xref: /openbmc/linux/drivers/powercap/dtpm_cpu.c (revision bb447999)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2020 Linaro Limited
4  *
5  * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
6  *
7  * The DTPM CPU is based on the energy model. It hooks the CPU in the
8  * DTPM tree which in turns update the power number by propagating the
9  * power number from the CPU energy model information to the parents.
10  *
11  * The association between the power and the performance state, allows
12  * to set the power of the CPU at the OPP granularity.
13  *
14  * The CPU hotplug is supported and the power numbers will be updated
15  * if a CPU is hot plugged / unplugged.
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/cpumask.h>
20 #include <linux/cpufreq.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/dtpm.h>
23 #include <linux/energy_model.h>
24 #include <linux/of.h>
25 #include <linux/pm_qos.h>
26 #include <linux/slab.h>
27 #include <linux/units.h>
28 
29 struct dtpm_cpu {
30 	struct dtpm dtpm;
31 	struct freq_qos_request qos_req;
32 	int cpu;
33 };
34 
35 static DEFINE_PER_CPU(struct dtpm_cpu *, dtpm_per_cpu);
36 
37 static struct dtpm_cpu *to_dtpm_cpu(struct dtpm *dtpm)
38 {
39 	return container_of(dtpm, struct dtpm_cpu, dtpm);
40 }
41 
42 static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit)
43 {
44 	struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
45 	struct em_perf_domain *pd = em_cpu_get(dtpm_cpu->cpu);
46 	struct cpumask cpus;
47 	unsigned long freq;
48 	u64 power;
49 	int i, nr_cpus;
50 
51 	cpumask_and(&cpus, cpu_online_mask, to_cpumask(pd->cpus));
52 	nr_cpus = cpumask_weight(&cpus);
53 
54 	for (i = 0; i < pd->nr_perf_states; i++) {
55 
56 		power = pd->table[i].power * MICROWATT_PER_MILLIWATT * nr_cpus;
57 
58 		if (power > power_limit)
59 			break;
60 	}
61 
62 	freq = pd->table[i - 1].frequency;
63 
64 	freq_qos_update_request(&dtpm_cpu->qos_req, freq);
65 
66 	power_limit = pd->table[i - 1].power *
67 		MICROWATT_PER_MILLIWATT * nr_cpus;
68 
69 	return power_limit;
70 }
71 
72 static u64 scale_pd_power_uw(struct cpumask *pd_mask, u64 power)
73 {
74 	unsigned long max, sum_util = 0;
75 	int cpu;
76 
77 	/*
78 	 * The capacity is the same for all CPUs belonging to
79 	 * the same perf domain.
80 	 */
81 	max = arch_scale_cpu_capacity(cpumask_first(pd_mask));
82 
83 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask)
84 		sum_util += sched_cpu_util(cpu);
85 
86 	return (power * ((sum_util << 10) / max)) >> 10;
87 }
88 
89 static u64 get_pd_power_uw(struct dtpm *dtpm)
90 {
91 	struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
92 	struct em_perf_domain *pd;
93 	struct cpumask *pd_mask;
94 	unsigned long freq;
95 	int i;
96 
97 	pd = em_cpu_get(dtpm_cpu->cpu);
98 
99 	pd_mask = em_span_cpus(pd);
100 
101 	freq = cpufreq_quick_get(dtpm_cpu->cpu);
102 
103 	for (i = 0; i < pd->nr_perf_states; i++) {
104 
105 		if (pd->table[i].frequency < freq)
106 			continue;
107 
108 		return scale_pd_power_uw(pd_mask, pd->table[i].power *
109 					 MICROWATT_PER_MILLIWATT);
110 	}
111 
112 	return 0;
113 }
114 
115 static int update_pd_power_uw(struct dtpm *dtpm)
116 {
117 	struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
118 	struct em_perf_domain *em = em_cpu_get(dtpm_cpu->cpu);
119 	struct cpumask cpus;
120 	int nr_cpus;
121 
122 	cpumask_and(&cpus, cpu_online_mask, to_cpumask(em->cpus));
123 	nr_cpus = cpumask_weight(&cpus);
124 
125 	dtpm->power_min = em->table[0].power;
126 	dtpm->power_min *= MICROWATT_PER_MILLIWATT;
127 	dtpm->power_min *= nr_cpus;
128 
129 	dtpm->power_max = em->table[em->nr_perf_states - 1].power;
130 	dtpm->power_max *= MICROWATT_PER_MILLIWATT;
131 	dtpm->power_max *= nr_cpus;
132 
133 	return 0;
134 }
135 
136 static void pd_release(struct dtpm *dtpm)
137 {
138 	struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
139 	struct cpufreq_policy *policy;
140 
141 	if (freq_qos_request_active(&dtpm_cpu->qos_req))
142 		freq_qos_remove_request(&dtpm_cpu->qos_req);
143 
144 	policy = cpufreq_cpu_get(dtpm_cpu->cpu);
145 	if (policy) {
146 		for_each_cpu(dtpm_cpu->cpu, policy->related_cpus)
147 			per_cpu(dtpm_per_cpu, dtpm_cpu->cpu) = NULL;
148 	}
149 
150 	kfree(dtpm_cpu);
151 }
152 
153 static struct dtpm_ops dtpm_ops = {
154 	.set_power_uw	 = set_pd_power_limit,
155 	.get_power_uw	 = get_pd_power_uw,
156 	.update_power_uw = update_pd_power_uw,
157 	.release	 = pd_release,
158 };
159 
160 static int cpuhp_dtpm_cpu_offline(unsigned int cpu)
161 {
162 	struct dtpm_cpu *dtpm_cpu;
163 
164 	dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
165 	if (dtpm_cpu)
166 		dtpm_update_power(&dtpm_cpu->dtpm);
167 
168 	return 0;
169 }
170 
171 static int cpuhp_dtpm_cpu_online(unsigned int cpu)
172 {
173 	struct dtpm_cpu *dtpm_cpu;
174 
175 	dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
176 	if (dtpm_cpu)
177 		return dtpm_update_power(&dtpm_cpu->dtpm);
178 
179 	return 0;
180 }
181 
182 static int __dtpm_cpu_setup(int cpu, struct dtpm *parent)
183 {
184 	struct dtpm_cpu *dtpm_cpu;
185 	struct cpufreq_policy *policy;
186 	struct em_perf_domain *pd;
187 	char name[CPUFREQ_NAME_LEN];
188 	int ret = -ENOMEM;
189 
190 	dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
191 	if (dtpm_cpu)
192 		return 0;
193 
194 	policy = cpufreq_cpu_get(cpu);
195 	if (!policy)
196 		return 0;
197 
198 	pd = em_cpu_get(cpu);
199 	if (!pd || em_is_artificial(pd))
200 		return -EINVAL;
201 
202 	dtpm_cpu = kzalloc(sizeof(*dtpm_cpu), GFP_KERNEL);
203 	if (!dtpm_cpu)
204 		return -ENOMEM;
205 
206 	dtpm_init(&dtpm_cpu->dtpm, &dtpm_ops);
207 	dtpm_cpu->cpu = cpu;
208 
209 	for_each_cpu(cpu, policy->related_cpus)
210 		per_cpu(dtpm_per_cpu, cpu) = dtpm_cpu;
211 
212 	snprintf(name, sizeof(name), "cpu%d-cpufreq", dtpm_cpu->cpu);
213 
214 	ret = dtpm_register(name, &dtpm_cpu->dtpm, parent);
215 	if (ret)
216 		goto out_kfree_dtpm_cpu;
217 
218 	ret = freq_qos_add_request(&policy->constraints,
219 				   &dtpm_cpu->qos_req, FREQ_QOS_MAX,
220 				   pd->table[pd->nr_perf_states - 1].frequency);
221 	if (ret)
222 		goto out_dtpm_unregister;
223 
224 	return 0;
225 
226 out_dtpm_unregister:
227 	dtpm_unregister(&dtpm_cpu->dtpm);
228 	dtpm_cpu = NULL;
229 
230 out_kfree_dtpm_cpu:
231 	for_each_cpu(cpu, policy->related_cpus)
232 		per_cpu(dtpm_per_cpu, cpu) = NULL;
233 	kfree(dtpm_cpu);
234 
235 	return ret;
236 }
237 
238 static int dtpm_cpu_setup(struct dtpm *dtpm, struct device_node *np)
239 {
240 	int cpu;
241 
242 	cpu = of_cpu_node_to_id(np);
243 	if (cpu < 0)
244 		return 0;
245 
246 	return __dtpm_cpu_setup(cpu, dtpm);
247 }
248 
249 static int dtpm_cpu_init(void)
250 {
251 	int ret;
252 
253 	/*
254 	 * The callbacks at CPU hotplug time are calling
255 	 * dtpm_update_power() which in turns calls update_pd_power().
256 	 *
257 	 * The function update_pd_power() uses the online mask to
258 	 * figure out the power consumption limits.
259 	 *
260 	 * At CPUHP_AP_ONLINE_DYN, the CPU is present in the CPU
261 	 * online mask when the cpuhp_dtpm_cpu_online function is
262 	 * called, but the CPU is still in the online mask for the
263 	 * tear down callback. So the power can not be updated when
264 	 * the CPU is unplugged.
265 	 *
266 	 * At CPUHP_AP_DTPM_CPU_DEAD, the situation is the opposite as
267 	 * above. The CPU online mask is not up to date when the CPU
268 	 * is plugged in.
269 	 *
270 	 * For this reason, we need to call the online and offline
271 	 * callbacks at different moments when the CPU online mask is
272 	 * consistent with the power numbers we want to update.
273 	 */
274 	ret = cpuhp_setup_state(CPUHP_AP_DTPM_CPU_DEAD, "dtpm_cpu:offline",
275 				NULL, cpuhp_dtpm_cpu_offline);
276 	if (ret < 0)
277 		return ret;
278 
279 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "dtpm_cpu:online",
280 				cpuhp_dtpm_cpu_online, NULL);
281 	if (ret < 0)
282 		return ret;
283 
284 	return 0;
285 }
286 
287 static void dtpm_cpu_exit(void)
288 {
289 	cpuhp_remove_state_nocalls(CPUHP_AP_ONLINE_DYN);
290 	cpuhp_remove_state_nocalls(CPUHP_AP_DTPM_CPU_DEAD);
291 }
292 
293 struct dtpm_subsys_ops dtpm_cpu_ops = {
294 	.name = KBUILD_MODNAME,
295 	.init = dtpm_cpu_init,
296 	.exit = dtpm_cpu_exit,
297 	.setup = dtpm_cpu_setup,
298 };
299