125 		else
126 			err = ops->adjfreq(ops, ppb);
127 		ptp->dialed_frequency = tx->freq;
128 	} else if (tx->modes & ADJ_OFFSET) {
129 		if (ops->adjphase) {
130 			s32 offset = tx->offset;
131 
132 			if (!(tx->modes & ADJ_NANO))
133 				offset *= NSEC_PER_USEC;
134 
135 			err = ops->adjphase(ops, offset);
136 		}
137 	} else if (tx->modes == 0) {
138 		tx->freq = ptp->dialed_frequency;
139 		err = 0;
140 	}
141 
142 	return err;
143 }
144 
145 static struct posix_clock_operations ptp_clock_ops = {
146 	.owner		= THIS_MODULE,
147 	.clock_adjtime	= ptp_clock_adjtime,
148 	.clock_gettime	= ptp_clock_gettime,
149 	.clock_getres	= ptp_clock_getres,
150 	.clock_settime	= ptp_clock_settime,
151 	.ioctl		= ptp_ioctl,
152 	.open		= ptp_open,
153 	.poll		= ptp_poll,
154 	.read		= ptp_read,
155 };
156 
157 static void ptp_clock_release(struct device *dev)
158 {
159 	struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
160 
161 	ptp_cleanup_pin_groups(ptp);
162 	mutex_destroy(&ptp->tsevq_mux);
163 	mutex_destroy(&ptp->pincfg_mux);
164 	ida_simple_remove(&ptp_clocks_map, ptp->index);
165 	kfree(ptp);
166 }
167 
168 static void ptp_aux_kworker(struct kthread_work *work)
169 {
170 	struct ptp_clock *ptp = container_of(work, struct ptp_clock,
171 					     aux_work.work);
172 	struct ptp_clock_info *info = ptp->info;
173 	long delay;
174 
175 	delay = info->do_aux_work(info);
176 
177 	if (delay >= 0)
178 		kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
179 }
180 
181 /* public interface */
182 
183 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
184 				     struct device *parent)
185 {
186 	struct ptp_clock *ptp;
187 	int err = 0, index, major = MAJOR(ptp_devt);
188 
189 	if (info->n_alarm > PTP_MAX_ALARMS)
190 		return ERR_PTR(-EINVAL);
191 
192 	/* Initialize a clock structure. */
193 	err = -ENOMEM;
194 	ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
195 	if (ptp == NULL)
196 		goto no_memory;
197 
198 	index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
199 	if (index < 0) {
200 		err = index;
201 		goto no_slot;
202 	}
203 
204 	ptp->clock.ops = ptp_clock_ops;
205 	ptp->info = info;
206 	ptp->devid = MKDEV(major, index);
207 	ptp->index = index;
208 	spin_lock_init(&ptp->tsevq.lock);
209 	mutex_init(&ptp->tsevq_mux);
210 	mutex_init(&ptp->pincfg_mux);
211 	init_waitqueue_head(&ptp->tsev_wq);
212 
213 	if (ptp->info->do_aux_work) {
214 		kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
215 		ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
216 		if (IS_ERR(ptp->kworker)) {
217 			err = PTR_ERR(ptp->kworker);
218 			pr_err("failed to create ptp aux_worker %d\n", err);
219 			goto kworker_err;
220 		}
221 	}
222 
223 	err = ptp_populate_pin_groups(ptp);
224 	if (err)
225 		goto no_pin_groups;
226 
227 	/* Register a new PPS source. */
228 	if (info->pps) {
229 		struct pps_source_info pps;
230 		memset(&pps, 0, sizeof(pps));
231 		snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
232 		pps.mode = PTP_PPS_MODE;
233 		pps.owner = info->owner;
234 		ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
235 		if (IS_ERR(ptp->pps_source)) {
236 			err = PTR_ERR(ptp->pps_source);
237 			pr_err("failed to register pps source\n");
238 			goto no_pps;
239 		}
240 	}
241 
242 	/* Initialize a new device of our class in our clock structure. */
243 	device_initialize(&ptp->dev);
244 	ptp->dev.devt = ptp->devid;
245 	ptp->dev.class = ptp_class;
246 	ptp->dev.parent = parent;
247 	ptp->dev.groups = ptp->pin_attr_groups;
248 	ptp->dev.release = ptp_clock_release;
249 	dev_set_drvdata(&ptp->dev, ptp);
250 	dev_set_name(&ptp->dev, "ptp%d", ptp->index);
251 
252 	/* Create a posix clock and link it to the device. */
253 	err = posix_clock_register(&ptp->clock, &ptp->dev);
254 	if (err) {
255 		pr_err("failed to create posix clock\n");
256 		goto no_clock;
257 	}
258 
259 	return ptp;
260 
261 no_clock:
262 	if (ptp->pps_source)
263 		pps_unregister_source(ptp->pps_source);
264 no_pps:
265 	ptp_cleanup_pin_groups(ptp);
266 no_pin_groups:
267 	if (ptp->kworker)
268 		kthread_destroy_worker(ptp->kworker);
269 kworker_err:
270 	mutex_destroy(&ptp->tsevq_mux);
271 	mutex_destroy(&ptp->pincfg_mux);
272 	ida_simple_remove(&ptp_clocks_map, index);
273 no_slot:
274 	kfree(ptp);
275 no_memory:
276 	return ERR_PTR(err);
277 }
278 EXPORT_SYMBOL(ptp_clock_register);
279 
280 int ptp_clock_unregister(struct ptp_clock *ptp)
281 {
282 	ptp->defunct = 1;
283 	wake_up_interruptible(&ptp->tsev_wq);
284 
285 	if (ptp->kworker) {
286 		kthread_cancel_delayed_work_sync(&ptp->aux_work);
287 		kthread_destroy_worker(ptp->kworker);
288 	}
289 
290 	/* Release the clock's resources. */
291 	if (ptp->pps_source)
292 		pps_unregister_source(ptp->pps_source);
293 
294 	posix_clock_unregister(&ptp->clock);
295 
296 	return 0;
297 }
298 EXPORT_SYMBOL(ptp_clock_unregister);
299 
300 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
301 {
302 	struct pps_event_time evt;
303 
304 	switch (event->type) {
305 
306 	case PTP_CLOCK_ALARM:
307 		break;
308 
309 	case PTP_CLOCK_EXTTS:
310 		enqueue_external_timestamp(&ptp->tsevq, event);
311 		wake_up_interruptible(&ptp->tsev_wq);
312 		break;
313 
314 	case PTP_CLOCK_PPS:
315 		pps_get_ts(&evt);
316 		pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
317 		break;
318 
319 	case PTP_CLOCK_PPSUSR:
320 		pps_event(ptp->pps_source, &event->pps_times,
321 			  PTP_PPS_EVENT, NULL);
322 		break;
323 	}
324 }
325 EXPORT_SYMBOL(ptp_clock_event);
326 
327 int ptp_clock_index(struct ptp_clock *ptp)
328 {
329 	return ptp->index;
330 }
331 EXPORT_SYMBOL(ptp_clock_index);
332 
333 int ptp_find_pin(struct ptp_clock *ptp,
334 		 enum ptp_pin_function func, unsigned int chan)
335 {
336 	struct ptp_pin_desc *pin = NULL;
337 	int i;
338 
339 	for (i = 0; i < ptp->info->n_pins; i++) {
340 		if (ptp->info->pin_config[i].func == func &&
341 		    ptp->info->pin_config[i].chan == chan) {
342 			pin = &ptp->info->pin_config[i];
343 			break;
344 		}
345 	}
346 
347 	return pin ? i : -1;
348 }
349 EXPORT_SYMBOL(ptp_find_pin);
350 
351 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
352 			  enum ptp_pin_function func, unsigned int chan)
353 {
354 	int result;
355 
356 	mutex_lock(&ptp->pincfg_mux);
357 
358 	result = ptp_find_pin(ptp, func, chan);
359 
360 	mutex_unlock(&ptp->pincfg_mux);
361 
362 	return result;
363 }
364 EXPORT_SYMBOL(ptp_find_pin_unlocked);
365 
366 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
367 {
368 	return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
369 }
370 EXPORT_SYMBOL(ptp_schedule_worker);
371 
372 void ptp_cancel_worker_sync(struct ptp_clock *ptp)
373 {
374 	kthread_cancel_delayed_work_sync(&ptp->aux_work);
375 }
376 EXPORT_SYMBOL(ptp_cancel_worker_sync);
377 
378 /* module operations */
379 
380 static void __exit ptp_exit(void)
381 {
382 	class_destroy(ptp_class);
383 	unregister_chrdev_region(ptp_devt, MINORMASK + 1);
384 	ida_destroy(&ptp_clocks_map);
385 }
386 
387 static int __init ptp_init(void)
388 {
389 	int err;
390 
391 	ptp_class = class_create(THIS_MODULE, "ptp");
392 	if (IS_ERR(ptp_class)) {
393 		pr_err("ptp: failed to allocate class\n");
394 		return PTR_ERR(ptp_class);
395 	}
396 
397 	err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
398 	if (err < 0) {
399 		pr_err("ptp: failed to allocate device region\n");
400 		goto no_region;
401 	}
402 
403 	ptp_class->dev_groups = ptp_groups;
404 	pr_info("PTP clock support registered\n");
405 	return 0;
406 
407 no_region:
408 	class_destroy(ptp_class);
409 	return err;
410 }
411 
412 subsys_initcall(ptp_init);
413 module_exit(ptp_exit);
414 
415 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
416 MODULE_DESCRIPTION("PTP clocks support");
417 MODULE_LICENSE("GPL");
418