1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2018 Spreadtrum Communications Inc.
3 
4 #include <linux/gpio/consumer.h>
5 #include <linux/iio/consumer.h>
6 #include <linux/interrupt.h>
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/nvmem-consumer.h>
10 #include <linux/of.h>
11 #include <linux/platform_device.h>
12 #include <linux/power_supply.h>
13 #include <linux/regmap.h>
14 #include <linux/slab.h>
15 
16 /* PMIC global control registers definition */
17 #define SC27XX_MODULE_EN0		0xc08
18 #define SC27XX_CLK_EN0			0xc18
19 #define SC27XX_FGU_EN			BIT(7)
20 #define SC27XX_FGU_RTC_EN		BIT(6)
21 
22 /* FGU registers definition */
23 #define SC27XX_FGU_START		0x0
24 #define SC27XX_FGU_CONFIG		0x4
25 #define SC27XX_FGU_ADC_CONFIG		0x8
26 #define SC27XX_FGU_STATUS		0xc
27 #define SC27XX_FGU_INT_EN		0x10
28 #define SC27XX_FGU_INT_CLR		0x14
29 #define SC27XX_FGU_INT_STS		0x1c
30 #define SC27XX_FGU_VOLTAGE		0x20
31 #define SC27XX_FGU_OCV			0x24
32 #define SC27XX_FGU_POCV			0x28
33 #define SC27XX_FGU_CURRENT		0x2c
34 #define SC27XX_FGU_LOW_OVERLOAD		0x34
35 #define SC27XX_FGU_CLBCNT_SETH		0x50
36 #define SC27XX_FGU_CLBCNT_SETL		0x54
37 #define SC27XX_FGU_CLBCNT_DELTH		0x58
38 #define SC27XX_FGU_CLBCNT_DELTL		0x5c
39 #define SC27XX_FGU_CLBCNT_VALH		0x68
40 #define SC27XX_FGU_CLBCNT_VALL		0x6c
41 #define SC27XX_FGU_CLBCNT_QMAXL		0x74
42 #define SC27XX_FGU_USER_AREA_SET	0xa0
43 #define SC27XX_FGU_USER_AREA_CLEAR	0xa4
44 #define SC27XX_FGU_USER_AREA_STATUS	0xa8
45 
46 #define SC27XX_WRITE_SELCLB_EN		BIT(0)
47 #define SC27XX_FGU_CLBCNT_MASK		GENMASK(15, 0)
48 #define SC27XX_FGU_CLBCNT_SHIFT		16
49 #define SC27XX_FGU_LOW_OVERLOAD_MASK	GENMASK(12, 0)
50 
51 #define SC27XX_FGU_INT_MASK		GENMASK(9, 0)
52 #define SC27XX_FGU_LOW_OVERLOAD_INT	BIT(0)
53 #define SC27XX_FGU_CLBCNT_DELTA_INT	BIT(2)
54 
55 #define SC27XX_FGU_MODE_AREA_MASK	GENMASK(15, 12)
56 #define SC27XX_FGU_CAP_AREA_MASK	GENMASK(11, 0)
57 #define SC27XX_FGU_MODE_AREA_SHIFT	12
58 
59 #define SC27XX_FGU_FIRST_POWERTON	GENMASK(3, 0)
60 #define SC27XX_FGU_DEFAULT_CAP		GENMASK(11, 0)
61 #define SC27XX_FGU_NORMAIL_POWERTON	0x5
62 
63 #define SC27XX_FGU_CUR_BASIC_ADC	8192
64 #define SC27XX_FGU_SAMPLE_HZ		2
65 /* micro Ohms */
66 #define SC27XX_FGU_IDEAL_RESISTANCE	20000
67 
68 /*
69  * struct sc27xx_fgu_data: describe the FGU device
70  * @regmap: regmap for register access
71  * @dev: platform device
72  * @battery: battery power supply
73  * @base: the base offset for the controller
74  * @lock: protect the structure
75  * @gpiod: GPIO for battery detection
76  * @channel: IIO channel to get battery temperature
77  * @charge_chan: IIO channel to get charge voltage
78  * @internal_resist: the battery internal resistance in mOhm
79  * @total_cap: the total capacity of the battery in mAh
80  * @init_cap: the initial capacity of the battery in mAh
81  * @alarm_cap: the alarm capacity
82  * @init_clbcnt: the initial coulomb counter
83  * @max_volt: the maximum constant input voltage in millivolt
84  * @min_volt: the minimum drained battery voltage in microvolt
85  * @table_len: the capacity table length
86  * @resist_table_len: the resistance table length
87  * @cur_1000ma_adc: ADC value corresponding to 1000 mA
88  * @vol_1000mv_adc: ADC value corresponding to 1000 mV
89  * @calib_resist: the real resistance of coulomb counter chip in uOhm
90  * @cap_table: capacity table with corresponding ocv
91  * @resist_table: resistance percent table with corresponding temperature
92  */
93 struct sc27xx_fgu_data {
94 	struct regmap *regmap;
95 	struct device *dev;
96 	struct power_supply *battery;
97 	u32 base;
98 	struct mutex lock;
99 	struct gpio_desc *gpiod;
100 	struct iio_channel *channel;
101 	struct iio_channel *charge_chan;
102 	bool bat_present;
103 	int internal_resist;
104 	int total_cap;
105 	int init_cap;
106 	int alarm_cap;
107 	int init_clbcnt;
108 	int max_volt;
109 	int min_volt;
110 	int table_len;
111 	int resist_table_len;
112 	int cur_1000ma_adc;
113 	int vol_1000mv_adc;
114 	int calib_resist;
115 	struct power_supply_battery_ocv_table *cap_table;
116 	struct power_supply_resistance_temp_table *resist_table;
117 };
118 
119 static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity);
120 static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
121 					    int cap, bool int_mode);
122 static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap);
123 static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp);
124 
125 static const char * const sc27xx_charger_supply_name[] = {
126 	"sc2731_charger",
127 	"sc2720_charger",
128 	"sc2721_charger",
129 	"sc2723_charger",
130 };
131 
132 static int sc27xx_fgu_adc_to_current(struct sc27xx_fgu_data *data, int adc)
133 {
134 	return DIV_ROUND_CLOSEST(adc * 1000, data->cur_1000ma_adc);
135 }
136 
137 static int sc27xx_fgu_adc_to_voltage(struct sc27xx_fgu_data *data, int adc)
138 {
139 	return DIV_ROUND_CLOSEST(adc * 1000, data->vol_1000mv_adc);
140 }
141 
142 static int sc27xx_fgu_voltage_to_adc(struct sc27xx_fgu_data *data, int vol)
143 {
144 	return DIV_ROUND_CLOSEST(vol * data->vol_1000mv_adc, 1000);
145 }
146 
147 static bool sc27xx_fgu_is_first_poweron(struct sc27xx_fgu_data *data)
148 {
149 	int ret, status, cap, mode;
150 
151 	ret = regmap_read(data->regmap,
152 			  data->base + SC27XX_FGU_USER_AREA_STATUS, &status);
153 	if (ret)
154 		return false;
155 
156 	/*
157 	 * We use low 4 bits to save the last battery capacity and high 12 bits
158 	 * to save the system boot mode.
159 	 */
160 	mode = (status & SC27XX_FGU_MODE_AREA_MASK) >> SC27XX_FGU_MODE_AREA_SHIFT;
161 	cap = status & SC27XX_FGU_CAP_AREA_MASK;
162 
163 	/*
164 	 * When FGU has been powered down, the user area registers became
165 	 * default value (0xffff), which can be used to valid if the system is
166 	 * first power on or not.
167 	 */
168 	if (mode == SC27XX_FGU_FIRST_POWERTON || cap == SC27XX_FGU_DEFAULT_CAP)
169 		return true;
170 
171 	return false;
172 }
173 
174 static int sc27xx_fgu_save_boot_mode(struct sc27xx_fgu_data *data,
175 				     int boot_mode)
176 {
177 	int ret;
178 
179 	ret = regmap_update_bits(data->regmap,
180 				 data->base + SC27XX_FGU_USER_AREA_CLEAR,
181 				 SC27XX_FGU_MODE_AREA_MASK,
182 				 SC27XX_FGU_MODE_AREA_MASK);
183 	if (ret)
184 		return ret;
185 
186 	/*
187 	 * Since the user area registers are put on power always-on region,
188 	 * then these registers changing time will be a little long. Thus
189 	 * here we should delay 200us to wait until values are updated
190 	 * successfully according to the datasheet.
191 	 */
192 	udelay(200);
193 
194 	ret = regmap_update_bits(data->regmap,
195 				 data->base + SC27XX_FGU_USER_AREA_SET,
196 				 SC27XX_FGU_MODE_AREA_MASK,
197 				 boot_mode << SC27XX_FGU_MODE_AREA_SHIFT);
198 	if (ret)
199 		return ret;
200 
201 	/*
202 	 * Since the user area registers are put on power always-on region,
203 	 * then these registers changing time will be a little long. Thus
204 	 * here we should delay 200us to wait until values are updated
205 	 * successfully according to the datasheet.
206 	 */
207 	udelay(200);
208 
209 	/*
210 	 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
211 	 * make the user area data available, otherwise we can not save the user
212 	 * area data.
213 	 */
214 	return regmap_update_bits(data->regmap,
215 				  data->base + SC27XX_FGU_USER_AREA_CLEAR,
216 				  SC27XX_FGU_MODE_AREA_MASK, 0);
217 }
218 
219 static int sc27xx_fgu_save_last_cap(struct sc27xx_fgu_data *data, int cap)
220 {
221 	int ret;
222 
223 	ret = regmap_update_bits(data->regmap,
224 				 data->base + SC27XX_FGU_USER_AREA_CLEAR,
225 				 SC27XX_FGU_CAP_AREA_MASK,
226 				 SC27XX_FGU_CAP_AREA_MASK);
227 	if (ret)
228 		return ret;
229 
230 	/*
231 	 * Since the user area registers are put on power always-on region,
232 	 * then these registers changing time will be a little long. Thus
233 	 * here we should delay 200us to wait until values are updated
234 	 * successfully according to the datasheet.
235 	 */
236 	udelay(200);
237 
238 	ret = regmap_update_bits(data->regmap,
239 				 data->base + SC27XX_FGU_USER_AREA_SET,
240 				 SC27XX_FGU_CAP_AREA_MASK, cap);
241 	if (ret)
242 		return ret;
243 
244 	/*
245 	 * Since the user area registers are put on power always-on region,
246 	 * then these registers changing time will be a little long. Thus
247 	 * here we should delay 200us to wait until values are updated
248 	 * successfully according to the datasheet.
249 	 */
250 	udelay(200);
251 
252 	/*
253 	 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
254 	 * make the user area data available, otherwise we can not save the user
255 	 * area data.
256 	 */
257 	return regmap_update_bits(data->regmap,
258 				  data->base + SC27XX_FGU_USER_AREA_CLEAR,
259 				  SC27XX_FGU_CAP_AREA_MASK, 0);
260 }
261 
262 static int sc27xx_fgu_read_last_cap(struct sc27xx_fgu_data *data, int *cap)
263 {
264 	int ret, value;
265 
266 	ret = regmap_read(data->regmap,
267 			  data->base + SC27XX_FGU_USER_AREA_STATUS, &value);
268 	if (ret)
269 		return ret;
270 
271 	*cap = value & SC27XX_FGU_CAP_AREA_MASK;
272 	return 0;
273 }
274 
275 /*
276  * When system boots on, we can not read battery capacity from coulomb
277  * registers, since now the coulomb registers are invalid. So we should
278  * calculate the battery open circuit voltage, and get current battery
279  * capacity according to the capacity table.
280  */
281 static int sc27xx_fgu_get_boot_capacity(struct sc27xx_fgu_data *data, int *cap)
282 {
283 	int volt, cur, oci, ocv, ret;
284 	bool is_first_poweron = sc27xx_fgu_is_first_poweron(data);
285 
286 	/*
287 	 * If system is not the first power on, we should use the last saved
288 	 * battery capacity as the initial battery capacity. Otherwise we should
289 	 * re-calculate the initial battery capacity.
290 	 */
291 	if (!is_first_poweron) {
292 		ret = sc27xx_fgu_read_last_cap(data, cap);
293 		if (ret)
294 			return ret;
295 
296 		return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
297 	}
298 
299 	/*
300 	 * After system booting on, the SC27XX_FGU_CLBCNT_QMAXL register saved
301 	 * the first sampled open circuit current.
302 	 */
303 	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_QMAXL,
304 			  &cur);
305 	if (ret)
306 		return ret;
307 
308 	cur <<= 1;
309 	oci = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
310 
311 	/*
312 	 * Should get the OCV from SC27XX_FGU_POCV register at the system
313 	 * beginning. It is ADC values reading from registers which need to
314 	 * convert the corresponding voltage.
315 	 */
316 	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_POCV, &volt);
317 	if (ret)
318 		return ret;
319 
320 	volt = sc27xx_fgu_adc_to_voltage(data, volt);
321 	ocv = volt * 1000 - oci * data->internal_resist;
322 
323 	/*
324 	 * Parse the capacity table to look up the correct capacity percent
325 	 * according to current battery's corresponding OCV values.
326 	 */
327 	*cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len,
328 					   ocv);
329 
330 	ret = sc27xx_fgu_save_last_cap(data, *cap);
331 	if (ret)
332 		return ret;
333 
334 	return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
335 }
336 
337 static int sc27xx_fgu_set_clbcnt(struct sc27xx_fgu_data *data, int clbcnt)
338 {
339 	int ret;
340 
341 	ret = regmap_update_bits(data->regmap,
342 				 data->base + SC27XX_FGU_CLBCNT_SETL,
343 				 SC27XX_FGU_CLBCNT_MASK, clbcnt);
344 	if (ret)
345 		return ret;
346 
347 	ret = regmap_update_bits(data->regmap,
348 				 data->base + SC27XX_FGU_CLBCNT_SETH,
349 				 SC27XX_FGU_CLBCNT_MASK,
350 				 clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
351 	if (ret)
352 		return ret;
353 
354 	return regmap_update_bits(data->regmap, data->base + SC27XX_FGU_START,
355 				 SC27XX_WRITE_SELCLB_EN,
356 				 SC27XX_WRITE_SELCLB_EN);
357 }
358 
359 static int sc27xx_fgu_get_clbcnt(struct sc27xx_fgu_data *data, int *clb_cnt)
360 {
361 	int ccl, cch, ret;
362 
363 	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALL,
364 			  &ccl);
365 	if (ret)
366 		return ret;
367 
368 	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALH,
369 			  &cch);
370 	if (ret)
371 		return ret;
372 
373 	*clb_cnt = ccl & SC27XX_FGU_CLBCNT_MASK;
374 	*clb_cnt |= (cch & SC27XX_FGU_CLBCNT_MASK) << SC27XX_FGU_CLBCNT_SHIFT;
375 
376 	return 0;
377 }
378 
379 static int sc27xx_fgu_get_capacity(struct sc27xx_fgu_data *data, int *cap)
380 {
381 	int ret, cur_clbcnt, delta_clbcnt, delta_cap, temp;
382 
383 	/* Get current coulomb counters firstly */
384 	ret = sc27xx_fgu_get_clbcnt(data, &cur_clbcnt);
385 	if (ret)
386 		return ret;
387 
388 	delta_clbcnt = cur_clbcnt - data->init_clbcnt;
389 
390 	/*
391 	 * Convert coulomb counter to delta capacity (mAh), and set multiplier
392 	 * as 10 to improve the precision.
393 	 */
394 	temp = DIV_ROUND_CLOSEST(delta_clbcnt * 10, 36 * SC27XX_FGU_SAMPLE_HZ);
395 	temp = sc27xx_fgu_adc_to_current(data, temp / 1000);
396 
397 	/*
398 	 * Convert to capacity percent of the battery total capacity,
399 	 * and multiplier is 100 too.
400 	 */
401 	delta_cap = DIV_ROUND_CLOSEST(temp * 100, data->total_cap);
402 	*cap = delta_cap + data->init_cap;
403 
404 	/* Calibrate the battery capacity in a normal range. */
405 	sc27xx_fgu_capacity_calibration(data, *cap, false);
406 
407 	return 0;
408 }
409 
410 static int sc27xx_fgu_get_vbat_vol(struct sc27xx_fgu_data *data, int *val)
411 {
412 	int ret, vol;
413 
414 	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE, &vol);
415 	if (ret)
416 		return ret;
417 
418 	/*
419 	 * It is ADC values reading from registers which need to convert to
420 	 * corresponding voltage values.
421 	 */
422 	*val = sc27xx_fgu_adc_to_voltage(data, vol);
423 
424 	return 0;
425 }
426 
427 static int sc27xx_fgu_get_current(struct sc27xx_fgu_data *data, int *val)
428 {
429 	int ret, cur;
430 
431 	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT, &cur);
432 	if (ret)
433 		return ret;
434 
435 	/*
436 	 * It is ADC values reading from registers which need to convert to
437 	 * corresponding current values.
438 	 */
439 	*val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
440 
441 	return 0;
442 }
443 
444 static int sc27xx_fgu_get_vbat_ocv(struct sc27xx_fgu_data *data, int *val)
445 {
446 	int vol, cur, ret, temp, resistance;
447 
448 	ret = sc27xx_fgu_get_vbat_vol(data, &vol);
449 	if (ret)
450 		return ret;
451 
452 	ret = sc27xx_fgu_get_current(data, &cur);
453 	if (ret)
454 		return ret;
455 
456 	resistance = data->internal_resist;
457 	if (data->resist_table_len > 0) {
458 		ret = sc27xx_fgu_get_temp(data, &temp);
459 		if (ret)
460 			return ret;
461 
462 		resistance = power_supply_temp2resist_simple(data->resist_table,
463 						data->resist_table_len, temp);
464 		resistance = data->internal_resist * resistance / 100;
465 	}
466 
467 	/* Return the battery OCV in micro volts. */
468 	*val = vol * 1000 - cur * resistance;
469 
470 	return 0;
471 }
472 
473 static int sc27xx_fgu_get_charge_vol(struct sc27xx_fgu_data *data, int *val)
474 {
475 	int ret, vol;
476 
477 	ret = iio_read_channel_processed(data->charge_chan, &vol);
478 	if (ret < 0)
479 		return ret;
480 
481 	*val = vol * 1000;
482 	return 0;
483 }
484 
485 static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp)
486 {
487 	return iio_read_channel_processed(data->channel, temp);
488 }
489 
490 static int sc27xx_fgu_get_health(struct sc27xx_fgu_data *data, int *health)
491 {
492 	int ret, vol;
493 
494 	ret = sc27xx_fgu_get_vbat_vol(data, &vol);
495 	if (ret)
496 		return ret;
497 
498 	if (vol > data->max_volt)
499 		*health = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
500 	else
501 		*health = POWER_SUPPLY_HEALTH_GOOD;
502 
503 	return 0;
504 }
505 
506 static int sc27xx_fgu_get_status(struct sc27xx_fgu_data *data, int *status)
507 {
508 	union power_supply_propval val;
509 	struct power_supply *psy;
510 	int i, ret = -EINVAL;
511 
512 	for (i = 0; i < ARRAY_SIZE(sc27xx_charger_supply_name); i++) {
513 		psy = power_supply_get_by_name(sc27xx_charger_supply_name[i]);
514 		if (!psy)
515 			continue;
516 
517 		ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS,
518 						&val);
519 		power_supply_put(psy);
520 		if (ret)
521 			return ret;
522 
523 		*status = val.intval;
524 	}
525 
526 	return ret;
527 }
528 
529 static int sc27xx_fgu_get_property(struct power_supply *psy,
530 				   enum power_supply_property psp,
531 				   union power_supply_propval *val)
532 {
533 	struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
534 	int ret = 0;
535 	int value;
536 
537 	mutex_lock(&data->lock);
538 
539 	switch (psp) {
540 	case POWER_SUPPLY_PROP_STATUS:
541 		ret = sc27xx_fgu_get_status(data, &value);
542 		if (ret)
543 			goto error;
544 
545 		val->intval = value;
546 		break;
547 
548 	case POWER_SUPPLY_PROP_HEALTH:
549 		ret = sc27xx_fgu_get_health(data, &value);
550 		if (ret)
551 			goto error;
552 
553 		val->intval = value;
554 		break;
555 
556 	case POWER_SUPPLY_PROP_PRESENT:
557 		val->intval = data->bat_present;
558 		break;
559 
560 	case POWER_SUPPLY_PROP_TEMP:
561 		ret = sc27xx_fgu_get_temp(data, &value);
562 		if (ret)
563 			goto error;
564 
565 		val->intval = value;
566 		break;
567 
568 	case POWER_SUPPLY_PROP_TECHNOLOGY:
569 		val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
570 		break;
571 
572 	case POWER_SUPPLY_PROP_CAPACITY:
573 		ret = sc27xx_fgu_get_capacity(data, &value);
574 		if (ret)
575 			goto error;
576 
577 		val->intval = value;
578 		break;
579 
580 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
581 		ret = sc27xx_fgu_get_vbat_vol(data, &value);
582 		if (ret)
583 			goto error;
584 
585 		val->intval = value * 1000;
586 		break;
587 
588 	case POWER_SUPPLY_PROP_VOLTAGE_OCV:
589 		ret = sc27xx_fgu_get_vbat_ocv(data, &value);
590 		if (ret)
591 			goto error;
592 
593 		val->intval = value;
594 		break;
595 
596 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
597 		ret = sc27xx_fgu_get_charge_vol(data, &value);
598 		if (ret)
599 			goto error;
600 
601 		val->intval = value;
602 		break;
603 
604 	case POWER_SUPPLY_PROP_CURRENT_NOW:
605 	case POWER_SUPPLY_PROP_CURRENT_AVG:
606 		ret = sc27xx_fgu_get_current(data, &value);
607 		if (ret)
608 			goto error;
609 
610 		val->intval = value * 1000;
611 		break;
612 
613 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
614 		val->intval = data->total_cap * 1000;
615 		break;
616 
617 	case POWER_SUPPLY_PROP_CHARGE_NOW:
618 		ret = sc27xx_fgu_get_clbcnt(data, &value);
619 		if (ret)
620 			goto error;
621 
622 		value = DIV_ROUND_CLOSEST(value * 10,
623 					  36 * SC27XX_FGU_SAMPLE_HZ);
624 		val->intval = sc27xx_fgu_adc_to_current(data, value);
625 
626 		break;
627 
628 	default:
629 		ret = -EINVAL;
630 		break;
631 	}
632 
633 error:
634 	mutex_unlock(&data->lock);
635 	return ret;
636 }
637 
638 static int sc27xx_fgu_set_property(struct power_supply *psy,
639 				   enum power_supply_property psp,
640 				   const union power_supply_propval *val)
641 {
642 	struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
643 	int ret;
644 
645 	mutex_lock(&data->lock);
646 
647 	switch (psp) {
648 	case POWER_SUPPLY_PROP_CAPACITY:
649 		ret = sc27xx_fgu_save_last_cap(data, val->intval);
650 		if (ret < 0)
651 			dev_err(data->dev, "failed to save battery capacity\n");
652 		break;
653 
654 	case POWER_SUPPLY_PROP_CALIBRATE:
655 		sc27xx_fgu_adjust_cap(data, val->intval);
656 		ret = 0;
657 		break;
658 
659 	default:
660 		ret = -EINVAL;
661 	}
662 
663 	mutex_unlock(&data->lock);
664 
665 	return ret;
666 }
667 
668 static void sc27xx_fgu_external_power_changed(struct power_supply *psy)
669 {
670 	struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
671 
672 	power_supply_changed(data->battery);
673 }
674 
675 static int sc27xx_fgu_property_is_writeable(struct power_supply *psy,
676 					    enum power_supply_property psp)
677 {
678 	return psp == POWER_SUPPLY_PROP_CAPACITY ||
679 		psp == POWER_SUPPLY_PROP_CALIBRATE;
680 }
681 
682 static enum power_supply_property sc27xx_fgu_props[] = {
683 	POWER_SUPPLY_PROP_STATUS,
684 	POWER_SUPPLY_PROP_HEALTH,
685 	POWER_SUPPLY_PROP_PRESENT,
686 	POWER_SUPPLY_PROP_TEMP,
687 	POWER_SUPPLY_PROP_TECHNOLOGY,
688 	POWER_SUPPLY_PROP_CAPACITY,
689 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
690 	POWER_SUPPLY_PROP_VOLTAGE_OCV,
691 	POWER_SUPPLY_PROP_CURRENT_NOW,
692 	POWER_SUPPLY_PROP_CURRENT_AVG,
693 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
694 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
695 	POWER_SUPPLY_PROP_CALIBRATE,
696 	POWER_SUPPLY_PROP_CHARGE_NOW
697 };
698 
699 static const struct power_supply_desc sc27xx_fgu_desc = {
700 	.name			= "sc27xx-fgu",
701 	.type			= POWER_SUPPLY_TYPE_BATTERY,
702 	.properties		= sc27xx_fgu_props,
703 	.num_properties		= ARRAY_SIZE(sc27xx_fgu_props),
704 	.get_property		= sc27xx_fgu_get_property,
705 	.set_property		= sc27xx_fgu_set_property,
706 	.external_power_changed	= sc27xx_fgu_external_power_changed,
707 	.property_is_writeable	= sc27xx_fgu_property_is_writeable,
708 };
709 
710 static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap)
711 {
712 	int ret;
713 
714 	data->init_cap = cap;
715 	ret = sc27xx_fgu_get_clbcnt(data, &data->init_clbcnt);
716 	if (ret)
717 		dev_err(data->dev, "failed to get init coulomb counter\n");
718 }
719 
720 static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
721 					    int cap, bool int_mode)
722 {
723 	int ret, ocv, chg_sts, adc;
724 
725 	ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
726 	if (ret) {
727 		dev_err(data->dev, "get battery ocv error.\n");
728 		return;
729 	}
730 
731 	ret = sc27xx_fgu_get_status(data, &chg_sts);
732 	if (ret) {
733 		dev_err(data->dev, "get charger status error.\n");
734 		return;
735 	}
736 
737 	/*
738 	 * If we are in charging mode, then we do not need to calibrate the
739 	 * lower capacity.
740 	 */
741 	if (chg_sts == POWER_SUPPLY_STATUS_CHARGING)
742 		return;
743 
744 	if ((ocv > data->cap_table[0].ocv && cap < 100) || cap > 100) {
745 		/*
746 		 * If current OCV value is larger than the max OCV value in
747 		 * OCV table, or the current capacity is larger than 100,
748 		 * we should force the inititial capacity to 100.
749 		 */
750 		sc27xx_fgu_adjust_cap(data, 100);
751 	} else if (ocv <= data->cap_table[data->table_len - 1].ocv) {
752 		/*
753 		 * If current OCV value is leass than the minimum OCV value in
754 		 * OCV table, we should force the inititial capacity to 0.
755 		 */
756 		sc27xx_fgu_adjust_cap(data, 0);
757 	} else if ((ocv > data->cap_table[data->table_len - 1].ocv && cap <= 0) ||
758 		   (ocv > data->min_volt && cap <= data->alarm_cap)) {
759 		/*
760 		 * If current OCV value is not matchable with current capacity,
761 		 * we should re-calculate current capacity by looking up the
762 		 * OCV table.
763 		 */
764 		int cur_cap = power_supply_ocv2cap_simple(data->cap_table,
765 							  data->table_len, ocv);
766 
767 		sc27xx_fgu_adjust_cap(data, cur_cap);
768 	} else if (ocv <= data->min_volt) {
769 		/*
770 		 * If current OCV value is less than the low alarm voltage, but
771 		 * current capacity is larger than the alarm capacity, we should
772 		 * adjust the inititial capacity to alarm capacity.
773 		 */
774 		if (cap > data->alarm_cap) {
775 			sc27xx_fgu_adjust_cap(data, data->alarm_cap);
776 		} else {
777 			int cur_cap;
778 
779 			/*
780 			 * If current capacity is equal with 0 or less than 0
781 			 * (some error occurs), we should adjust inititial
782 			 * capacity to the capacity corresponding to current OCV
783 			 * value.
784 			 */
785 			cur_cap = power_supply_ocv2cap_simple(data->cap_table,
786 							      data->table_len,
787 							      ocv);
788 			sc27xx_fgu_adjust_cap(data, cur_cap);
789 		}
790 
791 		if (!int_mode)
792 			return;
793 
794 		/*
795 		 * After adjusting the battery capacity, we should set the
796 		 * lowest alarm voltage instead.
797 		 */
798 		data->min_volt = data->cap_table[data->table_len - 1].ocv;
799 		data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
800 							      data->table_len,
801 							      data->min_volt);
802 
803 		adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
804 		regmap_update_bits(data->regmap,
805 				   data->base + SC27XX_FGU_LOW_OVERLOAD,
806 				   SC27XX_FGU_LOW_OVERLOAD_MASK, adc);
807 	}
808 }
809 
810 static irqreturn_t sc27xx_fgu_interrupt(int irq, void *dev_id)
811 {
812 	struct sc27xx_fgu_data *data = dev_id;
813 	int ret, cap;
814 	u32 status;
815 
816 	mutex_lock(&data->lock);
817 
818 	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_INT_STS,
819 			  &status);
820 	if (ret)
821 		goto out;
822 
823 	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
824 				 status, status);
825 	if (ret)
826 		goto out;
827 
828 	/*
829 	 * When low overload voltage interrupt happens, we should calibrate the
830 	 * battery capacity in lower voltage stage.
831 	 */
832 	if (!(status & SC27XX_FGU_LOW_OVERLOAD_INT))
833 		goto out;
834 
835 	ret = sc27xx_fgu_get_capacity(data, &cap);
836 	if (ret)
837 		goto out;
838 
839 	sc27xx_fgu_capacity_calibration(data, cap, true);
840 
841 out:
842 	mutex_unlock(&data->lock);
843 
844 	power_supply_changed(data->battery);
845 	return IRQ_HANDLED;
846 }
847 
848 static irqreturn_t sc27xx_fgu_bat_detection(int irq, void *dev_id)
849 {
850 	struct sc27xx_fgu_data *data = dev_id;
851 	int state;
852 
853 	mutex_lock(&data->lock);
854 
855 	state = gpiod_get_value_cansleep(data->gpiod);
856 	if (state < 0) {
857 		dev_err(data->dev, "failed to get gpio state\n");
858 		mutex_unlock(&data->lock);
859 		return IRQ_RETVAL(state);
860 	}
861 
862 	data->bat_present = !!state;
863 
864 	mutex_unlock(&data->lock);
865 
866 	power_supply_changed(data->battery);
867 	return IRQ_HANDLED;
868 }
869 
870 static void sc27xx_fgu_disable(void *_data)
871 {
872 	struct sc27xx_fgu_data *data = _data;
873 
874 	regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
875 	regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
876 }
877 
878 static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity)
879 {
880 	/*
881 	 * Get current capacity (mAh) = battery total capacity (mAh) *
882 	 * current capacity percent (capacity / 100).
883 	 */
884 	int cur_cap = DIV_ROUND_CLOSEST(data->total_cap * capacity, 100);
885 
886 	/*
887 	 * Convert current capacity (mAh) to coulomb counter according to the
888 	 * formula: 1 mAh =3.6 coulomb.
889 	 */
890 	return DIV_ROUND_CLOSEST(cur_cap * 36 * data->cur_1000ma_adc * SC27XX_FGU_SAMPLE_HZ, 10);
891 }
892 
893 static int sc27xx_fgu_calibration(struct sc27xx_fgu_data *data)
894 {
895 	struct nvmem_cell *cell;
896 	int calib_data, cal_4200mv;
897 	void *buf;
898 	size_t len;
899 
900 	cell = nvmem_cell_get(data->dev, "fgu_calib");
901 	if (IS_ERR(cell))
902 		return PTR_ERR(cell);
903 
904 	buf = nvmem_cell_read(cell, &len);
905 	nvmem_cell_put(cell);
906 
907 	if (IS_ERR(buf))
908 		return PTR_ERR(buf);
909 
910 	memcpy(&calib_data, buf, min(len, sizeof(u32)));
911 
912 	/*
913 	 * Get the ADC value corresponding to 4200 mV from eFuse controller
914 	 * according to below formula. Then convert to ADC values corresponding
915 	 * to 1000 mV and 1000 mA.
916 	 */
917 	cal_4200mv = (calib_data & 0x1ff) + 6963 - 4096 - 256;
918 	data->vol_1000mv_adc = DIV_ROUND_CLOSEST(cal_4200mv * 10, 42);
919 	data->cur_1000ma_adc =
920 		DIV_ROUND_CLOSEST(data->vol_1000mv_adc * 4 * data->calib_resist,
921 				  SC27XX_FGU_IDEAL_RESISTANCE);
922 
923 	kfree(buf);
924 	return 0;
925 }
926 
927 static int sc27xx_fgu_hw_init(struct sc27xx_fgu_data *data)
928 {
929 	struct power_supply_battery_info info = { };
930 	struct power_supply_battery_ocv_table *table;
931 	int ret, delta_clbcnt, alarm_adc;
932 
933 	ret = power_supply_get_battery_info(data->battery, &info);
934 	if (ret) {
935 		dev_err(data->dev, "failed to get battery information\n");
936 		return ret;
937 	}
938 
939 	data->total_cap = info.charge_full_design_uah / 1000;
940 	data->max_volt = info.constant_charge_voltage_max_uv / 1000;
941 	data->internal_resist = info.factory_internal_resistance_uohm / 1000;
942 	data->min_volt = info.voltage_min_design_uv;
943 
944 	/*
945 	 * For SC27XX fuel gauge device, we only use one ocv-capacity
946 	 * table in normal temperature 20 Celsius.
947 	 */
948 	table = power_supply_find_ocv2cap_table(&info, 20, &data->table_len);
949 	if (!table)
950 		return -EINVAL;
951 
952 	data->cap_table = devm_kmemdup(data->dev, table,
953 				       data->table_len * sizeof(*table),
954 				       GFP_KERNEL);
955 	if (!data->cap_table) {
956 		power_supply_put_battery_info(data->battery, &info);
957 		return -ENOMEM;
958 	}
959 
960 	data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
961 						      data->table_len,
962 						      data->min_volt);
963 	if (!data->alarm_cap)
964 		data->alarm_cap += 1;
965 
966 	data->resist_table_len = info.resist_table_size;
967 	if (data->resist_table_len > 0) {
968 		data->resist_table = devm_kmemdup(data->dev, info.resist_table,
969 						  data->resist_table_len *
970 						  sizeof(struct power_supply_resistance_temp_table),
971 						  GFP_KERNEL);
972 		if (!data->resist_table) {
973 			power_supply_put_battery_info(data->battery, &info);
974 			return -ENOMEM;
975 		}
976 	}
977 
978 	power_supply_put_battery_info(data->battery, &info);
979 
980 	ret = sc27xx_fgu_calibration(data);
981 	if (ret)
982 		return ret;
983 
984 	/* Enable the FGU module */
985 	ret = regmap_update_bits(data->regmap, SC27XX_MODULE_EN0,
986 				 SC27XX_FGU_EN, SC27XX_FGU_EN);
987 	if (ret) {
988 		dev_err(data->dev, "failed to enable fgu\n");
989 		return ret;
990 	}
991 
992 	/* Enable the FGU RTC clock to make it work */
993 	ret = regmap_update_bits(data->regmap, SC27XX_CLK_EN0,
994 				 SC27XX_FGU_RTC_EN, SC27XX_FGU_RTC_EN);
995 	if (ret) {
996 		dev_err(data->dev, "failed to enable fgu RTC clock\n");
997 		goto disable_fgu;
998 	}
999 
1000 	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
1001 				 SC27XX_FGU_INT_MASK, SC27XX_FGU_INT_MASK);
1002 	if (ret) {
1003 		dev_err(data->dev, "failed to clear interrupt status\n");
1004 		goto disable_clk;
1005 	}
1006 
1007 	/*
1008 	 * Set the voltage low overload threshold, which means when the battery
1009 	 * voltage is lower than this threshold, the controller will generate
1010 	 * one interrupt to notify.
1011 	 */
1012 	alarm_adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
1013 	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_LOW_OVERLOAD,
1014 				 SC27XX_FGU_LOW_OVERLOAD_MASK, alarm_adc);
1015 	if (ret) {
1016 		dev_err(data->dev, "failed to set fgu low overload\n");
1017 		goto disable_clk;
1018 	}
1019 
1020 	/*
1021 	 * Set the coulomb counter delta threshold, that means when the coulomb
1022 	 * counter change is multiples of the delta threshold, the controller
1023 	 * will generate one interrupt to notify the users to update the battery
1024 	 * capacity. Now we set the delta threshold as a counter value of 1%
1025 	 * capacity.
1026 	 */
1027 	delta_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, 1);
1028 
1029 	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTL,
1030 				 SC27XX_FGU_CLBCNT_MASK, delta_clbcnt);
1031 	if (ret) {
1032 		dev_err(data->dev, "failed to set low delta coulomb counter\n");
1033 		goto disable_clk;
1034 	}
1035 
1036 	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTH,
1037 				 SC27XX_FGU_CLBCNT_MASK,
1038 				 delta_clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
1039 	if (ret) {
1040 		dev_err(data->dev, "failed to set high delta coulomb counter\n");
1041 		goto disable_clk;
1042 	}
1043 
1044 	/*
1045 	 * Get the boot battery capacity when system powers on, which is used to
1046 	 * initialize the coulomb counter. After that, we can read the coulomb
1047 	 * counter to measure the battery capacity.
1048 	 */
1049 	ret = sc27xx_fgu_get_boot_capacity(data, &data->init_cap);
1050 	if (ret) {
1051 		dev_err(data->dev, "failed to get boot capacity\n");
1052 		goto disable_clk;
1053 	}
1054 
1055 	/*
1056 	 * Convert battery capacity to the corresponding initial coulomb counter
1057 	 * and set into coulomb counter registers.
1058 	 */
1059 	data->init_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, data->init_cap);
1060 	ret = sc27xx_fgu_set_clbcnt(data, data->init_clbcnt);
1061 	if (ret) {
1062 		dev_err(data->dev, "failed to initialize coulomb counter\n");
1063 		goto disable_clk;
1064 	}
1065 
1066 	return 0;
1067 
1068 disable_clk:
1069 	regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
1070 disable_fgu:
1071 	regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
1072 
1073 	return ret;
1074 }
1075 
1076 static int sc27xx_fgu_probe(struct platform_device *pdev)
1077 {
1078 	struct device *dev = &pdev->dev;
1079 	struct device_node *np = dev->of_node;
1080 	struct power_supply_config fgu_cfg = { };
1081 	struct sc27xx_fgu_data *data;
1082 	int ret, irq;
1083 
1084 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
1085 	if (!data)
1086 		return -ENOMEM;
1087 
1088 	data->regmap = dev_get_regmap(dev->parent, NULL);
1089 	if (!data->regmap) {
1090 		dev_err(dev, "failed to get regmap\n");
1091 		return -ENODEV;
1092 	}
1093 
1094 	ret = device_property_read_u32(dev, "reg", &data->base);
1095 	if (ret) {
1096 		dev_err(dev, "failed to get fgu address\n");
1097 		return ret;
1098 	}
1099 
1100 	ret = device_property_read_u32(&pdev->dev,
1101 				       "sprd,calib-resistance-micro-ohms",
1102 				       &data->calib_resist);
1103 	if (ret) {
1104 		dev_err(&pdev->dev,
1105 			"failed to get fgu calibration resistance\n");
1106 		return ret;
1107 	}
1108 
1109 	data->channel = devm_iio_channel_get(dev, "bat-temp");
1110 	if (IS_ERR(data->channel)) {
1111 		dev_err(dev, "failed to get IIO channel\n");
1112 		return PTR_ERR(data->channel);
1113 	}
1114 
1115 	data->charge_chan = devm_iio_channel_get(dev, "charge-vol");
1116 	if (IS_ERR(data->charge_chan)) {
1117 		dev_err(dev, "failed to get charge IIO channel\n");
1118 		return PTR_ERR(data->charge_chan);
1119 	}
1120 
1121 	data->gpiod = devm_gpiod_get(dev, "bat-detect", GPIOD_IN);
1122 	if (IS_ERR(data->gpiod)) {
1123 		dev_err(dev, "failed to get battery detection GPIO\n");
1124 		return PTR_ERR(data->gpiod);
1125 	}
1126 
1127 	ret = gpiod_get_value_cansleep(data->gpiod);
1128 	if (ret < 0) {
1129 		dev_err(dev, "failed to get gpio state\n");
1130 		return ret;
1131 	}
1132 
1133 	data->bat_present = !!ret;
1134 	mutex_init(&data->lock);
1135 	data->dev = dev;
1136 	platform_set_drvdata(pdev, data);
1137 
1138 	fgu_cfg.drv_data = data;
1139 	fgu_cfg.of_node = np;
1140 	data->battery = devm_power_supply_register(dev, &sc27xx_fgu_desc,
1141 						   &fgu_cfg);
1142 	if (IS_ERR(data->battery)) {
1143 		dev_err(dev, "failed to register power supply\n");
1144 		return PTR_ERR(data->battery);
1145 	}
1146 
1147 	ret = sc27xx_fgu_hw_init(data);
1148 	if (ret) {
1149 		dev_err(dev, "failed to initialize fgu hardware\n");
1150 		return ret;
1151 	}
1152 
1153 	ret = devm_add_action_or_reset(dev, sc27xx_fgu_disable, data);
1154 	if (ret) {
1155 		dev_err(dev, "failed to add fgu disable action\n");
1156 		return ret;
1157 	}
1158 
1159 	irq = platform_get_irq(pdev, 0);
1160 	if (irq < 0) {
1161 		dev_err(dev, "no irq resource specified\n");
1162 		return irq;
1163 	}
1164 
1165 	ret = devm_request_threaded_irq(data->dev, irq, NULL,
1166 					sc27xx_fgu_interrupt,
1167 					IRQF_NO_SUSPEND | IRQF_ONESHOT,
1168 					pdev->name, data);
1169 	if (ret) {
1170 		dev_err(data->dev, "failed to request fgu IRQ\n");
1171 		return ret;
1172 	}
1173 
1174 	irq = gpiod_to_irq(data->gpiod);
1175 	if (irq < 0) {
1176 		dev_err(dev, "failed to translate GPIO to IRQ\n");
1177 		return irq;
1178 	}
1179 
1180 	ret = devm_request_threaded_irq(dev, irq, NULL,
1181 					sc27xx_fgu_bat_detection,
1182 					IRQF_ONESHOT | IRQF_TRIGGER_RISING |
1183 					IRQF_TRIGGER_FALLING,
1184 					pdev->name, data);
1185 	if (ret) {
1186 		dev_err(dev, "failed to request IRQ\n");
1187 		return ret;
1188 	}
1189 
1190 	return 0;
1191 }
1192 
1193 #ifdef CONFIG_PM_SLEEP
1194 static int sc27xx_fgu_resume(struct device *dev)
1195 {
1196 	struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
1197 	int ret;
1198 
1199 	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1200 				 SC27XX_FGU_LOW_OVERLOAD_INT |
1201 				 SC27XX_FGU_CLBCNT_DELTA_INT, 0);
1202 	if (ret) {
1203 		dev_err(data->dev, "failed to disable fgu interrupts\n");
1204 		return ret;
1205 	}
1206 
1207 	return 0;
1208 }
1209 
1210 static int sc27xx_fgu_suspend(struct device *dev)
1211 {
1212 	struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
1213 	int ret, status, ocv;
1214 
1215 	ret = sc27xx_fgu_get_status(data, &status);
1216 	if (ret)
1217 		return ret;
1218 
1219 	/*
1220 	 * If we are charging, then no need to enable the FGU interrupts to
1221 	 * adjust the battery capacity.
1222 	 */
1223 	if (status != POWER_SUPPLY_STATUS_NOT_CHARGING &&
1224 	    status != POWER_SUPPLY_STATUS_DISCHARGING)
1225 		return 0;
1226 
1227 	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1228 				 SC27XX_FGU_LOW_OVERLOAD_INT,
1229 				 SC27XX_FGU_LOW_OVERLOAD_INT);
1230 	if (ret) {
1231 		dev_err(data->dev, "failed to enable low voltage interrupt\n");
1232 		return ret;
1233 	}
1234 
1235 	ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
1236 	if (ret)
1237 		goto disable_int;
1238 
1239 	/*
1240 	 * If current OCV is less than the minimum voltage, we should enable the
1241 	 * coulomb counter threshold interrupt to notify events to adjust the
1242 	 * battery capacity.
1243 	 */
1244 	if (ocv < data->min_volt) {
1245 		ret = regmap_update_bits(data->regmap,
1246 					 data->base + SC27XX_FGU_INT_EN,
1247 					 SC27XX_FGU_CLBCNT_DELTA_INT,
1248 					 SC27XX_FGU_CLBCNT_DELTA_INT);
1249 		if (ret) {
1250 			dev_err(data->dev,
1251 				"failed to enable coulomb threshold int\n");
1252 			goto disable_int;
1253 		}
1254 	}
1255 
1256 	return 0;
1257 
1258 disable_int:
1259 	regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1260 			   SC27XX_FGU_LOW_OVERLOAD_INT, 0);
1261 	return ret;
1262 }
1263 #endif
1264 
1265 static const struct dev_pm_ops sc27xx_fgu_pm_ops = {
1266 	SET_SYSTEM_SLEEP_PM_OPS(sc27xx_fgu_suspend, sc27xx_fgu_resume)
1267 };
1268 
1269 static const struct of_device_id sc27xx_fgu_of_match[] = {
1270 	{ .compatible = "sprd,sc2731-fgu", },
1271 	{ }
1272 };
1273 
1274 static struct platform_driver sc27xx_fgu_driver = {
1275 	.probe = sc27xx_fgu_probe,
1276 	.driver = {
1277 		.name = "sc27xx-fgu",
1278 		.of_match_table = sc27xx_fgu_of_match,
1279 		.pm = &sc27xx_fgu_pm_ops,
1280 	}
1281 };
1282 
1283 module_platform_driver(sc27xx_fgu_driver);
1284 
1285 MODULE_DESCRIPTION("Spreadtrum SC27XX PMICs Fual Gauge Unit Driver");
1286 MODULE_LICENSE("GPL v2");
1287