1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Common code for Intel Running Average Power Limit (RAPL) support.
4  * Copyright (c) 2019, Intel Corporation.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/types.h>
12 #include <linux/device.h>
13 #include <linux/slab.h>
14 #include <linux/log2.h>
15 #include <linux/bitmap.h>
16 #include <linux/delay.h>
17 #include <linux/sysfs.h>
18 #include <linux/cpu.h>
19 #include <linux/powercap.h>
20 #include <linux/suspend.h>
21 #include <linux/intel_rapl.h>
22 #include <linux/processor.h>
23 #include <linux/platform_device.h>
24 
25 #include <asm/iosf_mbi.h>
26 #include <asm/cpu_device_id.h>
27 #include <asm/intel-family.h>
28 
29 /* bitmasks for RAPL MSRs, used by primitive access functions */
30 #define ENERGY_STATUS_MASK      0xffffffff
31 
32 #define POWER_LIMIT1_MASK       0x7FFF
33 #define POWER_LIMIT1_ENABLE     BIT(15)
34 #define POWER_LIMIT1_CLAMP      BIT(16)
35 
36 #define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
37 #define POWER_LIMIT2_ENABLE     BIT_ULL(47)
38 #define POWER_LIMIT2_CLAMP      BIT_ULL(48)
39 #define POWER_HIGH_LOCK         BIT_ULL(63)
40 #define POWER_LOW_LOCK          BIT(31)
41 
42 #define POWER_LIMIT4_MASK		0x1FFF
43 
44 #define TIME_WINDOW1_MASK       (0x7FULL<<17)
45 #define TIME_WINDOW2_MASK       (0x7FULL<<49)
46 
47 #define POWER_UNIT_OFFSET	0
48 #define POWER_UNIT_MASK		0x0F
49 
50 #define ENERGY_UNIT_OFFSET	0x08
51 #define ENERGY_UNIT_MASK	0x1F00
52 
53 #define TIME_UNIT_OFFSET	0x10
54 #define TIME_UNIT_MASK		0xF0000
55 
56 #define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
57 #define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
58 #define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
59 #define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
60 
61 #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
62 #define PP_POLICY_MASK         0x1F
63 
64 /* Non HW constants */
65 #define RAPL_PRIMITIVE_DERIVED       BIT(1)	/* not from raw data */
66 #define RAPL_PRIMITIVE_DUMMY         BIT(2)
67 
68 #define TIME_WINDOW_MAX_MSEC 40000
69 #define TIME_WINDOW_MIN_MSEC 250
70 #define ENERGY_UNIT_SCALE    1000	/* scale from driver unit to powercap unit */
71 enum unit_type {
72 	ARBITRARY_UNIT,		/* no translation */
73 	POWER_UNIT,
74 	ENERGY_UNIT,
75 	TIME_UNIT,
76 };
77 
78 /* per domain data, some are optional */
79 #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
80 
81 #define	DOMAIN_STATE_INACTIVE           BIT(0)
82 #define	DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
83 #define DOMAIN_STATE_BIOS_LOCKED        BIT(2)
84 
85 static const char pl1_name[] = "long_term";
86 static const char pl2_name[] = "short_term";
87 static const char pl4_name[] = "peak_power";
88 
89 #define power_zone_to_rapl_domain(_zone) \
90 	container_of(_zone, struct rapl_domain, power_zone)
91 
92 struct rapl_defaults {
93 	u8 floor_freq_reg_addr;
94 	int (*check_unit)(struct rapl_package *rp, int cpu);
95 	void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
96 	u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
97 				    bool to_raw);
98 	unsigned int dram_domain_energy_unit;
99 	unsigned int psys_domain_energy_unit;
100 };
101 static struct rapl_defaults *rapl_defaults;
102 
103 /* Sideband MBI registers */
104 #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
105 #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
106 
107 #define PACKAGE_PLN_INT_SAVED   BIT(0)
108 #define MAX_PRIM_NAME (32)
109 
110 /* per domain data. used to describe individual knobs such that access function
111  * can be consolidated into one instead of many inline functions.
112  */
113 struct rapl_primitive_info {
114 	const char *name;
115 	u64 mask;
116 	int shift;
117 	enum rapl_domain_reg_id id;
118 	enum unit_type unit;
119 	u32 flag;
120 };
121 
122 #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) {	\
123 		.name = #p,			\
124 		.mask = m,			\
125 		.shift = s,			\
126 		.id = i,			\
127 		.unit = u,			\
128 		.flag = f			\
129 	}
130 
131 static void rapl_init_domains(struct rapl_package *rp);
132 static int rapl_read_data_raw(struct rapl_domain *rd,
133 			      enum rapl_primitives prim,
134 			      bool xlate, u64 *data);
135 static int rapl_write_data_raw(struct rapl_domain *rd,
136 			       enum rapl_primitives prim,
137 			       unsigned long long value);
138 static u64 rapl_unit_xlate(struct rapl_domain *rd,
139 			   enum unit_type type, u64 value, int to_raw);
140 static void package_power_limit_irq_save(struct rapl_package *rp);
141 
142 static LIST_HEAD(rapl_packages);	/* guarded by CPU hotplug lock */
143 
144 static const char *const rapl_domain_names[] = {
145 	"package",
146 	"core",
147 	"uncore",
148 	"dram",
149 	"psys",
150 };
151 
152 static int get_energy_counter(struct powercap_zone *power_zone,
153 			      u64 *energy_raw)
154 {
155 	struct rapl_domain *rd;
156 	u64 energy_now;
157 
158 	/* prevent CPU hotplug, make sure the RAPL domain does not go
159 	 * away while reading the counter.
160 	 */
161 	cpus_read_lock();
162 	rd = power_zone_to_rapl_domain(power_zone);
163 
164 	if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
165 		*energy_raw = energy_now;
166 		cpus_read_unlock();
167 
168 		return 0;
169 	}
170 	cpus_read_unlock();
171 
172 	return -EIO;
173 }
174 
175 static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
176 {
177 	struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
178 
179 	*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
180 	return 0;
181 }
182 
183 static int release_zone(struct powercap_zone *power_zone)
184 {
185 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
186 	struct rapl_package *rp = rd->rp;
187 
188 	/* package zone is the last zone of a package, we can free
189 	 * memory here since all children has been unregistered.
190 	 */
191 	if (rd->id == RAPL_DOMAIN_PACKAGE) {
192 		kfree(rd);
193 		rp->domains = NULL;
194 	}
195 
196 	return 0;
197 
198 }
199 
200 static int find_nr_power_limit(struct rapl_domain *rd)
201 {
202 	int i, nr_pl = 0;
203 
204 	for (i = 0; i < NR_POWER_LIMITS; i++) {
205 		if (rd->rpl[i].name)
206 			nr_pl++;
207 	}
208 
209 	return nr_pl;
210 }
211 
212 static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
213 {
214 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
215 
216 	if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
217 		return -EACCES;
218 
219 	cpus_read_lock();
220 	rapl_write_data_raw(rd, PL1_ENABLE, mode);
221 	if (rapl_defaults->set_floor_freq)
222 		rapl_defaults->set_floor_freq(rd, mode);
223 	cpus_read_unlock();
224 
225 	return 0;
226 }
227 
228 static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
229 {
230 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
231 	u64 val;
232 
233 	if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
234 		*mode = false;
235 		return 0;
236 	}
237 	cpus_read_lock();
238 	if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
239 		cpus_read_unlock();
240 		return -EIO;
241 	}
242 	*mode = val;
243 	cpus_read_unlock();
244 
245 	return 0;
246 }
247 
248 /* per RAPL domain ops, in the order of rapl_domain_type */
249 static const struct powercap_zone_ops zone_ops[] = {
250 	/* RAPL_DOMAIN_PACKAGE */
251 	{
252 	 .get_energy_uj = get_energy_counter,
253 	 .get_max_energy_range_uj = get_max_energy_counter,
254 	 .release = release_zone,
255 	 .set_enable = set_domain_enable,
256 	 .get_enable = get_domain_enable,
257 	 },
258 	/* RAPL_DOMAIN_PP0 */
259 	{
260 	 .get_energy_uj = get_energy_counter,
261 	 .get_max_energy_range_uj = get_max_energy_counter,
262 	 .release = release_zone,
263 	 .set_enable = set_domain_enable,
264 	 .get_enable = get_domain_enable,
265 	 },
266 	/* RAPL_DOMAIN_PP1 */
267 	{
268 	 .get_energy_uj = get_energy_counter,
269 	 .get_max_energy_range_uj = get_max_energy_counter,
270 	 .release = release_zone,
271 	 .set_enable = set_domain_enable,
272 	 .get_enable = get_domain_enable,
273 	 },
274 	/* RAPL_DOMAIN_DRAM */
275 	{
276 	 .get_energy_uj = get_energy_counter,
277 	 .get_max_energy_range_uj = get_max_energy_counter,
278 	 .release = release_zone,
279 	 .set_enable = set_domain_enable,
280 	 .get_enable = get_domain_enable,
281 	 },
282 	/* RAPL_DOMAIN_PLATFORM */
283 	{
284 	 .get_energy_uj = get_energy_counter,
285 	 .get_max_energy_range_uj = get_max_energy_counter,
286 	 .release = release_zone,
287 	 .set_enable = set_domain_enable,
288 	 .get_enable = get_domain_enable,
289 	 },
290 };
291 
292 /*
293  * Constraint index used by powercap can be different than power limit (PL)
294  * index in that some  PLs maybe missing due to non-existent MSRs. So we
295  * need to convert here by finding the valid PLs only (name populated).
296  */
297 static int contraint_to_pl(struct rapl_domain *rd, int cid)
298 {
299 	int i, j;
300 
301 	for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
302 		if ((rd->rpl[i].name) && j++ == cid) {
303 			pr_debug("%s: index %d\n", __func__, i);
304 			return i;
305 		}
306 	}
307 	pr_err("Cannot find matching power limit for constraint %d\n", cid);
308 
309 	return -EINVAL;
310 }
311 
312 static int set_power_limit(struct powercap_zone *power_zone, int cid,
313 			   u64 power_limit)
314 {
315 	struct rapl_domain *rd;
316 	struct rapl_package *rp;
317 	int ret = 0;
318 	int id;
319 
320 	cpus_read_lock();
321 	rd = power_zone_to_rapl_domain(power_zone);
322 	id = contraint_to_pl(rd, cid);
323 	if (id < 0) {
324 		ret = id;
325 		goto set_exit;
326 	}
327 
328 	rp = rd->rp;
329 
330 	if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
331 		dev_warn(&power_zone->dev,
332 			 "%s locked by BIOS, monitoring only\n", rd->name);
333 		ret = -EACCES;
334 		goto set_exit;
335 	}
336 
337 	switch (rd->rpl[id].prim_id) {
338 	case PL1_ENABLE:
339 		rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
340 		break;
341 	case PL2_ENABLE:
342 		rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
343 		break;
344 	case PL4_ENABLE:
345 		rapl_write_data_raw(rd, POWER_LIMIT4, power_limit);
346 		break;
347 	default:
348 		ret = -EINVAL;
349 	}
350 	if (!ret)
351 		package_power_limit_irq_save(rp);
352 set_exit:
353 	cpus_read_unlock();
354 	return ret;
355 }
356 
357 static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
358 				   u64 *data)
359 {
360 	struct rapl_domain *rd;
361 	u64 val;
362 	int prim;
363 	int ret = 0;
364 	int id;
365 
366 	cpus_read_lock();
367 	rd = power_zone_to_rapl_domain(power_zone);
368 	id = contraint_to_pl(rd, cid);
369 	if (id < 0) {
370 		ret = id;
371 		goto get_exit;
372 	}
373 
374 	switch (rd->rpl[id].prim_id) {
375 	case PL1_ENABLE:
376 		prim = POWER_LIMIT1;
377 		break;
378 	case PL2_ENABLE:
379 		prim = POWER_LIMIT2;
380 		break;
381 	case PL4_ENABLE:
382 		prim = POWER_LIMIT4;
383 		break;
384 	default:
385 		cpus_read_unlock();
386 		return -EINVAL;
387 	}
388 	if (rapl_read_data_raw(rd, prim, true, &val))
389 		ret = -EIO;
390 	else
391 		*data = val;
392 
393 get_exit:
394 	cpus_read_unlock();
395 
396 	return ret;
397 }
398 
399 static int set_time_window(struct powercap_zone *power_zone, int cid,
400 			   u64 window)
401 {
402 	struct rapl_domain *rd;
403 	int ret = 0;
404 	int id;
405 
406 	cpus_read_lock();
407 	rd = power_zone_to_rapl_domain(power_zone);
408 	id = contraint_to_pl(rd, cid);
409 	if (id < 0) {
410 		ret = id;
411 		goto set_time_exit;
412 	}
413 
414 	switch (rd->rpl[id].prim_id) {
415 	case PL1_ENABLE:
416 		rapl_write_data_raw(rd, TIME_WINDOW1, window);
417 		break;
418 	case PL2_ENABLE:
419 		rapl_write_data_raw(rd, TIME_WINDOW2, window);
420 		break;
421 	default:
422 		ret = -EINVAL;
423 	}
424 
425 set_time_exit:
426 	cpus_read_unlock();
427 	return ret;
428 }
429 
430 static int get_time_window(struct powercap_zone *power_zone, int cid,
431 			   u64 *data)
432 {
433 	struct rapl_domain *rd;
434 	u64 val;
435 	int ret = 0;
436 	int id;
437 
438 	cpus_read_lock();
439 	rd = power_zone_to_rapl_domain(power_zone);
440 	id = contraint_to_pl(rd, cid);
441 	if (id < 0) {
442 		ret = id;
443 		goto get_time_exit;
444 	}
445 
446 	switch (rd->rpl[id].prim_id) {
447 	case PL1_ENABLE:
448 		ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
449 		break;
450 	case PL2_ENABLE:
451 		ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
452 		break;
453 	case PL4_ENABLE:
454 		/*
455 		 * Time window parameter is not applicable for PL4 entry
456 		 * so assigining '0' as default value.
457 		 */
458 		val = 0;
459 		break;
460 	default:
461 		cpus_read_unlock();
462 		return -EINVAL;
463 	}
464 	if (!ret)
465 		*data = val;
466 
467 get_time_exit:
468 	cpus_read_unlock();
469 
470 	return ret;
471 }
472 
473 static const char *get_constraint_name(struct powercap_zone *power_zone,
474 				       int cid)
475 {
476 	struct rapl_domain *rd;
477 	int id;
478 
479 	rd = power_zone_to_rapl_domain(power_zone);
480 	id = contraint_to_pl(rd, cid);
481 	if (id >= 0)
482 		return rd->rpl[id].name;
483 
484 	return NULL;
485 }
486 
487 static int get_max_power(struct powercap_zone *power_zone, int id, u64 *data)
488 {
489 	struct rapl_domain *rd;
490 	u64 val;
491 	int prim;
492 	int ret = 0;
493 
494 	cpus_read_lock();
495 	rd = power_zone_to_rapl_domain(power_zone);
496 	switch (rd->rpl[id].prim_id) {
497 	case PL1_ENABLE:
498 		prim = THERMAL_SPEC_POWER;
499 		break;
500 	case PL2_ENABLE:
501 		prim = MAX_POWER;
502 		break;
503 	case PL4_ENABLE:
504 		prim = MAX_POWER;
505 		break;
506 	default:
507 		cpus_read_unlock();
508 		return -EINVAL;
509 	}
510 	if (rapl_read_data_raw(rd, prim, true, &val))
511 		ret = -EIO;
512 	else
513 		*data = val;
514 
515 	/* As a generalization rule, PL4 would be around two times PL2. */
516 	if (rd->rpl[id].prim_id == PL4_ENABLE)
517 		*data = *data * 2;
518 
519 	cpus_read_unlock();
520 
521 	return ret;
522 }
523 
524 static const struct powercap_zone_constraint_ops constraint_ops = {
525 	.set_power_limit_uw = set_power_limit,
526 	.get_power_limit_uw = get_current_power_limit,
527 	.set_time_window_us = set_time_window,
528 	.get_time_window_us = get_time_window,
529 	.get_max_power_uw = get_max_power,
530 	.get_name = get_constraint_name,
531 };
532 
533 /* called after domain detection and package level data are set */
534 static void rapl_init_domains(struct rapl_package *rp)
535 {
536 	enum rapl_domain_type i;
537 	enum rapl_domain_reg_id j;
538 	struct rapl_domain *rd = rp->domains;
539 
540 	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
541 		unsigned int mask = rp->domain_map & (1 << i);
542 
543 		if (!mask)
544 			continue;
545 
546 		rd->rp = rp;
547 
548 		if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
549 			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
550 				topology_physical_package_id(rp->lead_cpu));
551 		} else
552 			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
553 				rapl_domain_names[i]);
554 
555 		rd->id = i;
556 		rd->rpl[0].prim_id = PL1_ENABLE;
557 		rd->rpl[0].name = pl1_name;
558 
559 		/*
560 		 * The PL2 power domain is applicable for limits two
561 		 * and limits three
562 		 */
563 		if (rp->priv->limits[i] >= 2) {
564 			rd->rpl[1].prim_id = PL2_ENABLE;
565 			rd->rpl[1].name = pl2_name;
566 		}
567 
568 		/* Enable PL4 domain if the total power limits are three */
569 		if (rp->priv->limits[i] == 3) {
570 			rd->rpl[2].prim_id = PL4_ENABLE;
571 			rd->rpl[2].name = pl4_name;
572 		}
573 
574 		for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
575 			rd->regs[j] = rp->priv->regs[i][j];
576 
577 		switch (i) {
578 		case RAPL_DOMAIN_DRAM:
579 			rd->domain_energy_unit =
580 			    rapl_defaults->dram_domain_energy_unit;
581 			if (rd->domain_energy_unit)
582 				pr_info("DRAM domain energy unit %dpj\n",
583 					rd->domain_energy_unit);
584 			break;
585 		case RAPL_DOMAIN_PLATFORM:
586 			rd->domain_energy_unit =
587 			    rapl_defaults->psys_domain_energy_unit;
588 			if (rd->domain_energy_unit)
589 				pr_info("Platform domain energy unit %dpj\n",
590 					rd->domain_energy_unit);
591 			break;
592 		default:
593 			break;
594 		}
595 		rd++;
596 	}
597 }
598 
599 static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
600 			   u64 value, int to_raw)
601 {
602 	u64 units = 1;
603 	struct rapl_package *rp = rd->rp;
604 	u64 scale = 1;
605 
606 	switch (type) {
607 	case POWER_UNIT:
608 		units = rp->power_unit;
609 		break;
610 	case ENERGY_UNIT:
611 		scale = ENERGY_UNIT_SCALE;
612 		/* per domain unit takes precedence */
613 		if (rd->domain_energy_unit)
614 			units = rd->domain_energy_unit;
615 		else
616 			units = rp->energy_unit;
617 		break;
618 	case TIME_UNIT:
619 		return rapl_defaults->compute_time_window(rp, value, to_raw);
620 	case ARBITRARY_UNIT:
621 	default:
622 		return value;
623 	}
624 
625 	if (to_raw)
626 		return div64_u64(value, units) * scale;
627 
628 	value *= units;
629 
630 	return div64_u64(value, scale);
631 }
632 
633 /* in the order of enum rapl_primitives */
634 static struct rapl_primitive_info rpi[] = {
635 	/* name, mask, shift, msr index, unit divisor */
636 	PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
637 			    RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
638 	PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
639 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
640 	PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
641 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
642 	PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
643 				RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
644 	PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
645 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
646 	PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
647 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
648 	PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
649 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
650 	PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
651 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
652 	PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
653 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
654 	PRIMITIVE_INFO_INIT(PL4_ENABLE, POWER_LIMIT4_MASK, 0,
655 				RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
656 	PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
657 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
658 	PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
659 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
660 	PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
661 			    0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
662 	PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
663 			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
664 	PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
665 			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
666 	PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
667 			    RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
668 	PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
669 			    RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
670 	PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
671 			    RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
672 	/* non-hardware */
673 	PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
674 			    RAPL_PRIMITIVE_DERIVED),
675 	{NULL, 0, 0, 0},
676 };
677 
678 /* Read primitive data based on its related struct rapl_primitive_info.
679  * if xlate flag is set, return translated data based on data units, i.e.
680  * time, energy, and power.
681  * RAPL MSRs are non-architectual and are laid out not consistently across
682  * domains. Here we use primitive info to allow writing consolidated access
683  * functions.
684  * For a given primitive, it is processed by MSR mask and shift. Unit conversion
685  * is pre-assigned based on RAPL unit MSRs read at init time.
686  * 63-------------------------- 31--------------------------- 0
687  * |                           xxxxx (mask)                   |
688  * |                                |<- shift ----------------|
689  * 63-------------------------- 31--------------------------- 0
690  */
691 static int rapl_read_data_raw(struct rapl_domain *rd,
692 			      enum rapl_primitives prim, bool xlate, u64 *data)
693 {
694 	u64 value;
695 	struct rapl_primitive_info *rp = &rpi[prim];
696 	struct reg_action ra;
697 	int cpu;
698 
699 	if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
700 		return -EINVAL;
701 
702 	ra.reg = rd->regs[rp->id];
703 	if (!ra.reg)
704 		return -EINVAL;
705 
706 	cpu = rd->rp->lead_cpu;
707 
708 	/* domain with 2 limits has different bit */
709 	if (prim == FW_LOCK && rd->rp->priv->limits[rd->id] == 2) {
710 		rp->mask = POWER_HIGH_LOCK;
711 		rp->shift = 63;
712 	}
713 	/* non-hardware data are collected by the polling thread */
714 	if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
715 		*data = rd->rdd.primitives[prim];
716 		return 0;
717 	}
718 
719 	ra.mask = rp->mask;
720 
721 	if (rd->rp->priv->read_raw(cpu, &ra)) {
722 		pr_debug("failed to read reg 0x%llx on cpu %d\n", ra.reg, cpu);
723 		return -EIO;
724 	}
725 
726 	value = ra.value >> rp->shift;
727 
728 	if (xlate)
729 		*data = rapl_unit_xlate(rd, rp->unit, value, 0);
730 	else
731 		*data = value;
732 
733 	return 0;
734 }
735 
736 /* Similar use of primitive info in the read counterpart */
737 static int rapl_write_data_raw(struct rapl_domain *rd,
738 			       enum rapl_primitives prim,
739 			       unsigned long long value)
740 {
741 	struct rapl_primitive_info *rp = &rpi[prim];
742 	int cpu;
743 	u64 bits;
744 	struct reg_action ra;
745 	int ret;
746 
747 	cpu = rd->rp->lead_cpu;
748 	bits = rapl_unit_xlate(rd, rp->unit, value, 1);
749 	bits <<= rp->shift;
750 	bits &= rp->mask;
751 
752 	memset(&ra, 0, sizeof(ra));
753 
754 	ra.reg = rd->regs[rp->id];
755 	ra.mask = rp->mask;
756 	ra.value = bits;
757 
758 	ret = rd->rp->priv->write_raw(cpu, &ra);
759 
760 	return ret;
761 }
762 
763 /*
764  * Raw RAPL data stored in MSRs are in certain scales. We need to
765  * convert them into standard units based on the units reported in
766  * the RAPL unit MSRs. This is specific to CPUs as the method to
767  * calculate units differ on different CPUs.
768  * We convert the units to below format based on CPUs.
769  * i.e.
770  * energy unit: picoJoules  : Represented in picoJoules by default
771  * power unit : microWatts  : Represented in milliWatts by default
772  * time unit  : microseconds: Represented in seconds by default
773  */
774 static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
775 {
776 	struct reg_action ra;
777 	u32 value;
778 
779 	ra.reg = rp->priv->reg_unit;
780 	ra.mask = ~0;
781 	if (rp->priv->read_raw(cpu, &ra)) {
782 		pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
783 		       rp->priv->reg_unit, cpu);
784 		return -ENODEV;
785 	}
786 
787 	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
788 	rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
789 
790 	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
791 	rp->power_unit = 1000000 / (1 << value);
792 
793 	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
794 	rp->time_unit = 1000000 / (1 << value);
795 
796 	pr_debug("Core CPU %s energy=%dpJ, time=%dus, power=%duW\n",
797 		 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
798 
799 	return 0;
800 }
801 
802 static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
803 {
804 	struct reg_action ra;
805 	u32 value;
806 
807 	ra.reg = rp->priv->reg_unit;
808 	ra.mask = ~0;
809 	if (rp->priv->read_raw(cpu, &ra)) {
810 		pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
811 		       rp->priv->reg_unit, cpu);
812 		return -ENODEV;
813 	}
814 
815 	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
816 	rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
817 
818 	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
819 	rp->power_unit = (1 << value) * 1000;
820 
821 	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
822 	rp->time_unit = 1000000 / (1 << value);
823 
824 	pr_debug("Atom %s energy=%dpJ, time=%dus, power=%duW\n",
825 		 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
826 
827 	return 0;
828 }
829 
830 static void power_limit_irq_save_cpu(void *info)
831 {
832 	u32 l, h = 0;
833 	struct rapl_package *rp = (struct rapl_package *)info;
834 
835 	/* save the state of PLN irq mask bit before disabling it */
836 	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
837 	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
838 		rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
839 		rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
840 	}
841 	l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
842 	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
843 }
844 
845 /* REVISIT:
846  * When package power limit is set artificially low by RAPL, LVT
847  * thermal interrupt for package power limit should be ignored
848  * since we are not really exceeding the real limit. The intention
849  * is to avoid excessive interrupts while we are trying to save power.
850  * A useful feature might be routing the package_power_limit interrupt
851  * to userspace via eventfd. once we have a usecase, this is simple
852  * to do by adding an atomic notifier.
853  */
854 
855 static void package_power_limit_irq_save(struct rapl_package *rp)
856 {
857 	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
858 		return;
859 
860 	smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
861 }
862 
863 /*
864  * Restore per package power limit interrupt enable state. Called from cpu
865  * hotplug code on package removal.
866  */
867 static void package_power_limit_irq_restore(struct rapl_package *rp)
868 {
869 	u32 l, h;
870 
871 	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
872 		return;
873 
874 	/* irq enable state not saved, nothing to restore */
875 	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
876 		return;
877 
878 	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
879 
880 	if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
881 		l |= PACKAGE_THERM_INT_PLN_ENABLE;
882 	else
883 		l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
884 
885 	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
886 }
887 
888 static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
889 {
890 	int nr_powerlimit = find_nr_power_limit(rd);
891 
892 	/* always enable clamp such that p-state can go below OS requested
893 	 * range. power capping priority over guranteed frequency.
894 	 */
895 	rapl_write_data_raw(rd, PL1_CLAMP, mode);
896 
897 	/* some domains have pl2 */
898 	if (nr_powerlimit > 1) {
899 		rapl_write_data_raw(rd, PL2_ENABLE, mode);
900 		rapl_write_data_raw(rd, PL2_CLAMP, mode);
901 	}
902 }
903 
904 static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
905 {
906 	static u32 power_ctrl_orig_val;
907 	u32 mdata;
908 
909 	if (!rapl_defaults->floor_freq_reg_addr) {
910 		pr_err("Invalid floor frequency config register\n");
911 		return;
912 	}
913 
914 	if (!power_ctrl_orig_val)
915 		iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
916 			      rapl_defaults->floor_freq_reg_addr,
917 			      &power_ctrl_orig_val);
918 	mdata = power_ctrl_orig_val;
919 	if (enable) {
920 		mdata &= ~(0x7f << 8);
921 		mdata |= 1 << 8;
922 	}
923 	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
924 		       rapl_defaults->floor_freq_reg_addr, mdata);
925 }
926 
927 static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
928 					 bool to_raw)
929 {
930 	u64 f, y;		/* fraction and exp. used for time unit */
931 
932 	/*
933 	 * Special processing based on 2^Y*(1+F/4), refer
934 	 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
935 	 */
936 	if (!to_raw) {
937 		f = (value & 0x60) >> 5;
938 		y = value & 0x1f;
939 		value = (1 << y) * (4 + f) * rp->time_unit / 4;
940 	} else {
941 		do_div(value, rp->time_unit);
942 		y = ilog2(value);
943 		f = div64_u64(4 * (value - (1 << y)), 1 << y);
944 		value = (y & 0x1f) | ((f & 0x3) << 5);
945 	}
946 	return value;
947 }
948 
949 static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
950 					 bool to_raw)
951 {
952 	/*
953 	 * Atom time unit encoding is straight forward val * time_unit,
954 	 * where time_unit is default to 1 sec. Never 0.
955 	 */
956 	if (!to_raw)
957 		return (value) ? value *= rp->time_unit : rp->time_unit;
958 
959 	value = div64_u64(value, rp->time_unit);
960 
961 	return value;
962 }
963 
964 static const struct rapl_defaults rapl_defaults_core = {
965 	.floor_freq_reg_addr = 0,
966 	.check_unit = rapl_check_unit_core,
967 	.set_floor_freq = set_floor_freq_default,
968 	.compute_time_window = rapl_compute_time_window_core,
969 };
970 
971 static const struct rapl_defaults rapl_defaults_hsw_server = {
972 	.check_unit = rapl_check_unit_core,
973 	.set_floor_freq = set_floor_freq_default,
974 	.compute_time_window = rapl_compute_time_window_core,
975 	.dram_domain_energy_unit = 15300,
976 };
977 
978 static const struct rapl_defaults rapl_defaults_spr_server = {
979 	.check_unit = rapl_check_unit_core,
980 	.set_floor_freq = set_floor_freq_default,
981 	.compute_time_window = rapl_compute_time_window_core,
982 	.dram_domain_energy_unit = 15300,
983 	.psys_domain_energy_unit = 1000000000,
984 };
985 
986 static const struct rapl_defaults rapl_defaults_byt = {
987 	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
988 	.check_unit = rapl_check_unit_atom,
989 	.set_floor_freq = set_floor_freq_atom,
990 	.compute_time_window = rapl_compute_time_window_atom,
991 };
992 
993 static const struct rapl_defaults rapl_defaults_tng = {
994 	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
995 	.check_unit = rapl_check_unit_atom,
996 	.set_floor_freq = set_floor_freq_atom,
997 	.compute_time_window = rapl_compute_time_window_atom,
998 };
999 
1000 static const struct rapl_defaults rapl_defaults_ann = {
1001 	.floor_freq_reg_addr = 0,
1002 	.check_unit = rapl_check_unit_atom,
1003 	.set_floor_freq = NULL,
1004 	.compute_time_window = rapl_compute_time_window_atom,
1005 };
1006 
1007 static const struct rapl_defaults rapl_defaults_cht = {
1008 	.floor_freq_reg_addr = 0,
1009 	.check_unit = rapl_check_unit_atom,
1010 	.set_floor_freq = NULL,
1011 	.compute_time_window = rapl_compute_time_window_atom,
1012 };
1013 
1014 static const struct rapl_defaults rapl_defaults_amd = {
1015 	.check_unit = rapl_check_unit_core,
1016 };
1017 
1018 static const struct x86_cpu_id rapl_ids[] __initconst = {
1019 	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE,		&rapl_defaults_core),
1020 	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X,	&rapl_defaults_core),
1021 
1022 	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE,		&rapl_defaults_core),
1023 	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,		&rapl_defaults_core),
1024 
1025 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL,		&rapl_defaults_core),
1026 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L,		&rapl_defaults_core),
1027 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G,		&rapl_defaults_core),
1028 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,		&rapl_defaults_hsw_server),
1029 
1030 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL,		&rapl_defaults_core),
1031 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G,		&rapl_defaults_core),
1032 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,		&rapl_defaults_core),
1033 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,		&rapl_defaults_hsw_server),
1034 
1035 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE,		&rapl_defaults_core),
1036 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L,		&rapl_defaults_core),
1037 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X,		&rapl_defaults_hsw_server),
1038 	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L,		&rapl_defaults_core),
1039 	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE,		&rapl_defaults_core),
1040 	X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L,	&rapl_defaults_core),
1041 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,		&rapl_defaults_core),
1042 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE,		&rapl_defaults_core),
1043 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI,	&rapl_defaults_core),
1044 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,		&rapl_defaults_hsw_server),
1045 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,		&rapl_defaults_hsw_server),
1046 	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L,		&rapl_defaults_core),
1047 	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE,		&rapl_defaults_core),
1048 	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L,		&rapl_defaults_core),
1049 	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE,		&rapl_defaults_core),
1050 	X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE,		&rapl_defaults_core),
1051 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE,		&rapl_defaults_core),
1052 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L,		&rapl_defaults_core),
1053 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X,	&rapl_defaults_spr_server),
1054 	X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD,		&rapl_defaults_core),
1055 
1056 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,	&rapl_defaults_byt),
1057 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,	&rapl_defaults_cht),
1058 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID,	&rapl_defaults_tng),
1059 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID,	&rapl_defaults_ann),
1060 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT,	&rapl_defaults_core),
1061 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS,	&rapl_defaults_core),
1062 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D,	&rapl_defaults_core),
1063 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,	&rapl_defaults_core),
1064 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D,	&rapl_defaults_core),
1065 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,	&rapl_defaults_core),
1066 
1067 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,	&rapl_defaults_hsw_server),
1068 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,	&rapl_defaults_hsw_server),
1069 
1070 	X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1071 	X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1072 	X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1073 	{}
1074 };
1075 MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1076 
1077 /* Read once for all raw primitive data for domains */
1078 static void rapl_update_domain_data(struct rapl_package *rp)
1079 {
1080 	int dmn, prim;
1081 	u64 val;
1082 
1083 	for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1084 		pr_debug("update %s domain %s data\n", rp->name,
1085 			 rp->domains[dmn].name);
1086 		/* exclude non-raw primitives */
1087 		for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1088 			if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1089 						rpi[prim].unit, &val))
1090 				rp->domains[dmn].rdd.primitives[prim] = val;
1091 		}
1092 	}
1093 
1094 }
1095 
1096 static int rapl_package_register_powercap(struct rapl_package *rp)
1097 {
1098 	struct rapl_domain *rd;
1099 	struct powercap_zone *power_zone = NULL;
1100 	int nr_pl, ret;
1101 
1102 	/* Update the domain data of the new package */
1103 	rapl_update_domain_data(rp);
1104 
1105 	/* first we register package domain as the parent zone */
1106 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1107 		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1108 			nr_pl = find_nr_power_limit(rd);
1109 			pr_debug("register package domain %s\n", rp->name);
1110 			power_zone = powercap_register_zone(&rd->power_zone,
1111 					    rp->priv->control_type, rp->name,
1112 					    NULL, &zone_ops[rd->id], nr_pl,
1113 					    &constraint_ops);
1114 			if (IS_ERR(power_zone)) {
1115 				pr_debug("failed to register power zone %s\n",
1116 					 rp->name);
1117 				return PTR_ERR(power_zone);
1118 			}
1119 			/* track parent zone in per package/socket data */
1120 			rp->power_zone = power_zone;
1121 			/* done, only one package domain per socket */
1122 			break;
1123 		}
1124 	}
1125 	if (!power_zone) {
1126 		pr_err("no package domain found, unknown topology!\n");
1127 		return -ENODEV;
1128 	}
1129 	/* now register domains as children of the socket/package */
1130 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1131 		struct powercap_zone *parent = rp->power_zone;
1132 
1133 		if (rd->id == RAPL_DOMAIN_PACKAGE)
1134 			continue;
1135 		if (rd->id == RAPL_DOMAIN_PLATFORM)
1136 			parent = NULL;
1137 		/* number of power limits per domain varies */
1138 		nr_pl = find_nr_power_limit(rd);
1139 		power_zone = powercap_register_zone(&rd->power_zone,
1140 						    rp->priv->control_type,
1141 						    rd->name, parent,
1142 						    &zone_ops[rd->id], nr_pl,
1143 						    &constraint_ops);
1144 
1145 		if (IS_ERR(power_zone)) {
1146 			pr_debug("failed to register power_zone, %s:%s\n",
1147 				 rp->name, rd->name);
1148 			ret = PTR_ERR(power_zone);
1149 			goto err_cleanup;
1150 		}
1151 	}
1152 	return 0;
1153 
1154 err_cleanup:
1155 	/*
1156 	 * Clean up previously initialized domains within the package if we
1157 	 * failed after the first domain setup.
1158 	 */
1159 	while (--rd >= rp->domains) {
1160 		pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1161 		powercap_unregister_zone(rp->priv->control_type,
1162 					 &rd->power_zone);
1163 	}
1164 
1165 	return ret;
1166 }
1167 
1168 static int rapl_check_domain(int cpu, int domain, struct rapl_package *rp)
1169 {
1170 	struct reg_action ra;
1171 
1172 	switch (domain) {
1173 	case RAPL_DOMAIN_PACKAGE:
1174 	case RAPL_DOMAIN_PP0:
1175 	case RAPL_DOMAIN_PP1:
1176 	case RAPL_DOMAIN_DRAM:
1177 	case RAPL_DOMAIN_PLATFORM:
1178 		ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1179 		break;
1180 	default:
1181 		pr_err("invalid domain id %d\n", domain);
1182 		return -EINVAL;
1183 	}
1184 	/* make sure domain counters are available and contains non-zero
1185 	 * values, otherwise skip it.
1186 	 */
1187 
1188 	ra.mask = ENERGY_STATUS_MASK;
1189 	if (rp->priv->read_raw(cpu, &ra) || !ra.value)
1190 		return -ENODEV;
1191 
1192 	return 0;
1193 }
1194 
1195 /*
1196  * Check if power limits are available. Two cases when they are not available:
1197  * 1. Locked by BIOS, in this case we still provide read-only access so that
1198  *    users can see what limit is set by the BIOS.
1199  * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1200  *    exist at all. In this case, we do not show the constraints in powercap.
1201  *
1202  * Called after domains are detected and initialized.
1203  */
1204 static void rapl_detect_powerlimit(struct rapl_domain *rd)
1205 {
1206 	u64 val64;
1207 	int i;
1208 
1209 	/* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
1210 	if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
1211 		if (val64) {
1212 			pr_info("RAPL %s domain %s locked by BIOS\n",
1213 				rd->rp->name, rd->name);
1214 			rd->state |= DOMAIN_STATE_BIOS_LOCKED;
1215 		}
1216 	}
1217 	/* check if power limit MSR exists, otherwise domain is monitoring only */
1218 	for (i = 0; i < NR_POWER_LIMITS; i++) {
1219 		int prim = rd->rpl[i].prim_id;
1220 
1221 		if (rapl_read_data_raw(rd, prim, false, &val64))
1222 			rd->rpl[i].name = NULL;
1223 	}
1224 }
1225 
1226 /* Detect active and valid domains for the given CPU, caller must
1227  * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1228  */
1229 static int rapl_detect_domains(struct rapl_package *rp, int cpu)
1230 {
1231 	struct rapl_domain *rd;
1232 	int i;
1233 
1234 	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1235 		/* use physical package id to read counters */
1236 		if (!rapl_check_domain(cpu, i, rp)) {
1237 			rp->domain_map |= 1 << i;
1238 			pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1239 		}
1240 	}
1241 	rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1242 	if (!rp->nr_domains) {
1243 		pr_debug("no valid rapl domains found in %s\n", rp->name);
1244 		return -ENODEV;
1245 	}
1246 	pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1247 
1248 	rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
1249 			      GFP_KERNEL);
1250 	if (!rp->domains)
1251 		return -ENOMEM;
1252 
1253 	rapl_init_domains(rp);
1254 
1255 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
1256 		rapl_detect_powerlimit(rd);
1257 
1258 	return 0;
1259 }
1260 
1261 /* called from CPU hotplug notifier, hotplug lock held */
1262 void rapl_remove_package(struct rapl_package *rp)
1263 {
1264 	struct rapl_domain *rd, *rd_package = NULL;
1265 
1266 	package_power_limit_irq_restore(rp);
1267 
1268 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1269 		rapl_write_data_raw(rd, PL1_ENABLE, 0);
1270 		rapl_write_data_raw(rd, PL1_CLAMP, 0);
1271 		if (find_nr_power_limit(rd) > 1) {
1272 			rapl_write_data_raw(rd, PL2_ENABLE, 0);
1273 			rapl_write_data_raw(rd, PL2_CLAMP, 0);
1274 			rapl_write_data_raw(rd, PL4_ENABLE, 0);
1275 		}
1276 		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1277 			rd_package = rd;
1278 			continue;
1279 		}
1280 		pr_debug("remove package, undo power limit on %s: %s\n",
1281 			 rp->name, rd->name);
1282 		powercap_unregister_zone(rp->priv->control_type,
1283 					 &rd->power_zone);
1284 	}
1285 	/* do parent zone last */
1286 	powercap_unregister_zone(rp->priv->control_type,
1287 				 &rd_package->power_zone);
1288 	list_del(&rp->plist);
1289 	kfree(rp);
1290 }
1291 EXPORT_SYMBOL_GPL(rapl_remove_package);
1292 
1293 /* caller to ensure CPU hotplug lock is held */
1294 struct rapl_package *rapl_find_package_domain(int cpu, struct rapl_if_priv *priv)
1295 {
1296 	int id = topology_logical_die_id(cpu);
1297 	struct rapl_package *rp;
1298 
1299 	list_for_each_entry(rp, &rapl_packages, plist) {
1300 		if (rp->id == id
1301 		    && rp->priv->control_type == priv->control_type)
1302 			return rp;
1303 	}
1304 
1305 	return NULL;
1306 }
1307 EXPORT_SYMBOL_GPL(rapl_find_package_domain);
1308 
1309 /* called from CPU hotplug notifier, hotplug lock held */
1310 struct rapl_package *rapl_add_package(int cpu, struct rapl_if_priv *priv)
1311 {
1312 	int id = topology_logical_die_id(cpu);
1313 	struct rapl_package *rp;
1314 	int ret;
1315 
1316 	if (!rapl_defaults)
1317 		return ERR_PTR(-ENODEV);
1318 
1319 	rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1320 	if (!rp)
1321 		return ERR_PTR(-ENOMEM);
1322 
1323 	/* add the new package to the list */
1324 	rp->id = id;
1325 	rp->lead_cpu = cpu;
1326 	rp->priv = priv;
1327 
1328 	if (topology_max_die_per_package() > 1)
1329 		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH,
1330 			 "package-%d-die-%d",
1331 			 topology_physical_package_id(cpu), topology_die_id(cpu));
1332 	else
1333 		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
1334 			 topology_physical_package_id(cpu));
1335 
1336 	/* check if the package contains valid domains */
1337 	if (rapl_detect_domains(rp, cpu) || rapl_defaults->check_unit(rp, cpu)) {
1338 		ret = -ENODEV;
1339 		goto err_free_package;
1340 	}
1341 	ret = rapl_package_register_powercap(rp);
1342 	if (!ret) {
1343 		INIT_LIST_HEAD(&rp->plist);
1344 		list_add(&rp->plist, &rapl_packages);
1345 		return rp;
1346 	}
1347 
1348 err_free_package:
1349 	kfree(rp->domains);
1350 	kfree(rp);
1351 	return ERR_PTR(ret);
1352 }
1353 EXPORT_SYMBOL_GPL(rapl_add_package);
1354 
1355 static void power_limit_state_save(void)
1356 {
1357 	struct rapl_package *rp;
1358 	struct rapl_domain *rd;
1359 	int nr_pl, ret, i;
1360 
1361 	cpus_read_lock();
1362 	list_for_each_entry(rp, &rapl_packages, plist) {
1363 		if (!rp->power_zone)
1364 			continue;
1365 		rd = power_zone_to_rapl_domain(rp->power_zone);
1366 		nr_pl = find_nr_power_limit(rd);
1367 		for (i = 0; i < nr_pl; i++) {
1368 			switch (rd->rpl[i].prim_id) {
1369 			case PL1_ENABLE:
1370 				ret = rapl_read_data_raw(rd,
1371 						 POWER_LIMIT1, true,
1372 						 &rd->rpl[i].last_power_limit);
1373 				if (ret)
1374 					rd->rpl[i].last_power_limit = 0;
1375 				break;
1376 			case PL2_ENABLE:
1377 				ret = rapl_read_data_raw(rd,
1378 						 POWER_LIMIT2, true,
1379 						 &rd->rpl[i].last_power_limit);
1380 				if (ret)
1381 					rd->rpl[i].last_power_limit = 0;
1382 				break;
1383 			case PL4_ENABLE:
1384 				ret = rapl_read_data_raw(rd,
1385 						 POWER_LIMIT4, true,
1386 						 &rd->rpl[i].last_power_limit);
1387 				if (ret)
1388 					rd->rpl[i].last_power_limit = 0;
1389 				break;
1390 			}
1391 		}
1392 	}
1393 	cpus_read_unlock();
1394 }
1395 
1396 static void power_limit_state_restore(void)
1397 {
1398 	struct rapl_package *rp;
1399 	struct rapl_domain *rd;
1400 	int nr_pl, i;
1401 
1402 	cpus_read_lock();
1403 	list_for_each_entry(rp, &rapl_packages, plist) {
1404 		if (!rp->power_zone)
1405 			continue;
1406 		rd = power_zone_to_rapl_domain(rp->power_zone);
1407 		nr_pl = find_nr_power_limit(rd);
1408 		for (i = 0; i < nr_pl; i++) {
1409 			switch (rd->rpl[i].prim_id) {
1410 			case PL1_ENABLE:
1411 				if (rd->rpl[i].last_power_limit)
1412 					rapl_write_data_raw(rd, POWER_LIMIT1,
1413 					    rd->rpl[i].last_power_limit);
1414 				break;
1415 			case PL2_ENABLE:
1416 				if (rd->rpl[i].last_power_limit)
1417 					rapl_write_data_raw(rd, POWER_LIMIT2,
1418 					    rd->rpl[i].last_power_limit);
1419 				break;
1420 			case PL4_ENABLE:
1421 				if (rd->rpl[i].last_power_limit)
1422 					rapl_write_data_raw(rd, POWER_LIMIT4,
1423 					    rd->rpl[i].last_power_limit);
1424 				break;
1425 			}
1426 		}
1427 	}
1428 	cpus_read_unlock();
1429 }
1430 
1431 static int rapl_pm_callback(struct notifier_block *nb,
1432 			    unsigned long mode, void *_unused)
1433 {
1434 	switch (mode) {
1435 	case PM_SUSPEND_PREPARE:
1436 		power_limit_state_save();
1437 		break;
1438 	case PM_POST_SUSPEND:
1439 		power_limit_state_restore();
1440 		break;
1441 	}
1442 	return NOTIFY_OK;
1443 }
1444 
1445 static struct notifier_block rapl_pm_notifier = {
1446 	.notifier_call = rapl_pm_callback,
1447 };
1448 
1449 static struct platform_device *rapl_msr_platdev;
1450 
1451 static int __init rapl_init(void)
1452 {
1453 	const struct x86_cpu_id *id;
1454 	int ret;
1455 
1456 	id = x86_match_cpu(rapl_ids);
1457 	if (!id) {
1458 		pr_err("driver does not support CPU family %d model %d\n",
1459 		       boot_cpu_data.x86, boot_cpu_data.x86_model);
1460 
1461 		return -ENODEV;
1462 	}
1463 
1464 	rapl_defaults = (struct rapl_defaults *)id->driver_data;
1465 
1466 	ret = register_pm_notifier(&rapl_pm_notifier);
1467 	if (ret)
1468 		return ret;
1469 
1470 	rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
1471 	if (!rapl_msr_platdev) {
1472 		ret = -ENOMEM;
1473 		goto end;
1474 	}
1475 
1476 	ret = platform_device_add(rapl_msr_platdev);
1477 	if (ret)
1478 		platform_device_put(rapl_msr_platdev);
1479 
1480 end:
1481 	if (ret)
1482 		unregister_pm_notifier(&rapl_pm_notifier);
1483 
1484 	return ret;
1485 }
1486 
1487 static void __exit rapl_exit(void)
1488 {
1489 	platform_device_unregister(rapl_msr_platdev);
1490 	unregister_pm_notifier(&rapl_pm_notifier);
1491 }
1492 
1493 fs_initcall(rapl_init);
1494 module_exit(rapl_exit);
1495 
1496 MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
1497 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1498 MODULE_LICENSE("GPL v2");
1499