xref: /openbmc/linux/drivers/powercap/dtpm_cpu.c (revision fe3a28db)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2020 Linaro Limited
4  *
5  * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
6  *
7  * The DTPM CPU is based on the energy model. It hooks the CPU in the
8  * DTPM tree which in turns update the power number by propagating the
9  * power number from the CPU energy model information to the parents.
10  *
11  * The association between the power and the performance state, allows
12  * to set the power of the CPU at the OPP granularity.
13  *
14  * The CPU hotplug is supported and the power numbers will be updated
15  * if a CPU is hot plugged / unplugged.
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/cpumask.h>
20 #include <linux/cpufreq.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/dtpm.h>
23 #include <linux/energy_model.h>
24 #include <linux/of.h>
25 #include <linux/pm_qos.h>
26 #include <linux/slab.h>
27 
28 struct dtpm_cpu {
29 	struct dtpm dtpm;
30 	struct freq_qos_request qos_req;
31 	int cpu;
32 };
33 
34 static DEFINE_PER_CPU(struct dtpm_cpu *, dtpm_per_cpu);
35 
36 static struct dtpm_cpu *to_dtpm_cpu(struct dtpm *dtpm)
37 {
38 	return container_of(dtpm, struct dtpm_cpu, dtpm);
39 }
40 
41 static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit)
42 {
43 	struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
44 	struct em_perf_domain *pd = em_cpu_get(dtpm_cpu->cpu);
45 	struct cpumask cpus;
46 	unsigned long freq;
47 	u64 power;
48 	int i, nr_cpus;
49 
50 	cpumask_and(&cpus, cpu_online_mask, to_cpumask(pd->cpus));
51 	nr_cpus = cpumask_weight(&cpus);
52 
53 	for (i = 0; i < pd->nr_perf_states; i++) {
54 
55 		power = pd->table[i].power * nr_cpus;
56 
57 		if (power > power_limit)
58 			break;
59 	}
60 
61 	freq = pd->table[i - 1].frequency;
62 
63 	freq_qos_update_request(&dtpm_cpu->qos_req, freq);
64 
65 	power_limit = pd->table[i - 1].power * nr_cpus;
66 
67 	return power_limit;
68 }
69 
70 static u64 scale_pd_power_uw(struct cpumask *pd_mask, u64 power)
71 {
72 	unsigned long max, sum_util = 0;
73 	int cpu;
74 
75 	/*
76 	 * The capacity is the same for all CPUs belonging to
77 	 * the same perf domain.
78 	 */
79 	max = arch_scale_cpu_capacity(cpumask_first(pd_mask));
80 
81 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask)
82 		sum_util += sched_cpu_util(cpu);
83 
84 	return (power * ((sum_util << 10) / max)) >> 10;
85 }
86 
87 static u64 get_pd_power_uw(struct dtpm *dtpm)
88 {
89 	struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
90 	struct em_perf_domain *pd;
91 	struct cpumask *pd_mask;
92 	unsigned long freq;
93 	int i;
94 
95 	pd = em_cpu_get(dtpm_cpu->cpu);
96 
97 	pd_mask = em_span_cpus(pd);
98 
99 	freq = cpufreq_quick_get(dtpm_cpu->cpu);
100 
101 	for (i = 0; i < pd->nr_perf_states; i++) {
102 
103 		if (pd->table[i].frequency < freq)
104 			continue;
105 
106 		return scale_pd_power_uw(pd_mask, pd->table[i].power);
107 	}
108 
109 	return 0;
110 }
111 
112 static int update_pd_power_uw(struct dtpm *dtpm)
113 {
114 	struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
115 	struct em_perf_domain *em = em_cpu_get(dtpm_cpu->cpu);
116 	struct cpumask cpus;
117 	int nr_cpus;
118 
119 	cpumask_and(&cpus, cpu_online_mask, to_cpumask(em->cpus));
120 	nr_cpus = cpumask_weight(&cpus);
121 
122 	dtpm->power_min = em->table[0].power;
123 	dtpm->power_min *= nr_cpus;
124 
125 	dtpm->power_max = em->table[em->nr_perf_states - 1].power;
126 	dtpm->power_max *= nr_cpus;
127 
128 	return 0;
129 }
130 
131 static void pd_release(struct dtpm *dtpm)
132 {
133 	struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
134 	struct cpufreq_policy *policy;
135 
136 	if (freq_qos_request_active(&dtpm_cpu->qos_req))
137 		freq_qos_remove_request(&dtpm_cpu->qos_req);
138 
139 	policy = cpufreq_cpu_get(dtpm_cpu->cpu);
140 	if (policy) {
141 		for_each_cpu(dtpm_cpu->cpu, policy->related_cpus)
142 			per_cpu(dtpm_per_cpu, dtpm_cpu->cpu) = NULL;
143 
144 		cpufreq_cpu_put(policy);
145 	}
146 
147 	kfree(dtpm_cpu);
148 }
149 
150 static struct dtpm_ops dtpm_ops = {
151 	.set_power_uw	 = set_pd_power_limit,
152 	.get_power_uw	 = get_pd_power_uw,
153 	.update_power_uw = update_pd_power_uw,
154 	.release	 = pd_release,
155 };
156 
157 static int cpuhp_dtpm_cpu_offline(unsigned int cpu)
158 {
159 	struct dtpm_cpu *dtpm_cpu;
160 
161 	dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
162 	if (dtpm_cpu)
163 		dtpm_update_power(&dtpm_cpu->dtpm);
164 
165 	return 0;
166 }
167 
168 static int cpuhp_dtpm_cpu_online(unsigned int cpu)
169 {
170 	struct dtpm_cpu *dtpm_cpu;
171 
172 	dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
173 	if (dtpm_cpu)
174 		return dtpm_update_power(&dtpm_cpu->dtpm);
175 
176 	return 0;
177 }
178 
179 static int __dtpm_cpu_setup(int cpu, struct dtpm *parent)
180 {
181 	struct dtpm_cpu *dtpm_cpu;
182 	struct cpufreq_policy *policy;
183 	struct em_perf_domain *pd;
184 	char name[CPUFREQ_NAME_LEN];
185 	int ret = -ENOMEM;
186 
187 	dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
188 	if (dtpm_cpu)
189 		return 0;
190 
191 	policy = cpufreq_cpu_get(cpu);
192 	if (!policy)
193 		return 0;
194 
195 	pd = em_cpu_get(cpu);
196 	if (!pd || em_is_artificial(pd)) {
197 		ret = -EINVAL;
198 		goto release_policy;
199 	}
200 
201 	dtpm_cpu = kzalloc(sizeof(*dtpm_cpu), GFP_KERNEL);
202 	if (!dtpm_cpu) {
203 		ret = -ENOMEM;
204 		goto release_policy;
205 	}
206 
207 	dtpm_init(&dtpm_cpu->dtpm, &dtpm_ops);
208 	dtpm_cpu->cpu = cpu;
209 
210 	for_each_cpu(cpu, policy->related_cpus)
211 		per_cpu(dtpm_per_cpu, cpu) = dtpm_cpu;
212 
213 	snprintf(name, sizeof(name), "cpu%d-cpufreq", dtpm_cpu->cpu);
214 
215 	ret = dtpm_register(name, &dtpm_cpu->dtpm, parent);
216 	if (ret)
217 		goto out_kfree_dtpm_cpu;
218 
219 	ret = freq_qos_add_request(&policy->constraints,
220 				   &dtpm_cpu->qos_req, FREQ_QOS_MAX,
221 				   pd->table[pd->nr_perf_states - 1].frequency);
222 	if (ret < 0)
223 		goto out_dtpm_unregister;
224 
225 	cpufreq_cpu_put(policy);
226 	return 0;
227 
228 out_dtpm_unregister:
229 	dtpm_unregister(&dtpm_cpu->dtpm);
230 	dtpm_cpu = NULL;
231 
232 out_kfree_dtpm_cpu:
233 	for_each_cpu(cpu, policy->related_cpus)
234 		per_cpu(dtpm_per_cpu, cpu) = NULL;
235 	kfree(dtpm_cpu);
236 
237 release_policy:
238 	cpufreq_cpu_put(policy);
239 	return ret;
240 }
241 
242 static int dtpm_cpu_setup(struct dtpm *dtpm, struct device_node *np)
243 {
244 	int cpu;
245 
246 	cpu = of_cpu_node_to_id(np);
247 	if (cpu < 0)
248 		return 0;
249 
250 	return __dtpm_cpu_setup(cpu, dtpm);
251 }
252 
253 static int dtpm_cpu_init(void)
254 {
255 	int ret;
256 
257 	/*
258 	 * The callbacks at CPU hotplug time are calling
259 	 * dtpm_update_power() which in turns calls update_pd_power().
260 	 *
261 	 * The function update_pd_power() uses the online mask to
262 	 * figure out the power consumption limits.
263 	 *
264 	 * At CPUHP_AP_ONLINE_DYN, the CPU is present in the CPU
265 	 * online mask when the cpuhp_dtpm_cpu_online function is
266 	 * called, but the CPU is still in the online mask for the
267 	 * tear down callback. So the power can not be updated when
268 	 * the CPU is unplugged.
269 	 *
270 	 * At CPUHP_AP_DTPM_CPU_DEAD, the situation is the opposite as
271 	 * above. The CPU online mask is not up to date when the CPU
272 	 * is plugged in.
273 	 *
274 	 * For this reason, we need to call the online and offline
275 	 * callbacks at different moments when the CPU online mask is
276 	 * consistent with the power numbers we want to update.
277 	 */
278 	ret = cpuhp_setup_state(CPUHP_AP_DTPM_CPU_DEAD, "dtpm_cpu:offline",
279 				NULL, cpuhp_dtpm_cpu_offline);
280 	if (ret < 0)
281 		return ret;
282 
283 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "dtpm_cpu:online",
284 				cpuhp_dtpm_cpu_online, NULL);
285 	if (ret < 0)
286 		return ret;
287 
288 	return 0;
289 }
290 
291 static void dtpm_cpu_exit(void)
292 {
293 	cpuhp_remove_state_nocalls(CPUHP_AP_ONLINE_DYN);
294 	cpuhp_remove_state_nocalls(CPUHP_AP_DTPM_CPU_DEAD);
295 }
296 
297 struct dtpm_subsys_ops dtpm_cpu_ops = {
298 	.name = KBUILD_MODNAME,
299 	.init = dtpm_cpu_init,
300 	.exit = dtpm_cpu_exit,
301 	.setup = dtpm_cpu_setup,
302 };
303