1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Gas Gauge driver for SBS Compliant Batteries
4  *
5  * Copyright (c) 2010, NVIDIA Corporation.
6  */
7 
8 #include <linux/bits.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/i2c.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/property.h>
18 #include <linux/of_device.h>
19 #include <linux/power/sbs-battery.h>
20 #include <linux/power_supply.h>
21 #include <linux/slab.h>
22 #include <linux/stat.h>
23 
24 enum {
25 	REG_MANUFACTURER_DATA,
26 	REG_BATTERY_MODE,
27 	REG_TEMPERATURE,
28 	REG_VOLTAGE,
29 	REG_CURRENT_NOW,
30 	REG_CURRENT_AVG,
31 	REG_MAX_ERR,
32 	REG_CAPACITY,
33 	REG_TIME_TO_EMPTY,
34 	REG_TIME_TO_FULL,
35 	REG_STATUS,
36 	REG_CAPACITY_LEVEL,
37 	REG_CYCLE_COUNT,
38 	REG_SERIAL_NUMBER,
39 	REG_REMAINING_CAPACITY,
40 	REG_REMAINING_CAPACITY_CHARGE,
41 	REG_FULL_CHARGE_CAPACITY,
42 	REG_FULL_CHARGE_CAPACITY_CHARGE,
43 	REG_DESIGN_CAPACITY,
44 	REG_DESIGN_CAPACITY_CHARGE,
45 	REG_DESIGN_VOLTAGE_MIN,
46 	REG_DESIGN_VOLTAGE_MAX,
47 	REG_CHEMISTRY,
48 	REG_MANUFACTURER,
49 	REG_MODEL_NAME,
50 	REG_CHARGE_CURRENT,
51 	REG_CHARGE_VOLTAGE,
52 };
53 
54 #define REG_ADDR_SPEC_INFO		0x1A
55 #define SPEC_INFO_VERSION_MASK		GENMASK(7, 4)
56 #define SPEC_INFO_VERSION_SHIFT		4
57 
58 #define SBS_VERSION_1_0			1
59 #define SBS_VERSION_1_1			2
60 #define SBS_VERSION_1_1_WITH_PEC	3
61 
62 #define REG_ADDR_MANUFACTURE_DATE	0x1B
63 
64 /* Battery Mode defines */
65 #define BATTERY_MODE_OFFSET		0x03
66 #define BATTERY_MODE_CAPACITY_MASK	BIT(15)
67 enum sbs_capacity_mode {
68 	CAPACITY_MODE_AMPS = 0,
69 	CAPACITY_MODE_WATTS = BATTERY_MODE_CAPACITY_MASK
70 };
71 #define BATTERY_MODE_CHARGER_MASK	(1<<14)
72 
73 /* manufacturer access defines */
74 #define MANUFACTURER_ACCESS_STATUS	0x0006
75 #define MANUFACTURER_ACCESS_SLEEP	0x0011
76 
77 /* battery status value bits */
78 #define BATTERY_INITIALIZED		0x80
79 #define BATTERY_DISCHARGING		0x40
80 #define BATTERY_FULL_CHARGED		0x20
81 #define BATTERY_FULL_DISCHARGED		0x10
82 
83 /* min_value and max_value are only valid for numerical data */
84 #define SBS_DATA(_psp, _addr, _min_value, _max_value) { \
85 	.psp = _psp, \
86 	.addr = _addr, \
87 	.min_value = _min_value, \
88 	.max_value = _max_value, \
89 }
90 
91 static const struct chip_data {
92 	enum power_supply_property psp;
93 	u8 addr;
94 	int min_value;
95 	int max_value;
96 } sbs_data[] = {
97 	[REG_MANUFACTURER_DATA] =
98 		SBS_DATA(POWER_SUPPLY_PROP_PRESENT, 0x00, 0, 65535),
99 	[REG_BATTERY_MODE] =
100 		SBS_DATA(-1, 0x03, 0, 65535),
101 	[REG_TEMPERATURE] =
102 		SBS_DATA(POWER_SUPPLY_PROP_TEMP, 0x08, 0, 65535),
103 	[REG_VOLTAGE] =
104 		SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_NOW, 0x09, 0, 20000),
105 	[REG_CURRENT_NOW] =
106 		SBS_DATA(POWER_SUPPLY_PROP_CURRENT_NOW, 0x0A, -32768, 32767),
107 	[REG_CURRENT_AVG] =
108 		SBS_DATA(POWER_SUPPLY_PROP_CURRENT_AVG, 0x0B, -32768, 32767),
109 	[REG_MAX_ERR] =
110 		SBS_DATA(POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, 0x0c, 0, 100),
111 	[REG_CAPACITY] =
112 		SBS_DATA(POWER_SUPPLY_PROP_CAPACITY, 0x0D, 0, 100),
113 	[REG_REMAINING_CAPACITY] =
114 		SBS_DATA(POWER_SUPPLY_PROP_ENERGY_NOW, 0x0F, 0, 65535),
115 	[REG_REMAINING_CAPACITY_CHARGE] =
116 		SBS_DATA(POWER_SUPPLY_PROP_CHARGE_NOW, 0x0F, 0, 65535),
117 	[REG_FULL_CHARGE_CAPACITY] =
118 		SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL, 0x10, 0, 65535),
119 	[REG_FULL_CHARGE_CAPACITY_CHARGE] =
120 		SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL, 0x10, 0, 65535),
121 	[REG_TIME_TO_EMPTY] =
122 		SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 0x12, 0, 65535),
123 	[REG_TIME_TO_FULL] =
124 		SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 0x13, 0, 65535),
125 	[REG_CHARGE_CURRENT] =
126 		SBS_DATA(POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 0x14, 0, 65535),
127 	[REG_CHARGE_VOLTAGE] =
128 		SBS_DATA(POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, 0x15, 0, 65535),
129 	[REG_STATUS] =
130 		SBS_DATA(POWER_SUPPLY_PROP_STATUS, 0x16, 0, 65535),
131 	[REG_CAPACITY_LEVEL] =
132 		SBS_DATA(POWER_SUPPLY_PROP_CAPACITY_LEVEL, 0x16, 0, 65535),
133 	[REG_CYCLE_COUNT] =
134 		SBS_DATA(POWER_SUPPLY_PROP_CYCLE_COUNT, 0x17, 0, 65535),
135 	[REG_DESIGN_CAPACITY] =
136 		SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 0x18, 0, 65535),
137 	[REG_DESIGN_CAPACITY_CHARGE] =
138 		SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 0x18, 0, 65535),
139 	[REG_DESIGN_VOLTAGE_MIN] =
140 		SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 0x19, 0, 65535),
141 	[REG_DESIGN_VOLTAGE_MAX] =
142 		SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 0x19, 0, 65535),
143 	[REG_SERIAL_NUMBER] =
144 		SBS_DATA(POWER_SUPPLY_PROP_SERIAL_NUMBER, 0x1C, 0, 65535),
145 	/* Properties of type `const char *' */
146 	[REG_MANUFACTURER] =
147 		SBS_DATA(POWER_SUPPLY_PROP_MANUFACTURER, 0x20, 0, 65535),
148 	[REG_MODEL_NAME] =
149 		SBS_DATA(POWER_SUPPLY_PROP_MODEL_NAME, 0x21, 0, 65535),
150 	[REG_CHEMISTRY] =
151 		SBS_DATA(POWER_SUPPLY_PROP_TECHNOLOGY, 0x22, 0, 65535)
152 };
153 
154 static const enum power_supply_property sbs_properties[] = {
155 	POWER_SUPPLY_PROP_STATUS,
156 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
157 	POWER_SUPPLY_PROP_HEALTH,
158 	POWER_SUPPLY_PROP_PRESENT,
159 	POWER_SUPPLY_PROP_TECHNOLOGY,
160 	POWER_SUPPLY_PROP_CYCLE_COUNT,
161 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
162 	POWER_SUPPLY_PROP_CURRENT_NOW,
163 	POWER_SUPPLY_PROP_CURRENT_AVG,
164 	POWER_SUPPLY_PROP_CAPACITY,
165 	POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN,
166 	POWER_SUPPLY_PROP_TEMP,
167 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
168 	POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
169 	POWER_SUPPLY_PROP_SERIAL_NUMBER,
170 	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
171 	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
172 	POWER_SUPPLY_PROP_ENERGY_NOW,
173 	POWER_SUPPLY_PROP_ENERGY_FULL,
174 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
175 	POWER_SUPPLY_PROP_CHARGE_NOW,
176 	POWER_SUPPLY_PROP_CHARGE_FULL,
177 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
178 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
179 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
180 	POWER_SUPPLY_PROP_MANUFACTURE_YEAR,
181 	POWER_SUPPLY_PROP_MANUFACTURE_MONTH,
182 	POWER_SUPPLY_PROP_MANUFACTURE_DAY,
183 	/* Properties of type `const char *' */
184 	POWER_SUPPLY_PROP_MANUFACTURER,
185 	POWER_SUPPLY_PROP_MODEL_NAME
186 };
187 
188 /* Supports special manufacturer commands from TI BQ20Z65 and BQ20Z75 IC. */
189 #define SBS_FLAGS_TI_BQ20ZX5		BIT(0)
190 
191 struct sbs_info {
192 	struct i2c_client		*client;
193 	struct power_supply		*power_supply;
194 	bool				is_present;
195 	struct gpio_desc		*gpio_detect;
196 	bool				enable_detection;
197 	bool				charger_broadcasts;
198 	int				last_state;
199 	int				poll_time;
200 	u32				i2c_retry_count;
201 	u32				poll_retry_count;
202 	struct delayed_work		work;
203 	struct mutex			mode_lock;
204 	u32				flags;
205 };
206 
207 static char model_name[I2C_SMBUS_BLOCK_MAX + 1];
208 static char manufacturer[I2C_SMBUS_BLOCK_MAX + 1];
209 static char chemistry[I2C_SMBUS_BLOCK_MAX + 1];
210 static bool force_load;
211 
212 static int sbs_read_word_data(struct i2c_client *client, u8 address);
213 static int sbs_write_word_data(struct i2c_client *client, u8 address, u16 value);
214 
215 static void sbs_disable_charger_broadcasts(struct sbs_info *chip)
216 {
217 	int val = sbs_read_word_data(chip->client, BATTERY_MODE_OFFSET);
218 	if (val < 0)
219 		goto exit;
220 
221 	val |= BATTERY_MODE_CHARGER_MASK;
222 
223 	val = sbs_write_word_data(chip->client, BATTERY_MODE_OFFSET, val);
224 
225 exit:
226 	if (val < 0)
227 		dev_err(&chip->client->dev,
228 			"Failed to disable charger broadcasting: %d\n", val);
229 	else
230 		dev_dbg(&chip->client->dev, "%s\n", __func__);
231 }
232 
233 static int sbs_update_presence(struct sbs_info *chip, bool is_present)
234 {
235 	struct i2c_client *client = chip->client;
236 	int retries = chip->i2c_retry_count;
237 	s32 ret = 0;
238 	u8 version;
239 
240 	if (chip->is_present == is_present)
241 		return 0;
242 
243 	if (!is_present) {
244 		chip->is_present = false;
245 		/* Disable PEC when no device is present */
246 		client->flags &= ~I2C_CLIENT_PEC;
247 		return 0;
248 	}
249 
250 	/* Check if device supports packet error checking and use it */
251 	while (retries > 0) {
252 		ret = i2c_smbus_read_word_data(client, REG_ADDR_SPEC_INFO);
253 		if (ret >= 0)
254 			break;
255 
256 		/*
257 		 * Some batteries trigger the detection pin before the
258 		 * I2C bus is properly connected. This works around the
259 		 * issue.
260 		 */
261 		msleep(100);
262 
263 		retries--;
264 	}
265 
266 	if (ret < 0) {
267 		dev_dbg(&client->dev, "failed to read spec info: %d\n", ret);
268 
269 		/* fallback to old behaviour */
270 		client->flags &= ~I2C_CLIENT_PEC;
271 		chip->is_present = true;
272 
273 		return ret;
274 	}
275 
276 	version = (ret & SPEC_INFO_VERSION_MASK) >> SPEC_INFO_VERSION_SHIFT;
277 
278 	if (version == SBS_VERSION_1_1_WITH_PEC)
279 		client->flags |= I2C_CLIENT_PEC;
280 	else
281 		client->flags &= ~I2C_CLIENT_PEC;
282 
283 	if (of_device_is_compatible(client->dev.parent->of_node, "google,cros-ec-i2c-tunnel")
284 	    && client->flags & I2C_CLIENT_PEC) {
285 		dev_info(&client->dev, "Disabling PEC because of broken Cros-EC implementation\n");
286 		client->flags &= ~I2C_CLIENT_PEC;
287 	}
288 
289 	dev_dbg(&client->dev, "PEC: %s\n", (client->flags & I2C_CLIENT_PEC) ?
290 		"enabled" : "disabled");
291 
292 	if (!chip->is_present && is_present && !chip->charger_broadcasts)
293 		sbs_disable_charger_broadcasts(chip);
294 
295 	chip->is_present = true;
296 
297 	return 0;
298 }
299 
300 static int sbs_read_word_data(struct i2c_client *client, u8 address)
301 {
302 	struct sbs_info *chip = i2c_get_clientdata(client);
303 	int retries = chip->i2c_retry_count;
304 	s32 ret = 0;
305 
306 	while (retries > 0) {
307 		ret = i2c_smbus_read_word_data(client, address);
308 		if (ret >= 0)
309 			break;
310 		retries--;
311 	}
312 
313 	if (ret < 0) {
314 		dev_dbg(&client->dev,
315 			"%s: i2c read at address 0x%x failed\n",
316 			__func__, address);
317 		return ret;
318 	}
319 
320 	return ret;
321 }
322 
323 static int sbs_read_string_data_fallback(struct i2c_client *client, u8 address, char *values)
324 {
325 	struct sbs_info *chip = i2c_get_clientdata(client);
326 	s32 ret = 0, block_length = 0;
327 	int retries_length, retries_block;
328 	u8 block_buffer[I2C_SMBUS_BLOCK_MAX + 1];
329 
330 	retries_length = chip->i2c_retry_count;
331 	retries_block = chip->i2c_retry_count;
332 
333 	dev_warn_once(&client->dev, "I2C adapter does not support I2C_FUNC_SMBUS_READ_BLOCK_DATA.\n"
334 				    "Fallback method does not support PEC.\n");
335 
336 	/* Adapter needs to support these two functions */
337 	if (!i2c_check_functionality(client->adapter,
338 				     I2C_FUNC_SMBUS_BYTE_DATA |
339 				     I2C_FUNC_SMBUS_I2C_BLOCK)){
340 		return -ENODEV;
341 	}
342 
343 	/* Get the length of block data */
344 	while (retries_length > 0) {
345 		ret = i2c_smbus_read_byte_data(client, address);
346 		if (ret >= 0)
347 			break;
348 		retries_length--;
349 	}
350 
351 	if (ret < 0) {
352 		dev_dbg(&client->dev,
353 			"%s: i2c read at address 0x%x failed\n",
354 			__func__, address);
355 		return ret;
356 	}
357 
358 	/* block_length does not include NULL terminator */
359 	block_length = ret;
360 	if (block_length > I2C_SMBUS_BLOCK_MAX) {
361 		dev_err(&client->dev,
362 			"%s: Returned block_length is longer than 0x%x\n",
363 			__func__, I2C_SMBUS_BLOCK_MAX);
364 		return -EINVAL;
365 	}
366 
367 	/* Get the block data */
368 	while (retries_block > 0) {
369 		ret = i2c_smbus_read_i2c_block_data(
370 				client, address,
371 				block_length + 1, block_buffer);
372 		if (ret >= 0)
373 			break;
374 		retries_block--;
375 	}
376 
377 	if (ret < 0) {
378 		dev_dbg(&client->dev,
379 			"%s: i2c read at address 0x%x failed\n",
380 			__func__, address);
381 		return ret;
382 	}
383 
384 	/* block_buffer[0] == block_length */
385 	memcpy(values, block_buffer + 1, block_length);
386 	values[block_length] = '\0';
387 
388 	return ret;
389 }
390 
391 static int sbs_read_string_data(struct i2c_client *client, u8 address, char *values)
392 {
393 	struct sbs_info *chip = i2c_get_clientdata(client);
394 	int retries = chip->i2c_retry_count;
395 	int ret = 0;
396 
397 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_BLOCK_DATA)) {
398 		bool pec = client->flags & I2C_CLIENT_PEC;
399 		client->flags &= ~I2C_CLIENT_PEC;
400 		ret = sbs_read_string_data_fallback(client, address, values);
401 		if (pec)
402 			client->flags |= I2C_CLIENT_PEC;
403 		return ret;
404 	}
405 
406 	while (retries > 0) {
407 		ret = i2c_smbus_read_block_data(client, address, values);
408 		if (ret >= 0)
409 			break;
410 		retries--;
411 	}
412 
413 	if (ret < 0) {
414 		dev_dbg(&client->dev, "failed to read block 0x%x: %d\n", address, ret);
415 		return ret;
416 	}
417 
418 	/* add string termination */
419 	values[ret] = '\0';
420 	return ret;
421 }
422 
423 static int sbs_write_word_data(struct i2c_client *client, u8 address,
424 	u16 value)
425 {
426 	struct sbs_info *chip = i2c_get_clientdata(client);
427 	int retries = chip->i2c_retry_count;
428 	s32 ret = 0;
429 
430 	while (retries > 0) {
431 		ret = i2c_smbus_write_word_data(client, address, value);
432 		if (ret >= 0)
433 			break;
434 		retries--;
435 	}
436 
437 	if (ret < 0) {
438 		dev_dbg(&client->dev,
439 			"%s: i2c write to address 0x%x failed\n",
440 			__func__, address);
441 		return ret;
442 	}
443 
444 	return 0;
445 }
446 
447 static int sbs_status_correct(struct i2c_client *client, int *intval)
448 {
449 	int ret;
450 
451 	ret = sbs_read_word_data(client, sbs_data[REG_CURRENT_NOW].addr);
452 	if (ret < 0)
453 		return ret;
454 
455 	ret = (s16)ret;
456 
457 	/* Not drawing current -> not charging (i.e. idle) */
458 	if (*intval != POWER_SUPPLY_STATUS_FULL && ret == 0)
459 		*intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
460 
461 	if (*intval == POWER_SUPPLY_STATUS_FULL) {
462 		/* Drawing or providing current when full */
463 		if (ret > 0)
464 			*intval = POWER_SUPPLY_STATUS_CHARGING;
465 		else if (ret < 0)
466 			*intval = POWER_SUPPLY_STATUS_DISCHARGING;
467 	}
468 
469 	return 0;
470 }
471 
472 static bool sbs_bat_needs_calibration(struct i2c_client *client)
473 {
474 	int ret;
475 
476 	ret = sbs_read_word_data(client, sbs_data[REG_BATTERY_MODE].addr);
477 	if (ret < 0)
478 		return false;
479 
480 	return !!(ret & BIT(7));
481 }
482 
483 static int sbs_get_battery_presence_and_health(
484 	struct i2c_client *client, enum power_supply_property psp,
485 	union power_supply_propval *val)
486 {
487 	int ret;
488 
489 	/* Dummy command; if it succeeds, battery is present. */
490 	ret = sbs_read_word_data(client, sbs_data[REG_STATUS].addr);
491 
492 	if (ret < 0) { /* battery not present*/
493 		if (psp == POWER_SUPPLY_PROP_PRESENT) {
494 			val->intval = 0;
495 			return 0;
496 		}
497 		return ret;
498 	}
499 
500 	if (psp == POWER_SUPPLY_PROP_PRESENT)
501 		val->intval = 1; /* battery present */
502 	else { /* POWER_SUPPLY_PROP_HEALTH */
503 		if (sbs_bat_needs_calibration(client)) {
504 			val->intval = POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED;
505 		} else {
506 			/* SBS spec doesn't have a general health command. */
507 			val->intval = POWER_SUPPLY_HEALTH_UNKNOWN;
508 		}
509 	}
510 
511 	return 0;
512 }
513 
514 static int sbs_get_ti_battery_presence_and_health(
515 	struct i2c_client *client, enum power_supply_property psp,
516 	union power_supply_propval *val)
517 {
518 	s32 ret;
519 
520 	/*
521 	 * Write to ManufacturerAccess with ManufacturerAccess command
522 	 * and then read the status.
523 	 */
524 	ret = sbs_write_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr,
525 				  MANUFACTURER_ACCESS_STATUS);
526 	if (ret < 0) {
527 		if (psp == POWER_SUPPLY_PROP_PRESENT)
528 			val->intval = 0; /* battery removed */
529 		return ret;
530 	}
531 
532 	ret = sbs_read_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr);
533 	if (ret < 0) {
534 		if (psp == POWER_SUPPLY_PROP_PRESENT)
535 			val->intval = 0; /* battery removed */
536 		return ret;
537 	}
538 
539 	if (ret < sbs_data[REG_MANUFACTURER_DATA].min_value ||
540 	    ret > sbs_data[REG_MANUFACTURER_DATA].max_value) {
541 		val->intval = 0;
542 		return 0;
543 	}
544 
545 	/* Mask the upper nibble of 2nd byte and
546 	 * lower byte of response then
547 	 * shift the result by 8 to get status*/
548 	ret &= 0x0F00;
549 	ret >>= 8;
550 	if (psp == POWER_SUPPLY_PROP_PRESENT) {
551 		if (ret == 0x0F)
552 			/* battery removed */
553 			val->intval = 0;
554 		else
555 			val->intval = 1;
556 	} else if (psp == POWER_SUPPLY_PROP_HEALTH) {
557 		if (ret == 0x09)
558 			val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE;
559 		else if (ret == 0x0B)
560 			val->intval = POWER_SUPPLY_HEALTH_OVERHEAT;
561 		else if (ret == 0x0C)
562 			val->intval = POWER_SUPPLY_HEALTH_DEAD;
563 		else if (sbs_bat_needs_calibration(client))
564 			val->intval = POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED;
565 		else
566 			val->intval = POWER_SUPPLY_HEALTH_GOOD;
567 	}
568 
569 	return 0;
570 }
571 
572 static int sbs_get_battery_property(struct i2c_client *client,
573 	int reg_offset, enum power_supply_property psp,
574 	union power_supply_propval *val)
575 {
576 	struct sbs_info *chip = i2c_get_clientdata(client);
577 	s32 ret;
578 
579 	ret = sbs_read_word_data(client, sbs_data[reg_offset].addr);
580 	if (ret < 0)
581 		return ret;
582 
583 	/* returned values are 16 bit */
584 	if (sbs_data[reg_offset].min_value < 0)
585 		ret = (s16)ret;
586 
587 	if (ret >= sbs_data[reg_offset].min_value &&
588 	    ret <= sbs_data[reg_offset].max_value) {
589 		val->intval = ret;
590 		if (psp == POWER_SUPPLY_PROP_CAPACITY_LEVEL) {
591 			if (!(ret & BATTERY_INITIALIZED))
592 				val->intval =
593 					POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
594 			else if (ret & BATTERY_FULL_CHARGED)
595 				val->intval =
596 					POWER_SUPPLY_CAPACITY_LEVEL_FULL;
597 			else if (ret & BATTERY_FULL_DISCHARGED)
598 				val->intval =
599 					POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
600 			else
601 				val->intval =
602 					POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
603 			return 0;
604 		} else if (psp != POWER_SUPPLY_PROP_STATUS) {
605 			return 0;
606 		}
607 
608 		if (ret & BATTERY_FULL_CHARGED)
609 			val->intval = POWER_SUPPLY_STATUS_FULL;
610 		else if (ret & BATTERY_DISCHARGING)
611 			val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
612 		else
613 			val->intval = POWER_SUPPLY_STATUS_CHARGING;
614 
615 		sbs_status_correct(client, &val->intval);
616 
617 		if (chip->poll_time == 0)
618 			chip->last_state = val->intval;
619 		else if (chip->last_state != val->intval) {
620 			cancel_delayed_work_sync(&chip->work);
621 			power_supply_changed(chip->power_supply);
622 			chip->poll_time = 0;
623 		}
624 	} else {
625 		if (psp == POWER_SUPPLY_PROP_STATUS)
626 			val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
627 		else if (psp == POWER_SUPPLY_PROP_CAPACITY)
628 			/* sbs spec says that this can be >100 %
629 			 * even if max value is 100 %
630 			 */
631 			val->intval = min(ret, 100);
632 		else
633 			val->intval = 0;
634 	}
635 
636 	return 0;
637 }
638 
639 static int sbs_get_battery_string_property(struct i2c_client *client,
640 	int reg_offset, enum power_supply_property psp, char *val)
641 {
642 	s32 ret;
643 
644 	ret = sbs_read_string_data(client, sbs_data[reg_offset].addr, val);
645 
646 	if (ret < 0)
647 		return ret;
648 
649 	return 0;
650 }
651 
652 static void  sbs_unit_adjustment(struct i2c_client *client,
653 	enum power_supply_property psp, union power_supply_propval *val)
654 {
655 #define BASE_UNIT_CONVERSION		1000
656 #define BATTERY_MODE_CAP_MULT_WATT	(10 * BASE_UNIT_CONVERSION)
657 #define TIME_UNIT_CONVERSION		60
658 #define TEMP_KELVIN_TO_CELSIUS		2731
659 	switch (psp) {
660 	case POWER_SUPPLY_PROP_ENERGY_NOW:
661 	case POWER_SUPPLY_PROP_ENERGY_FULL:
662 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
663 		/* sbs provides energy in units of 10mWh.
664 		 * Convert to µWh
665 		 */
666 		val->intval *= BATTERY_MODE_CAP_MULT_WATT;
667 		break;
668 
669 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
670 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
671 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
672 	case POWER_SUPPLY_PROP_CURRENT_NOW:
673 	case POWER_SUPPLY_PROP_CURRENT_AVG:
674 	case POWER_SUPPLY_PROP_CHARGE_NOW:
675 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
676 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
677 	case POWER_SUPPLY_PROP_CHARGE_FULL:
678 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
679 		val->intval *= BASE_UNIT_CONVERSION;
680 		break;
681 
682 	case POWER_SUPPLY_PROP_TEMP:
683 		/* sbs provides battery temperature in 0.1K
684 		 * so convert it to 0.1°C
685 		 */
686 		val->intval -= TEMP_KELVIN_TO_CELSIUS;
687 		break;
688 
689 	case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
690 	case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG:
691 		/* sbs provides time to empty and time to full in minutes.
692 		 * Convert to seconds
693 		 */
694 		val->intval *= TIME_UNIT_CONVERSION;
695 		break;
696 
697 	default:
698 		dev_dbg(&client->dev,
699 			"%s: no need for unit conversion %d\n", __func__, psp);
700 	}
701 }
702 
703 static enum sbs_capacity_mode sbs_set_capacity_mode(struct i2c_client *client,
704 	enum sbs_capacity_mode mode)
705 {
706 	int ret, original_val;
707 
708 	original_val = sbs_read_word_data(client, BATTERY_MODE_OFFSET);
709 	if (original_val < 0)
710 		return original_val;
711 
712 	if ((original_val & BATTERY_MODE_CAPACITY_MASK) == mode)
713 		return mode;
714 
715 	if (mode == CAPACITY_MODE_AMPS)
716 		ret = original_val & ~BATTERY_MODE_CAPACITY_MASK;
717 	else
718 		ret = original_val | BATTERY_MODE_CAPACITY_MASK;
719 
720 	ret = sbs_write_word_data(client, BATTERY_MODE_OFFSET, ret);
721 	if (ret < 0)
722 		return ret;
723 
724 	usleep_range(1000, 2000);
725 
726 	return original_val & BATTERY_MODE_CAPACITY_MASK;
727 }
728 
729 static int sbs_get_battery_capacity(struct i2c_client *client,
730 	int reg_offset, enum power_supply_property psp,
731 	union power_supply_propval *val)
732 {
733 	s32 ret;
734 	enum sbs_capacity_mode mode = CAPACITY_MODE_WATTS;
735 
736 	if (power_supply_is_amp_property(psp))
737 		mode = CAPACITY_MODE_AMPS;
738 
739 	mode = sbs_set_capacity_mode(client, mode);
740 	if ((int)mode < 0)
741 		return mode;
742 
743 	ret = sbs_read_word_data(client, sbs_data[reg_offset].addr);
744 	if (ret < 0)
745 		return ret;
746 
747 	val->intval = ret;
748 
749 	ret = sbs_set_capacity_mode(client, mode);
750 	if (ret < 0)
751 		return ret;
752 
753 	return 0;
754 }
755 
756 static char sbs_serial[5];
757 static int sbs_get_battery_serial_number(struct i2c_client *client,
758 	union power_supply_propval *val)
759 {
760 	int ret;
761 
762 	ret = sbs_read_word_data(client, sbs_data[REG_SERIAL_NUMBER].addr);
763 	if (ret < 0)
764 		return ret;
765 
766 	sprintf(sbs_serial, "%04x", ret);
767 	val->strval = sbs_serial;
768 
769 	return 0;
770 }
771 
772 static int sbs_get_property_index(struct i2c_client *client,
773 	enum power_supply_property psp)
774 {
775 	int count;
776 	for (count = 0; count < ARRAY_SIZE(sbs_data); count++)
777 		if (psp == sbs_data[count].psp)
778 			return count;
779 
780 	dev_warn(&client->dev,
781 		"%s: Invalid Property - %d\n", __func__, psp);
782 
783 	return -EINVAL;
784 }
785 
786 static int sbs_get_chemistry(struct i2c_client *client,
787 		union power_supply_propval *val)
788 {
789 	enum power_supply_property psp = POWER_SUPPLY_PROP_TECHNOLOGY;
790 	int ret;
791 
792 	ret = sbs_get_property_index(client, psp);
793 	if (ret < 0)
794 		return ret;
795 
796 	ret = sbs_get_battery_string_property(client, ret, psp,
797 					      chemistry);
798 	if (ret < 0)
799 		return ret;
800 
801 	if (!strncasecmp(chemistry, "LION", 4))
802 		val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
803 	else if (!strncasecmp(chemistry, "LiP", 3))
804 		val->intval = POWER_SUPPLY_TECHNOLOGY_LIPO;
805 	else if (!strncasecmp(chemistry, "NiCd", 4))
806 		val->intval = POWER_SUPPLY_TECHNOLOGY_NiCd;
807 	else if (!strncasecmp(chemistry, "NiMH", 4))
808 		val->intval = POWER_SUPPLY_TECHNOLOGY_NiMH;
809 	else
810 		val->intval = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
811 
812 	if (val->intval == POWER_SUPPLY_TECHNOLOGY_UNKNOWN)
813 		dev_warn(&client->dev, "Unknown chemistry: %s\n", chemistry);
814 
815 	return 0;
816 }
817 
818 static int sbs_get_battery_manufacture_date(struct i2c_client *client,
819 	enum power_supply_property psp,
820 	union power_supply_propval *val)
821 {
822 	int ret;
823 	u16 day, month, year;
824 
825 	ret = sbs_read_word_data(client, REG_ADDR_MANUFACTURE_DATE);
826 	if (ret < 0)
827 		return ret;
828 
829 	day   = ret   & GENMASK(4,  0);
830 	month = (ret  & GENMASK(8,  5)) >> 5;
831 	year  = ((ret & GENMASK(15, 9)) >> 9) + 1980;
832 
833 	switch (psp) {
834 	case POWER_SUPPLY_PROP_MANUFACTURE_YEAR:
835 		val->intval = year;
836 		break;
837 	case POWER_SUPPLY_PROP_MANUFACTURE_MONTH:
838 		val->intval = month;
839 		break;
840 	case POWER_SUPPLY_PROP_MANUFACTURE_DAY:
841 		val->intval = day;
842 		break;
843 	default:
844 		return -EINVAL;
845 	}
846 
847 	return 0;
848 }
849 
850 static int sbs_get_property(struct power_supply *psy,
851 	enum power_supply_property psp,
852 	union power_supply_propval *val)
853 {
854 	int ret = 0;
855 	struct sbs_info *chip = power_supply_get_drvdata(psy);
856 	struct i2c_client *client = chip->client;
857 
858 	if (chip->gpio_detect) {
859 		ret = gpiod_get_value_cansleep(chip->gpio_detect);
860 		if (ret < 0)
861 			return ret;
862 		if (psp == POWER_SUPPLY_PROP_PRESENT) {
863 			val->intval = ret;
864 			sbs_update_presence(chip, ret);
865 			return 0;
866 		}
867 		if (ret == 0)
868 			return -ENODATA;
869 	}
870 
871 	switch (psp) {
872 	case POWER_SUPPLY_PROP_PRESENT:
873 	case POWER_SUPPLY_PROP_HEALTH:
874 		if (chip->flags & SBS_FLAGS_TI_BQ20ZX5)
875 			ret = sbs_get_ti_battery_presence_and_health(client,
876 								     psp, val);
877 		else
878 			ret = sbs_get_battery_presence_and_health(client, psp,
879 								  val);
880 
881 		/* this can only be true if no gpio is used */
882 		if (psp == POWER_SUPPLY_PROP_PRESENT)
883 			return 0;
884 		break;
885 
886 	case POWER_SUPPLY_PROP_TECHNOLOGY:
887 		ret = sbs_get_chemistry(client, val);
888 		if (ret < 0)
889 			break;
890 
891 		goto done; /* don't trigger power_supply_changed()! */
892 
893 	case POWER_SUPPLY_PROP_ENERGY_NOW:
894 	case POWER_SUPPLY_PROP_ENERGY_FULL:
895 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
896 	case POWER_SUPPLY_PROP_CHARGE_NOW:
897 	case POWER_SUPPLY_PROP_CHARGE_FULL:
898 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
899 		ret = sbs_get_property_index(client, psp);
900 		if (ret < 0)
901 			break;
902 
903 		/* sbs_get_battery_capacity() will change the battery mode
904 		 * temporarily to read the requested attribute. Ensure we stay
905 		 * in the desired mode for the duration of the attribute read.
906 		 */
907 		mutex_lock(&chip->mode_lock);
908 		ret = sbs_get_battery_capacity(client, ret, psp, val);
909 		mutex_unlock(&chip->mode_lock);
910 		break;
911 
912 	case POWER_SUPPLY_PROP_SERIAL_NUMBER:
913 		ret = sbs_get_battery_serial_number(client, val);
914 		break;
915 
916 	case POWER_SUPPLY_PROP_STATUS:
917 	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
918 	case POWER_SUPPLY_PROP_CYCLE_COUNT:
919 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
920 	case POWER_SUPPLY_PROP_CURRENT_NOW:
921 	case POWER_SUPPLY_PROP_CURRENT_AVG:
922 	case POWER_SUPPLY_PROP_TEMP:
923 	case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
924 	case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG:
925 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
926 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
927 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
928 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
929 	case POWER_SUPPLY_PROP_CAPACITY:
930 	case POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN:
931 		ret = sbs_get_property_index(client, psp);
932 		if (ret < 0)
933 			break;
934 
935 		ret = sbs_get_battery_property(client, ret, psp, val);
936 		break;
937 
938 	case POWER_SUPPLY_PROP_MODEL_NAME:
939 		ret = sbs_get_property_index(client, psp);
940 		if (ret < 0)
941 			break;
942 
943 		ret = sbs_get_battery_string_property(client, ret, psp,
944 						      model_name);
945 		val->strval = model_name;
946 		break;
947 
948 	case POWER_SUPPLY_PROP_MANUFACTURER:
949 		ret = sbs_get_property_index(client, psp);
950 		if (ret < 0)
951 			break;
952 
953 		ret = sbs_get_battery_string_property(client, ret, psp,
954 						      manufacturer);
955 		val->strval = manufacturer;
956 		break;
957 
958 	case POWER_SUPPLY_PROP_MANUFACTURE_YEAR:
959 	case POWER_SUPPLY_PROP_MANUFACTURE_MONTH:
960 	case POWER_SUPPLY_PROP_MANUFACTURE_DAY:
961 		ret = sbs_get_battery_manufacture_date(client, psp, val);
962 		break;
963 
964 	default:
965 		dev_err(&client->dev,
966 			"%s: INVALID property\n", __func__);
967 		return -EINVAL;
968 	}
969 
970 	if (!chip->enable_detection)
971 		goto done;
972 
973 	if (!chip->gpio_detect &&
974 		chip->is_present != (ret >= 0)) {
975 		sbs_update_presence(chip, (ret >= 0));
976 		power_supply_changed(chip->power_supply);
977 	}
978 
979 done:
980 	if (!ret) {
981 		/* Convert units to match requirements for power supply class */
982 		sbs_unit_adjustment(client, psp, val);
983 	}
984 
985 	dev_dbg(&client->dev,
986 		"%s: property = %d, value = %x\n", __func__, psp, val->intval);
987 
988 	if (ret && chip->is_present)
989 		return ret;
990 
991 	/* battery not present, so return NODATA for properties */
992 	if (ret)
993 		return -ENODATA;
994 
995 	return 0;
996 }
997 
998 static void sbs_supply_changed(struct sbs_info *chip)
999 {
1000 	struct power_supply *battery = chip->power_supply;
1001 	int ret;
1002 
1003 	ret = gpiod_get_value_cansleep(chip->gpio_detect);
1004 	if (ret < 0)
1005 		return;
1006 	sbs_update_presence(chip, ret);
1007 	power_supply_changed(battery);
1008 }
1009 
1010 static irqreturn_t sbs_irq(int irq, void *devid)
1011 {
1012 	sbs_supply_changed(devid);
1013 	return IRQ_HANDLED;
1014 }
1015 
1016 static void sbs_alert(struct i2c_client *client, enum i2c_alert_protocol prot,
1017 	unsigned int data)
1018 {
1019 	sbs_supply_changed(i2c_get_clientdata(client));
1020 }
1021 
1022 static void sbs_external_power_changed(struct power_supply *psy)
1023 {
1024 	struct sbs_info *chip = power_supply_get_drvdata(psy);
1025 
1026 	/* cancel outstanding work */
1027 	cancel_delayed_work_sync(&chip->work);
1028 
1029 	schedule_delayed_work(&chip->work, HZ);
1030 	chip->poll_time = chip->poll_retry_count;
1031 }
1032 
1033 static void sbs_delayed_work(struct work_struct *work)
1034 {
1035 	struct sbs_info *chip;
1036 	s32 ret;
1037 
1038 	chip = container_of(work, struct sbs_info, work.work);
1039 
1040 	ret = sbs_read_word_data(chip->client, sbs_data[REG_STATUS].addr);
1041 	/* if the read failed, give up on this work */
1042 	if (ret < 0) {
1043 		chip->poll_time = 0;
1044 		return;
1045 	}
1046 
1047 	if (ret & BATTERY_FULL_CHARGED)
1048 		ret = POWER_SUPPLY_STATUS_FULL;
1049 	else if (ret & BATTERY_DISCHARGING)
1050 		ret = POWER_SUPPLY_STATUS_DISCHARGING;
1051 	else
1052 		ret = POWER_SUPPLY_STATUS_CHARGING;
1053 
1054 	sbs_status_correct(chip->client, &ret);
1055 
1056 	if (chip->last_state != ret) {
1057 		chip->poll_time = 0;
1058 		power_supply_changed(chip->power_supply);
1059 		return;
1060 	}
1061 	if (chip->poll_time > 0) {
1062 		schedule_delayed_work(&chip->work, HZ);
1063 		chip->poll_time--;
1064 		return;
1065 	}
1066 }
1067 
1068 static const struct power_supply_desc sbs_default_desc = {
1069 	.type = POWER_SUPPLY_TYPE_BATTERY,
1070 	.properties = sbs_properties,
1071 	.num_properties = ARRAY_SIZE(sbs_properties),
1072 	.get_property = sbs_get_property,
1073 	.external_power_changed = sbs_external_power_changed,
1074 };
1075 
1076 static int sbs_probe(struct i2c_client *client)
1077 {
1078 	struct sbs_info *chip;
1079 	struct power_supply_desc *sbs_desc;
1080 	struct sbs_platform_data *pdata = client->dev.platform_data;
1081 	struct power_supply_config psy_cfg = {};
1082 	int rc;
1083 	int irq;
1084 
1085 	sbs_desc = devm_kmemdup(&client->dev, &sbs_default_desc,
1086 			sizeof(*sbs_desc), GFP_KERNEL);
1087 	if (!sbs_desc)
1088 		return -ENOMEM;
1089 
1090 	sbs_desc->name = devm_kasprintf(&client->dev, GFP_KERNEL, "sbs-%s",
1091 			dev_name(&client->dev));
1092 	if (!sbs_desc->name)
1093 		return -ENOMEM;
1094 
1095 	chip = devm_kzalloc(&client->dev, sizeof(struct sbs_info), GFP_KERNEL);
1096 	if (!chip)
1097 		return -ENOMEM;
1098 
1099 	chip->flags = (u32)(uintptr_t)device_get_match_data(&client->dev);
1100 	chip->client = client;
1101 	chip->enable_detection = false;
1102 	psy_cfg.of_node = client->dev.of_node;
1103 	psy_cfg.drv_data = chip;
1104 	chip->last_state = POWER_SUPPLY_STATUS_UNKNOWN;
1105 	mutex_init(&chip->mode_lock);
1106 
1107 	/* use pdata if available, fall back to DT properties,
1108 	 * or hardcoded defaults if not
1109 	 */
1110 	rc = device_property_read_u32(&client->dev, "sbs,i2c-retry-count",
1111 				      &chip->i2c_retry_count);
1112 	if (rc)
1113 		chip->i2c_retry_count = 0;
1114 
1115 	rc = device_property_read_u32(&client->dev, "sbs,poll-retry-count",
1116 				      &chip->poll_retry_count);
1117 	if (rc)
1118 		chip->poll_retry_count = 0;
1119 
1120 	if (pdata) {
1121 		chip->poll_retry_count = pdata->poll_retry_count;
1122 		chip->i2c_retry_count  = pdata->i2c_retry_count;
1123 	}
1124 	chip->i2c_retry_count = chip->i2c_retry_count + 1;
1125 
1126 	chip->charger_broadcasts = !device_property_read_bool(&client->dev,
1127 					"sbs,disable-charger-broadcasts");
1128 
1129 	chip->gpio_detect = devm_gpiod_get_optional(&client->dev,
1130 			"sbs,battery-detect", GPIOD_IN);
1131 	if (IS_ERR(chip->gpio_detect)) {
1132 		dev_err(&client->dev, "Failed to get gpio: %ld\n",
1133 			PTR_ERR(chip->gpio_detect));
1134 		return PTR_ERR(chip->gpio_detect);
1135 	}
1136 
1137 	i2c_set_clientdata(client, chip);
1138 
1139 	if (!chip->gpio_detect)
1140 		goto skip_gpio;
1141 
1142 	irq = gpiod_to_irq(chip->gpio_detect);
1143 	if (irq <= 0) {
1144 		dev_warn(&client->dev, "Failed to get gpio as irq: %d\n", irq);
1145 		goto skip_gpio;
1146 	}
1147 
1148 	rc = devm_request_threaded_irq(&client->dev, irq, NULL, sbs_irq,
1149 		IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
1150 		dev_name(&client->dev), chip);
1151 	if (rc) {
1152 		dev_warn(&client->dev, "Failed to request irq: %d\n", rc);
1153 		goto skip_gpio;
1154 	}
1155 
1156 skip_gpio:
1157 	/*
1158 	 * Before we register, we might need to make sure we can actually talk
1159 	 * to the battery.
1160 	 */
1161 	if (!(force_load || chip->gpio_detect)) {
1162 		rc = sbs_read_word_data(client, sbs_data[REG_STATUS].addr);
1163 
1164 		if (rc < 0) {
1165 			dev_err(&client->dev, "%s: Failed to get device status\n",
1166 				__func__);
1167 			goto exit_psupply;
1168 		}
1169 	}
1170 
1171 	chip->power_supply = devm_power_supply_register(&client->dev, sbs_desc,
1172 						   &psy_cfg);
1173 	if (IS_ERR(chip->power_supply)) {
1174 		dev_err(&client->dev,
1175 			"%s: Failed to register power supply\n", __func__);
1176 		rc = PTR_ERR(chip->power_supply);
1177 		goto exit_psupply;
1178 	}
1179 
1180 	dev_info(&client->dev,
1181 		"%s: battery gas gauge device registered\n", client->name);
1182 
1183 	INIT_DELAYED_WORK(&chip->work, sbs_delayed_work);
1184 
1185 	chip->enable_detection = true;
1186 
1187 	return 0;
1188 
1189 exit_psupply:
1190 	return rc;
1191 }
1192 
1193 static int sbs_remove(struct i2c_client *client)
1194 {
1195 	struct sbs_info *chip = i2c_get_clientdata(client);
1196 
1197 	cancel_delayed_work_sync(&chip->work);
1198 
1199 	return 0;
1200 }
1201 
1202 #if defined CONFIG_PM_SLEEP
1203 
1204 static int sbs_suspend(struct device *dev)
1205 {
1206 	struct i2c_client *client = to_i2c_client(dev);
1207 	struct sbs_info *chip = i2c_get_clientdata(client);
1208 	int ret;
1209 
1210 	if (chip->poll_time > 0)
1211 		cancel_delayed_work_sync(&chip->work);
1212 
1213 	if (chip->flags & SBS_FLAGS_TI_BQ20ZX5) {
1214 		/* Write to manufacturer access with sleep command. */
1215 		ret = sbs_write_word_data(client,
1216 					  sbs_data[REG_MANUFACTURER_DATA].addr,
1217 					  MANUFACTURER_ACCESS_SLEEP);
1218 		if (chip->is_present && ret < 0)
1219 			return ret;
1220 	}
1221 
1222 	return 0;
1223 }
1224 
1225 static SIMPLE_DEV_PM_OPS(sbs_pm_ops, sbs_suspend, NULL);
1226 #define SBS_PM_OPS (&sbs_pm_ops)
1227 
1228 #else
1229 #define SBS_PM_OPS NULL
1230 #endif
1231 
1232 static const struct i2c_device_id sbs_id[] = {
1233 	{ "bq20z65", 0 },
1234 	{ "bq20z75", 0 },
1235 	{ "sbs-battery", 1 },
1236 	{}
1237 };
1238 MODULE_DEVICE_TABLE(i2c, sbs_id);
1239 
1240 static const struct of_device_id sbs_dt_ids[] = {
1241 	{ .compatible = "sbs,sbs-battery" },
1242 	{
1243 		.compatible = "ti,bq20z65",
1244 		.data = (void *)SBS_FLAGS_TI_BQ20ZX5,
1245 	},
1246 	{
1247 		.compatible = "ti,bq20z75",
1248 		.data = (void *)SBS_FLAGS_TI_BQ20ZX5,
1249 	},
1250 	{ }
1251 };
1252 MODULE_DEVICE_TABLE(of, sbs_dt_ids);
1253 
1254 static struct i2c_driver sbs_battery_driver = {
1255 	.probe_new	= sbs_probe,
1256 	.remove		= sbs_remove,
1257 	.alert		= sbs_alert,
1258 	.id_table	= sbs_id,
1259 	.driver = {
1260 		.name	= "sbs-battery",
1261 		.of_match_table = sbs_dt_ids,
1262 		.pm	= SBS_PM_OPS,
1263 	},
1264 };
1265 module_i2c_driver(sbs_battery_driver);
1266 
1267 MODULE_DESCRIPTION("SBS battery monitor driver");
1268 MODULE_LICENSE("GPL");
1269 
1270 module_param(force_load, bool, 0444);
1271 MODULE_PARM_DESC(force_load,
1272 		 "Attempt to load the driver even if no battery is connected");
1273