1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Universal power supply monitor class
4  *
5  *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
6  *  Copyright © 2004  Szabolcs Gyurko
7  *  Copyright © 2003  Ian Molton <spyro@f2s.com>
8  *
9  *  Modified: 2004, Oct     Szabolcs Gyurko
10  */
11 
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/notifier.h>
19 #include <linux/err.h>
20 #include <linux/of.h>
21 #include <linux/power_supply.h>
22 #include <linux/property.h>
23 #include <linux/thermal.h>
24 #include <linux/fixp-arith.h>
25 #include "power_supply.h"
26 #include "samsung-sdi-battery.h"
27 
28 /* exported for the APM Power driver, APM emulation */
29 struct class *power_supply_class;
30 EXPORT_SYMBOL_GPL(power_supply_class);
31 
32 ATOMIC_NOTIFIER_HEAD(power_supply_notifier);
33 EXPORT_SYMBOL_GPL(power_supply_notifier);
34 
35 static struct device_type power_supply_dev_type;
36 
37 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME	msecs_to_jiffies(10)
38 
39 static bool __power_supply_is_supplied_by(struct power_supply *supplier,
40 					 struct power_supply *supply)
41 {
42 	int i;
43 
44 	if (!supply->supplied_from && !supplier->supplied_to)
45 		return false;
46 
47 	/* Support both supplied_to and supplied_from modes */
48 	if (supply->supplied_from) {
49 		if (!supplier->desc->name)
50 			return false;
51 		for (i = 0; i < supply->num_supplies; i++)
52 			if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
53 				return true;
54 	} else {
55 		if (!supply->desc->name)
56 			return false;
57 		for (i = 0; i < supplier->num_supplicants; i++)
58 			if (!strcmp(supplier->supplied_to[i], supply->desc->name))
59 				return true;
60 	}
61 
62 	return false;
63 }
64 
65 static int __power_supply_changed_work(struct device *dev, void *data)
66 {
67 	struct power_supply *psy = data;
68 	struct power_supply *pst = dev_get_drvdata(dev);
69 
70 	if (__power_supply_is_supplied_by(psy, pst)) {
71 		if (pst->desc->external_power_changed)
72 			pst->desc->external_power_changed(pst);
73 	}
74 
75 	return 0;
76 }
77 
78 static void power_supply_changed_work(struct work_struct *work)
79 {
80 	unsigned long flags;
81 	struct power_supply *psy = container_of(work, struct power_supply,
82 						changed_work);
83 
84 	dev_dbg(&psy->dev, "%s\n", __func__);
85 
86 	spin_lock_irqsave(&psy->changed_lock, flags);
87 	/*
88 	 * Check 'changed' here to avoid issues due to race between
89 	 * power_supply_changed() and this routine. In worst case
90 	 * power_supply_changed() can be called again just before we take above
91 	 * lock. During the first call of this routine we will mark 'changed' as
92 	 * false and it will stay false for the next call as well.
93 	 */
94 	if (likely(psy->changed)) {
95 		psy->changed = false;
96 		spin_unlock_irqrestore(&psy->changed_lock, flags);
97 		class_for_each_device(power_supply_class, NULL, psy,
98 				      __power_supply_changed_work);
99 		power_supply_update_leds(psy);
100 		atomic_notifier_call_chain(&power_supply_notifier,
101 				PSY_EVENT_PROP_CHANGED, psy);
102 		kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
103 		spin_lock_irqsave(&psy->changed_lock, flags);
104 	}
105 
106 	/*
107 	 * Hold the wakeup_source until all events are processed.
108 	 * power_supply_changed() might have called again and have set 'changed'
109 	 * to true.
110 	 */
111 	if (likely(!psy->changed))
112 		pm_relax(&psy->dev);
113 	spin_unlock_irqrestore(&psy->changed_lock, flags);
114 }
115 
116 void power_supply_changed(struct power_supply *psy)
117 {
118 	unsigned long flags;
119 
120 	dev_dbg(&psy->dev, "%s\n", __func__);
121 
122 	spin_lock_irqsave(&psy->changed_lock, flags);
123 	psy->changed = true;
124 	pm_stay_awake(&psy->dev);
125 	spin_unlock_irqrestore(&psy->changed_lock, flags);
126 	schedule_work(&psy->changed_work);
127 }
128 EXPORT_SYMBOL_GPL(power_supply_changed);
129 
130 /*
131  * Notify that power supply was registered after parent finished the probing.
132  *
133  * Often power supply is registered from driver's probe function. However
134  * calling power_supply_changed() directly from power_supply_register()
135  * would lead to execution of get_property() function provided by the driver
136  * too early - before the probe ends.
137  *
138  * Avoid that by waiting on parent's mutex.
139  */
140 static void power_supply_deferred_register_work(struct work_struct *work)
141 {
142 	struct power_supply *psy = container_of(work, struct power_supply,
143 						deferred_register_work.work);
144 
145 	if (psy->dev.parent) {
146 		while (!mutex_trylock(&psy->dev.parent->mutex)) {
147 			if (psy->removing)
148 				return;
149 			msleep(10);
150 		}
151 	}
152 
153 	power_supply_changed(psy);
154 
155 	if (psy->dev.parent)
156 		mutex_unlock(&psy->dev.parent->mutex);
157 }
158 
159 #ifdef CONFIG_OF
160 static int __power_supply_populate_supplied_from(struct device *dev,
161 						 void *data)
162 {
163 	struct power_supply *psy = data;
164 	struct power_supply *epsy = dev_get_drvdata(dev);
165 	struct device_node *np;
166 	int i = 0;
167 
168 	do {
169 		np = of_parse_phandle(psy->of_node, "power-supplies", i++);
170 		if (!np)
171 			break;
172 
173 		if (np == epsy->of_node) {
174 			dev_dbg(&psy->dev, "%s: Found supply : %s\n",
175 				psy->desc->name, epsy->desc->name);
176 			psy->supplied_from[i-1] = (char *)epsy->desc->name;
177 			psy->num_supplies++;
178 			of_node_put(np);
179 			break;
180 		}
181 		of_node_put(np);
182 	} while (np);
183 
184 	return 0;
185 }
186 
187 static int power_supply_populate_supplied_from(struct power_supply *psy)
188 {
189 	int error;
190 
191 	error = class_for_each_device(power_supply_class, NULL, psy,
192 				      __power_supply_populate_supplied_from);
193 
194 	dev_dbg(&psy->dev, "%s %d\n", __func__, error);
195 
196 	return error;
197 }
198 
199 static int  __power_supply_find_supply_from_node(struct device *dev,
200 						 void *data)
201 {
202 	struct device_node *np = data;
203 	struct power_supply *epsy = dev_get_drvdata(dev);
204 
205 	/* returning non-zero breaks out of class_for_each_device loop */
206 	if (epsy->of_node == np)
207 		return 1;
208 
209 	return 0;
210 }
211 
212 static int power_supply_find_supply_from_node(struct device_node *supply_node)
213 {
214 	int error;
215 
216 	/*
217 	 * class_for_each_device() either returns its own errors or values
218 	 * returned by __power_supply_find_supply_from_node().
219 	 *
220 	 * __power_supply_find_supply_from_node() will return 0 (no match)
221 	 * or 1 (match).
222 	 *
223 	 * We return 0 if class_for_each_device() returned 1, -EPROBE_DEFER if
224 	 * it returned 0, or error as returned by it.
225 	 */
226 	error = class_for_each_device(power_supply_class, NULL, supply_node,
227 				       __power_supply_find_supply_from_node);
228 
229 	return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
230 }
231 
232 static int power_supply_check_supplies(struct power_supply *psy)
233 {
234 	struct device_node *np;
235 	int cnt = 0;
236 
237 	/* If there is already a list honor it */
238 	if (psy->supplied_from && psy->num_supplies > 0)
239 		return 0;
240 
241 	/* No device node found, nothing to do */
242 	if (!psy->of_node)
243 		return 0;
244 
245 	do {
246 		int ret;
247 
248 		np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
249 		if (!np)
250 			break;
251 
252 		ret = power_supply_find_supply_from_node(np);
253 		of_node_put(np);
254 
255 		if (ret) {
256 			dev_dbg(&psy->dev, "Failed to find supply!\n");
257 			return ret;
258 		}
259 	} while (np);
260 
261 	/* Missing valid "power-supplies" entries */
262 	if (cnt == 1)
263 		return 0;
264 
265 	/* All supplies found, allocate char ** array for filling */
266 	psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(psy->supplied_from),
267 					  GFP_KERNEL);
268 	if (!psy->supplied_from)
269 		return -ENOMEM;
270 
271 	*psy->supplied_from = devm_kcalloc(&psy->dev,
272 					   cnt - 1, sizeof(char *),
273 					   GFP_KERNEL);
274 	if (!*psy->supplied_from)
275 		return -ENOMEM;
276 
277 	return power_supply_populate_supplied_from(psy);
278 }
279 #else
280 static int power_supply_check_supplies(struct power_supply *psy)
281 {
282 	int nval, ret;
283 
284 	if (!psy->dev.parent)
285 		return 0;
286 
287 	nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
288 	if (nval <= 0)
289 		return 0;
290 
291 	psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
292 						sizeof(char *), GFP_KERNEL);
293 	if (!psy->supplied_from)
294 		return -ENOMEM;
295 
296 	ret = device_property_read_string_array(psy->dev.parent,
297 		"supplied-from", (const char **)psy->supplied_from, nval);
298 	if (ret < 0)
299 		return ret;
300 
301 	psy->num_supplies = nval;
302 
303 	return 0;
304 }
305 #endif
306 
307 struct psy_am_i_supplied_data {
308 	struct power_supply *psy;
309 	unsigned int count;
310 };
311 
312 static int __power_supply_am_i_supplied(struct device *dev, void *_data)
313 {
314 	union power_supply_propval ret = {0,};
315 	struct power_supply *epsy = dev_get_drvdata(dev);
316 	struct psy_am_i_supplied_data *data = _data;
317 
318 	if (__power_supply_is_supplied_by(epsy, data->psy)) {
319 		data->count++;
320 		if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
321 					&ret))
322 			return ret.intval;
323 	}
324 
325 	return 0;
326 }
327 
328 int power_supply_am_i_supplied(struct power_supply *psy)
329 {
330 	struct psy_am_i_supplied_data data = { psy, 0 };
331 	int error;
332 
333 	error = class_for_each_device(power_supply_class, NULL, &data,
334 				      __power_supply_am_i_supplied);
335 
336 	dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
337 
338 	if (data.count == 0)
339 		return -ENODEV;
340 
341 	return error;
342 }
343 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
344 
345 static int __power_supply_is_system_supplied(struct device *dev, void *data)
346 {
347 	union power_supply_propval ret = {0,};
348 	struct power_supply *psy = dev_get_drvdata(dev);
349 	unsigned int *count = data;
350 
351 	(*count)++;
352 	if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
353 		if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
354 					&ret))
355 			return ret.intval;
356 
357 	return 0;
358 }
359 
360 int power_supply_is_system_supplied(void)
361 {
362 	int error;
363 	unsigned int count = 0;
364 
365 	error = class_for_each_device(power_supply_class, NULL, &count,
366 				      __power_supply_is_system_supplied);
367 
368 	/*
369 	 * If no power class device was found at all, most probably we are
370 	 * running on a desktop system, so assume we are on mains power.
371 	 */
372 	if (count == 0)
373 		return 1;
374 
375 	return error;
376 }
377 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
378 
379 struct psy_get_supplier_prop_data {
380 	struct power_supply *psy;
381 	enum power_supply_property psp;
382 	union power_supply_propval *val;
383 };
384 
385 static int __power_supply_get_supplier_property(struct device *dev, void *_data)
386 {
387 	struct power_supply *epsy = dev_get_drvdata(dev);
388 	struct psy_get_supplier_prop_data *data = _data;
389 
390 	if (__power_supply_is_supplied_by(epsy, data->psy))
391 		if (!epsy->desc->get_property(epsy, data->psp, data->val))
392 			return 1; /* Success */
393 
394 	return 0; /* Continue iterating */
395 }
396 
397 int power_supply_get_property_from_supplier(struct power_supply *psy,
398 					    enum power_supply_property psp,
399 					    union power_supply_propval *val)
400 {
401 	struct psy_get_supplier_prop_data data = {
402 		.psy = psy,
403 		.psp = psp,
404 		.val = val,
405 	};
406 	int ret;
407 
408 	/*
409 	 * This function is not intended for use with a supply with multiple
410 	 * suppliers, we simply pick the first supply to report the psp.
411 	 */
412 	ret = class_for_each_device(power_supply_class, NULL, &data,
413 				    __power_supply_get_supplier_property);
414 	if (ret < 0)
415 		return ret;
416 	if (ret == 0)
417 		return -ENODEV;
418 
419 	return 0;
420 }
421 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
422 
423 int power_supply_set_battery_charged(struct power_supply *psy)
424 {
425 	if (atomic_read(&psy->use_cnt) >= 0 &&
426 			psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
427 			psy->desc->set_charged) {
428 		psy->desc->set_charged(psy);
429 		return 0;
430 	}
431 
432 	return -EINVAL;
433 }
434 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
435 
436 static int power_supply_match_device_by_name(struct device *dev, const void *data)
437 {
438 	const char *name = data;
439 	struct power_supply *psy = dev_get_drvdata(dev);
440 
441 	return strcmp(psy->desc->name, name) == 0;
442 }
443 
444 /**
445  * power_supply_get_by_name() - Search for a power supply and returns its ref
446  * @name: Power supply name to fetch
447  *
448  * If power supply was found, it increases reference count for the
449  * internal power supply's device. The user should power_supply_put()
450  * after usage.
451  *
452  * Return: On success returns a reference to a power supply with
453  * matching name equals to @name, a NULL otherwise.
454  */
455 struct power_supply *power_supply_get_by_name(const char *name)
456 {
457 	struct power_supply *psy = NULL;
458 	struct device *dev = class_find_device(power_supply_class, NULL, name,
459 					power_supply_match_device_by_name);
460 
461 	if (dev) {
462 		psy = dev_get_drvdata(dev);
463 		atomic_inc(&psy->use_cnt);
464 	}
465 
466 	return psy;
467 }
468 EXPORT_SYMBOL_GPL(power_supply_get_by_name);
469 
470 /**
471  * power_supply_put() - Drop reference obtained with power_supply_get_by_name
472  * @psy: Reference to put
473  *
474  * The reference to power supply should be put before unregistering
475  * the power supply.
476  */
477 void power_supply_put(struct power_supply *psy)
478 {
479 	might_sleep();
480 
481 	atomic_dec(&psy->use_cnt);
482 	put_device(&psy->dev);
483 }
484 EXPORT_SYMBOL_GPL(power_supply_put);
485 
486 #ifdef CONFIG_OF
487 static int power_supply_match_device_node(struct device *dev, const void *data)
488 {
489 	return dev->parent && dev->parent->of_node == data;
490 }
491 
492 /**
493  * power_supply_get_by_phandle() - Search for a power supply and returns its ref
494  * @np: Pointer to device node holding phandle property
495  * @property: Name of property holding a power supply name
496  *
497  * If power supply was found, it increases reference count for the
498  * internal power supply's device. The user should power_supply_put()
499  * after usage.
500  *
501  * Return: On success returns a reference to a power supply with
502  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
503  */
504 struct power_supply *power_supply_get_by_phandle(struct device_node *np,
505 							const char *property)
506 {
507 	struct device_node *power_supply_np;
508 	struct power_supply *psy = NULL;
509 	struct device *dev;
510 
511 	power_supply_np = of_parse_phandle(np, property, 0);
512 	if (!power_supply_np)
513 		return ERR_PTR(-ENODEV);
514 
515 	dev = class_find_device(power_supply_class, NULL, power_supply_np,
516 						power_supply_match_device_node);
517 
518 	of_node_put(power_supply_np);
519 
520 	if (dev) {
521 		psy = dev_get_drvdata(dev);
522 		atomic_inc(&psy->use_cnt);
523 	}
524 
525 	return psy;
526 }
527 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
528 
529 static void devm_power_supply_put(struct device *dev, void *res)
530 {
531 	struct power_supply **psy = res;
532 
533 	power_supply_put(*psy);
534 }
535 
536 /**
537  * devm_power_supply_get_by_phandle() - Resource managed version of
538  *  power_supply_get_by_phandle()
539  * @dev: Pointer to device holding phandle property
540  * @property: Name of property holding a power supply phandle
541  *
542  * Return: On success returns a reference to a power supply with
543  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
544  */
545 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
546 						      const char *property)
547 {
548 	struct power_supply **ptr, *psy;
549 
550 	if (!dev->of_node)
551 		return ERR_PTR(-ENODEV);
552 
553 	ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
554 	if (!ptr)
555 		return ERR_PTR(-ENOMEM);
556 
557 	psy = power_supply_get_by_phandle(dev->of_node, property);
558 	if (IS_ERR_OR_NULL(psy)) {
559 		devres_free(ptr);
560 	} else {
561 		*ptr = psy;
562 		devres_add(dev, ptr);
563 	}
564 	return psy;
565 }
566 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
567 #endif /* CONFIG_OF */
568 
569 int power_supply_get_battery_info(struct power_supply *psy,
570 				  struct power_supply_battery_info **info_out)
571 {
572 	struct power_supply_resistance_temp_table *resist_table;
573 	struct power_supply_battery_info *info;
574 	struct device_node *battery_np = NULL;
575 	struct fwnode_reference_args args;
576 	struct fwnode_handle *fwnode;
577 	const char *value;
578 	int err, len, index;
579 	const __be32 *list;
580 	u32 min_max[2];
581 
582 	if (psy->of_node) {
583 		battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
584 		if (!battery_np)
585 			return -ENODEV;
586 
587 		fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
588 	} else {
589 		err = fwnode_property_get_reference_args(
590 					dev_fwnode(psy->dev.parent),
591 					"monitored-battery", NULL, 0, 0, &args);
592 		if (err)
593 			return err;
594 
595 		fwnode = args.fwnode;
596 	}
597 
598 	err = fwnode_property_read_string(fwnode, "compatible", &value);
599 	if (err)
600 		goto out_put_node;
601 
602 
603 	/* Try static batteries first */
604 	err = samsung_sdi_battery_get_info(&psy->dev, value, &info);
605 	if (!err)
606 		goto out_ret_pointer;
607 
608 	if (strcmp("simple-battery", value)) {
609 		err = -ENODEV;
610 		goto out_put_node;
611 	}
612 
613 	info = devm_kmalloc(&psy->dev, sizeof(*info), GFP_KERNEL);
614 	if (!info) {
615 		err = -ENOMEM;
616 		goto out_put_node;
617 	}
618 
619 	info->technology                     = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
620 	info->energy_full_design_uwh         = -EINVAL;
621 	info->charge_full_design_uah         = -EINVAL;
622 	info->voltage_min_design_uv          = -EINVAL;
623 	info->voltage_max_design_uv          = -EINVAL;
624 	info->precharge_current_ua           = -EINVAL;
625 	info->charge_term_current_ua         = -EINVAL;
626 	info->constant_charge_current_max_ua = -EINVAL;
627 	info->constant_charge_voltage_max_uv = -EINVAL;
628 	info->tricklecharge_current_ua       = -EINVAL;
629 	info->precharge_voltage_max_uv       = -EINVAL;
630 	info->charge_restart_voltage_uv      = -EINVAL;
631 	info->overvoltage_limit_uv           = -EINVAL;
632 	info->maintenance_charge             = NULL;
633 	info->alert_low_temp_charge_current_ua = -EINVAL;
634 	info->alert_low_temp_charge_voltage_uv = -EINVAL;
635 	info->alert_high_temp_charge_current_ua = -EINVAL;
636 	info->alert_high_temp_charge_voltage_uv = -EINVAL;
637 	info->temp_ambient_alert_min         = INT_MIN;
638 	info->temp_ambient_alert_max         = INT_MAX;
639 	info->temp_alert_min                 = INT_MIN;
640 	info->temp_alert_max                 = INT_MAX;
641 	info->temp_min                       = INT_MIN;
642 	info->temp_max                       = INT_MAX;
643 	info->factory_internal_resistance_uohm  = -EINVAL;
644 	info->resist_table                   = NULL;
645 	info->bti_resistance_ohm             = -EINVAL;
646 	info->bti_resistance_tolerance       = -EINVAL;
647 
648 	for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
649 		info->ocv_table[index]       = NULL;
650 		info->ocv_temp[index]        = -EINVAL;
651 		info->ocv_table_size[index]  = -EINVAL;
652 	}
653 
654 	/* The property and field names below must correspond to elements
655 	 * in enum power_supply_property. For reasoning, see
656 	 * Documentation/power/power_supply_class.rst.
657 	 */
658 
659 	if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) {
660 		if (!strcmp("nickel-cadmium", value))
661 			info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
662 		else if (!strcmp("nickel-metal-hydride", value))
663 			info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
664 		else if (!strcmp("lithium-ion", value))
665 			/* Imprecise lithium-ion type */
666 			info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
667 		else if (!strcmp("lithium-ion-polymer", value))
668 			info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
669 		else if (!strcmp("lithium-ion-iron-phosphate", value))
670 			info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
671 		else if (!strcmp("lithium-ion-manganese-oxide", value))
672 			info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
673 		else
674 			dev_warn(&psy->dev, "%s unknown battery type\n", value);
675 	}
676 
677 	fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours",
678 			     &info->energy_full_design_uwh);
679 	fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours",
680 			     &info->charge_full_design_uah);
681 	fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt",
682 			     &info->voltage_min_design_uv);
683 	fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt",
684 			     &info->voltage_max_design_uv);
685 	fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp",
686 			     &info->tricklecharge_current_ua);
687 	fwnode_property_read_u32(fwnode, "precharge-current-microamp",
688 			     &info->precharge_current_ua);
689 	fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt",
690 			     &info->precharge_voltage_max_uv);
691 	fwnode_property_read_u32(fwnode, "charge-term-current-microamp",
692 			     &info->charge_term_current_ua);
693 	fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt",
694 			     &info->charge_restart_voltage_uv);
695 	fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt",
696 			     &info->overvoltage_limit_uv);
697 	fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp",
698 			     &info->constant_charge_current_max_ua);
699 	fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt",
700 			     &info->constant_charge_voltage_max_uv);
701 	fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms",
702 			     &info->factory_internal_resistance_uohm);
703 
704 	if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius",
705 					    min_max, ARRAY_SIZE(min_max))) {
706 		info->temp_ambient_alert_min = min_max[0];
707 		info->temp_ambient_alert_max = min_max[1];
708 	}
709 	if (!fwnode_property_read_u32_array(fwnode, "alert-celsius",
710 					    min_max, ARRAY_SIZE(min_max))) {
711 		info->temp_alert_min = min_max[0];
712 		info->temp_alert_max = min_max[1];
713 	}
714 	if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius",
715 					    min_max, ARRAY_SIZE(min_max))) {
716 		info->temp_min = min_max[0];
717 		info->temp_max = min_max[1];
718 	}
719 
720 	/*
721 	 * The below code uses raw of-data parsing to parse
722 	 * /schemas/types.yaml#/definitions/uint32-matrix
723 	 * data, so for now this is only support with of.
724 	 */
725 	if (!battery_np)
726 		goto out_ret_pointer;
727 
728 	len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
729 	if (len < 0 && len != -EINVAL) {
730 		err = len;
731 		goto out_put_node;
732 	} else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
733 		dev_err(&psy->dev, "Too many temperature values\n");
734 		err = -EINVAL;
735 		goto out_put_node;
736 	} else if (len > 0) {
737 		of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
738 					   info->ocv_temp, len);
739 	}
740 
741 	for (index = 0; index < len; index++) {
742 		struct power_supply_battery_ocv_table *table;
743 		char *propname;
744 		int i, tab_len, size;
745 
746 		propname = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index);
747 		list = of_get_property(battery_np, propname, &size);
748 		if (!list || !size) {
749 			dev_err(&psy->dev, "failed to get %s\n", propname);
750 			kfree(propname);
751 			power_supply_put_battery_info(psy, info);
752 			err = -EINVAL;
753 			goto out_put_node;
754 		}
755 
756 		kfree(propname);
757 		tab_len = size / (2 * sizeof(__be32));
758 		info->ocv_table_size[index] = tab_len;
759 
760 		table = info->ocv_table[index] =
761 			devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
762 		if (!info->ocv_table[index]) {
763 			power_supply_put_battery_info(psy, info);
764 			err = -ENOMEM;
765 			goto out_put_node;
766 		}
767 
768 		for (i = 0; i < tab_len; i++) {
769 			table[i].ocv = be32_to_cpu(*list);
770 			list++;
771 			table[i].capacity = be32_to_cpu(*list);
772 			list++;
773 		}
774 	}
775 
776 	list = of_get_property(battery_np, "resistance-temp-table", &len);
777 	if (!list || !len)
778 		goto out_ret_pointer;
779 
780 	info->resist_table_size = len / (2 * sizeof(__be32));
781 	resist_table = info->resist_table = devm_kcalloc(&psy->dev,
782 							 info->resist_table_size,
783 							 sizeof(*resist_table),
784 							 GFP_KERNEL);
785 	if (!info->resist_table) {
786 		power_supply_put_battery_info(psy, info);
787 		err = -ENOMEM;
788 		goto out_put_node;
789 	}
790 
791 	for (index = 0; index < info->resist_table_size; index++) {
792 		resist_table[index].temp = be32_to_cpu(*list++);
793 		resist_table[index].resistance = be32_to_cpu(*list++);
794 	}
795 
796 out_ret_pointer:
797 	/* Finally return the whole thing */
798 	*info_out = info;
799 
800 out_put_node:
801 	fwnode_handle_put(fwnode);
802 	of_node_put(battery_np);
803 	return err;
804 }
805 EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
806 
807 void power_supply_put_battery_info(struct power_supply *psy,
808 				   struct power_supply_battery_info *info)
809 {
810 	int i;
811 
812 	for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
813 		if (info->ocv_table[i])
814 			devm_kfree(&psy->dev, info->ocv_table[i]);
815 	}
816 
817 	if (info->resist_table)
818 		devm_kfree(&psy->dev, info->resist_table);
819 
820 	devm_kfree(&psy->dev, info);
821 }
822 EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
823 
824 /**
825  * power_supply_temp2resist_simple() - find the battery internal resistance
826  * percent from temperature
827  * @table: Pointer to battery resistance temperature table
828  * @table_len: The table length
829  * @temp: Current temperature
830  *
831  * This helper function is used to look up battery internal resistance percent
832  * according to current temperature value from the resistance temperature table,
833  * and the table must be ordered descending. Then the actual battery internal
834  * resistance = the ideal battery internal resistance * percent / 100.
835  *
836  * Return: the battery internal resistance percent
837  */
838 int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
839 				    int table_len, int temp)
840 {
841 	int i, high, low;
842 
843 	/* Break loop at table_len - 1 because that is the highest index */
844 	for (i = 0; i < table_len - 1; i++)
845 		if (temp > table[i].temp)
846 			break;
847 
848 	/* The library function will deal with high == low */
849 	if ((i == 0) || (i == (table_len - 1)))
850 		high = i;
851 	else
852 		high = i - 1;
853 	low = i;
854 
855 	return fixp_linear_interpolate(table[low].temp,
856 				       table[low].resistance,
857 				       table[high].temp,
858 				       table[high].resistance,
859 				       temp);
860 }
861 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
862 
863 /**
864  * power_supply_vbat2ri() - find the battery internal resistance
865  * from the battery voltage
866  * @info: The battery information container
867  * @table: Pointer to battery resistance temperature table
868  * @vbat_uv: The battery voltage in microvolt
869  * @charging: If we are charging (true) or not (false)
870  *
871  * This helper function is used to look up battery internal resistance
872  * according to current battery voltage. Depending on whether the battery
873  * is currently charging or not, different resistance will be returned.
874  *
875  * Returns the internal resistance in microohm or negative error code.
876  */
877 int power_supply_vbat2ri(struct power_supply_battery_info *info,
878 			 int vbat_uv, bool charging)
879 {
880 	struct power_supply_vbat_ri_table *vbat2ri;
881 	int table_len;
882 	int i, high, low;
883 
884 	/*
885 	 * If we are charging, and the battery supplies a separate table
886 	 * for this state, we use that in order to compensate for the
887 	 * charging voltage. Otherwise we use the main table.
888 	 */
889 	if (charging && info->vbat2ri_charging) {
890 		vbat2ri = info->vbat2ri_charging;
891 		table_len = info->vbat2ri_charging_size;
892 	} else {
893 		vbat2ri = info->vbat2ri_discharging;
894 		table_len = info->vbat2ri_discharging_size;
895 	}
896 
897 	/*
898 	 * If no tables are specified, or if we are above the highest voltage in
899 	 * the voltage table, just return the factory specified internal resistance.
900 	 */
901 	if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
902 		if (charging && (info->factory_internal_resistance_charging_uohm > 0))
903 			return info->factory_internal_resistance_charging_uohm;
904 		else
905 			return info->factory_internal_resistance_uohm;
906 	}
907 
908 	/* Break loop at table_len - 1 because that is the highest index */
909 	for (i = 0; i < table_len - 1; i++)
910 		if (vbat_uv > vbat2ri[i].vbat_uv)
911 			break;
912 
913 	/* The library function will deal with high == low */
914 	if ((i == 0) || (i == (table_len - 1)))
915 		high = i;
916 	else
917 		high = i - 1;
918 	low = i;
919 
920 	return fixp_linear_interpolate(vbat2ri[low].vbat_uv,
921 				       vbat2ri[low].ri_uohm,
922 				       vbat2ri[high].vbat_uv,
923 				       vbat2ri[high].ri_uohm,
924 				       vbat_uv);
925 }
926 EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
927 
928 struct power_supply_maintenance_charge_table *
929 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
930 					      int index)
931 {
932 	if (index >= info->maintenance_charge_size)
933 		return NULL;
934 	return &info->maintenance_charge[index];
935 }
936 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
937 
938 /**
939  * power_supply_ocv2cap_simple() - find the battery capacity
940  * @table: Pointer to battery OCV lookup table
941  * @table_len: OCV table length
942  * @ocv: Current OCV value
943  *
944  * This helper function is used to look up battery capacity according to
945  * current OCV value from one OCV table, and the OCV table must be ordered
946  * descending.
947  *
948  * Return: the battery capacity.
949  */
950 int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
951 				int table_len, int ocv)
952 {
953 	int i, high, low;
954 
955 	/* Break loop at table_len - 1 because that is the highest index */
956 	for (i = 0; i < table_len - 1; i++)
957 		if (ocv > table[i].ocv)
958 			break;
959 
960 	/* The library function will deal with high == low */
961 	if ((i == 0) || (i == (table_len - 1)))
962 		high = i - 1;
963 	else
964 		high = i; /* i.e. i == 0 */
965 	low = i;
966 
967 	return fixp_linear_interpolate(table[low].ocv,
968 				       table[low].capacity,
969 				       table[high].ocv,
970 				       table[high].capacity,
971 				       ocv);
972 }
973 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
974 
975 struct power_supply_battery_ocv_table *
976 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
977 				int temp, int *table_len)
978 {
979 	int best_temp_diff = INT_MAX, temp_diff;
980 	u8 i, best_index = 0;
981 
982 	if (!info->ocv_table[0])
983 		return NULL;
984 
985 	for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
986 		/* Out of capacity tables */
987 		if (!info->ocv_table[i])
988 			break;
989 
990 		temp_diff = abs(info->ocv_temp[i] - temp);
991 
992 		if (temp_diff < best_temp_diff) {
993 			best_temp_diff = temp_diff;
994 			best_index = i;
995 		}
996 	}
997 
998 	*table_len = info->ocv_table_size[best_index];
999 	return info->ocv_table[best_index];
1000 }
1001 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
1002 
1003 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
1004 				 int ocv, int temp)
1005 {
1006 	struct power_supply_battery_ocv_table *table;
1007 	int table_len;
1008 
1009 	table = power_supply_find_ocv2cap_table(info, temp, &table_len);
1010 	if (!table)
1011 		return -EINVAL;
1012 
1013 	return power_supply_ocv2cap_simple(table, table_len, ocv);
1014 }
1015 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
1016 
1017 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
1018 				       int resistance)
1019 {
1020 	int low, high;
1021 
1022 	/* Nothing like this can be checked */
1023 	if (info->bti_resistance_ohm <= 0)
1024 		return false;
1025 
1026 	/* This will be extremely strict and unlikely to work */
1027 	if (info->bti_resistance_tolerance <= 0)
1028 		return (info->bti_resistance_ohm == resistance);
1029 
1030 	low = info->bti_resistance_ohm -
1031 		(info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1032 	high = info->bti_resistance_ohm +
1033 		(info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1034 
1035 	return ((resistance >= low) && (resistance <= high));
1036 }
1037 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
1038 
1039 int power_supply_get_property(struct power_supply *psy,
1040 			    enum power_supply_property psp,
1041 			    union power_supply_propval *val)
1042 {
1043 	if (atomic_read(&psy->use_cnt) <= 0) {
1044 		if (!psy->initialized)
1045 			return -EAGAIN;
1046 		return -ENODEV;
1047 	}
1048 
1049 	return psy->desc->get_property(psy, psp, val);
1050 }
1051 EXPORT_SYMBOL_GPL(power_supply_get_property);
1052 
1053 int power_supply_set_property(struct power_supply *psy,
1054 			    enum power_supply_property psp,
1055 			    const union power_supply_propval *val)
1056 {
1057 	if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property)
1058 		return -ENODEV;
1059 
1060 	return psy->desc->set_property(psy, psp, val);
1061 }
1062 EXPORT_SYMBOL_GPL(power_supply_set_property);
1063 
1064 int power_supply_property_is_writeable(struct power_supply *psy,
1065 					enum power_supply_property psp)
1066 {
1067 	if (atomic_read(&psy->use_cnt) <= 0 ||
1068 			!psy->desc->property_is_writeable)
1069 		return -ENODEV;
1070 
1071 	return psy->desc->property_is_writeable(psy, psp);
1072 }
1073 EXPORT_SYMBOL_GPL(power_supply_property_is_writeable);
1074 
1075 void power_supply_external_power_changed(struct power_supply *psy)
1076 {
1077 	if (atomic_read(&psy->use_cnt) <= 0 ||
1078 			!psy->desc->external_power_changed)
1079 		return;
1080 
1081 	psy->desc->external_power_changed(psy);
1082 }
1083 EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1084 
1085 int power_supply_powers(struct power_supply *psy, struct device *dev)
1086 {
1087 	return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
1088 }
1089 EXPORT_SYMBOL_GPL(power_supply_powers);
1090 
1091 static void power_supply_dev_release(struct device *dev)
1092 {
1093 	struct power_supply *psy = to_power_supply(dev);
1094 	dev_dbg(dev, "%s\n", __func__);
1095 	kfree(psy);
1096 }
1097 
1098 int power_supply_reg_notifier(struct notifier_block *nb)
1099 {
1100 	return atomic_notifier_chain_register(&power_supply_notifier, nb);
1101 }
1102 EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1103 
1104 void power_supply_unreg_notifier(struct notifier_block *nb)
1105 {
1106 	atomic_notifier_chain_unregister(&power_supply_notifier, nb);
1107 }
1108 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1109 
1110 static bool psy_has_property(const struct power_supply_desc *psy_desc,
1111 			     enum power_supply_property psp)
1112 {
1113 	bool found = false;
1114 	int i;
1115 
1116 	for (i = 0; i < psy_desc->num_properties; i++) {
1117 		if (psy_desc->properties[i] == psp) {
1118 			found = true;
1119 			break;
1120 		}
1121 	}
1122 
1123 	return found;
1124 }
1125 
1126 #ifdef CONFIG_THERMAL
1127 static int power_supply_read_temp(struct thermal_zone_device *tzd,
1128 		int *temp)
1129 {
1130 	struct power_supply *psy;
1131 	union power_supply_propval val;
1132 	int ret;
1133 
1134 	WARN_ON(tzd == NULL);
1135 	psy = tzd->devdata;
1136 	ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1137 	if (ret)
1138 		return ret;
1139 
1140 	/* Convert tenths of degree Celsius to milli degree Celsius. */
1141 	*temp = val.intval * 100;
1142 
1143 	return ret;
1144 }
1145 
1146 static struct thermal_zone_device_ops psy_tzd_ops = {
1147 	.get_temp = power_supply_read_temp,
1148 };
1149 
1150 static int psy_register_thermal(struct power_supply *psy)
1151 {
1152 	int ret;
1153 
1154 	if (psy->desc->no_thermal)
1155 		return 0;
1156 
1157 	/* Register battery zone device psy reports temperature */
1158 	if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) {
1159 		psy->tzd = thermal_zone_device_register(psy->desc->name,
1160 				0, 0, psy, &psy_tzd_ops, NULL, 0, 0);
1161 		if (IS_ERR(psy->tzd))
1162 			return PTR_ERR(psy->tzd);
1163 		ret = thermal_zone_device_enable(psy->tzd);
1164 		if (ret)
1165 			thermal_zone_device_unregister(psy->tzd);
1166 		return ret;
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 static void psy_unregister_thermal(struct power_supply *psy)
1173 {
1174 	if (IS_ERR_OR_NULL(psy->tzd))
1175 		return;
1176 	thermal_zone_device_unregister(psy->tzd);
1177 }
1178 
1179 /* thermal cooling device callbacks */
1180 static int ps_get_max_charge_cntl_limit(struct thermal_cooling_device *tcd,
1181 					unsigned long *state)
1182 {
1183 	struct power_supply *psy;
1184 	union power_supply_propval val;
1185 	int ret;
1186 
1187 	psy = tcd->devdata;
1188 	ret = power_supply_get_property(psy,
1189 			POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, &val);
1190 	if (ret)
1191 		return ret;
1192 
1193 	*state = val.intval;
1194 
1195 	return ret;
1196 }
1197 
1198 static int ps_get_cur_charge_cntl_limit(struct thermal_cooling_device *tcd,
1199 					unsigned long *state)
1200 {
1201 	struct power_supply *psy;
1202 	union power_supply_propval val;
1203 	int ret;
1204 
1205 	psy = tcd->devdata;
1206 	ret = power_supply_get_property(psy,
1207 			POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, &val);
1208 	if (ret)
1209 		return ret;
1210 
1211 	*state = val.intval;
1212 
1213 	return ret;
1214 }
1215 
1216 static int ps_set_cur_charge_cntl_limit(struct thermal_cooling_device *tcd,
1217 					unsigned long state)
1218 {
1219 	struct power_supply *psy;
1220 	union power_supply_propval val;
1221 	int ret;
1222 
1223 	psy = tcd->devdata;
1224 	val.intval = state;
1225 	ret = psy->desc->set_property(psy,
1226 		POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, &val);
1227 
1228 	return ret;
1229 }
1230 
1231 static const struct thermal_cooling_device_ops psy_tcd_ops = {
1232 	.get_max_state = ps_get_max_charge_cntl_limit,
1233 	.get_cur_state = ps_get_cur_charge_cntl_limit,
1234 	.set_cur_state = ps_set_cur_charge_cntl_limit,
1235 };
1236 
1237 static int psy_register_cooler(struct power_supply *psy)
1238 {
1239 	/* Register for cooling device if psy can control charging */
1240 	if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT)) {
1241 		psy->tcd = thermal_cooling_device_register(
1242 			(char *)psy->desc->name,
1243 			psy, &psy_tcd_ops);
1244 		return PTR_ERR_OR_ZERO(psy->tcd);
1245 	}
1246 
1247 	return 0;
1248 }
1249 
1250 static void psy_unregister_cooler(struct power_supply *psy)
1251 {
1252 	if (IS_ERR_OR_NULL(psy->tcd))
1253 		return;
1254 	thermal_cooling_device_unregister(psy->tcd);
1255 }
1256 #else
1257 static int psy_register_thermal(struct power_supply *psy)
1258 {
1259 	return 0;
1260 }
1261 
1262 static void psy_unregister_thermal(struct power_supply *psy)
1263 {
1264 }
1265 
1266 static int psy_register_cooler(struct power_supply *psy)
1267 {
1268 	return 0;
1269 }
1270 
1271 static void psy_unregister_cooler(struct power_supply *psy)
1272 {
1273 }
1274 #endif
1275 
1276 static struct power_supply *__must_check
1277 __power_supply_register(struct device *parent,
1278 				   const struct power_supply_desc *desc,
1279 				   const struct power_supply_config *cfg,
1280 				   bool ws)
1281 {
1282 	struct device *dev;
1283 	struct power_supply *psy;
1284 	int rc;
1285 
1286 	if (!parent)
1287 		pr_warn("%s: Expected proper parent device for '%s'\n",
1288 			__func__, desc->name);
1289 
1290 	if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1291 		return ERR_PTR(-EINVAL);
1292 
1293 	if (psy_has_property(desc, POWER_SUPPLY_PROP_USB_TYPE) &&
1294 	    (!desc->usb_types || !desc->num_usb_types))
1295 		return ERR_PTR(-EINVAL);
1296 
1297 	psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1298 	if (!psy)
1299 		return ERR_PTR(-ENOMEM);
1300 
1301 	dev = &psy->dev;
1302 
1303 	device_initialize(dev);
1304 
1305 	dev->class = power_supply_class;
1306 	dev->type = &power_supply_dev_type;
1307 	dev->parent = parent;
1308 	dev->release = power_supply_dev_release;
1309 	dev_set_drvdata(dev, psy);
1310 	psy->desc = desc;
1311 	if (cfg) {
1312 		dev->groups = cfg->attr_grp;
1313 		psy->drv_data = cfg->drv_data;
1314 		psy->of_node =
1315 			cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1316 		psy->supplied_to = cfg->supplied_to;
1317 		psy->num_supplicants = cfg->num_supplicants;
1318 	}
1319 
1320 	rc = dev_set_name(dev, "%s", desc->name);
1321 	if (rc)
1322 		goto dev_set_name_failed;
1323 
1324 	INIT_WORK(&psy->changed_work, power_supply_changed_work);
1325 	INIT_DELAYED_WORK(&psy->deferred_register_work,
1326 			  power_supply_deferred_register_work);
1327 
1328 	rc = power_supply_check_supplies(psy);
1329 	if (rc) {
1330 		dev_dbg(dev, "Not all required supplies found, defer probe\n");
1331 		goto check_supplies_failed;
1332 	}
1333 
1334 	spin_lock_init(&psy->changed_lock);
1335 	rc = device_add(dev);
1336 	if (rc)
1337 		goto device_add_failed;
1338 
1339 	rc = device_init_wakeup(dev, ws);
1340 	if (rc)
1341 		goto wakeup_init_failed;
1342 
1343 	rc = psy_register_thermal(psy);
1344 	if (rc)
1345 		goto register_thermal_failed;
1346 
1347 	rc = psy_register_cooler(psy);
1348 	if (rc)
1349 		goto register_cooler_failed;
1350 
1351 	rc = power_supply_create_triggers(psy);
1352 	if (rc)
1353 		goto create_triggers_failed;
1354 
1355 	rc = power_supply_add_hwmon_sysfs(psy);
1356 	if (rc)
1357 		goto add_hwmon_sysfs_failed;
1358 
1359 	/*
1360 	 * Update use_cnt after any uevents (most notably from device_add()).
1361 	 * We are here still during driver's probe but
1362 	 * the power_supply_uevent() calls back driver's get_property
1363 	 * method so:
1364 	 * 1. Driver did not assigned the returned struct power_supply,
1365 	 * 2. Driver could not finish initialization (anything in its probe
1366 	 *    after calling power_supply_register()).
1367 	 */
1368 	atomic_inc(&psy->use_cnt);
1369 	psy->initialized = true;
1370 
1371 	queue_delayed_work(system_power_efficient_wq,
1372 			   &psy->deferred_register_work,
1373 			   POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1374 
1375 	return psy;
1376 
1377 add_hwmon_sysfs_failed:
1378 	power_supply_remove_triggers(psy);
1379 create_triggers_failed:
1380 	psy_unregister_cooler(psy);
1381 register_cooler_failed:
1382 	psy_unregister_thermal(psy);
1383 register_thermal_failed:
1384 	device_del(dev);
1385 wakeup_init_failed:
1386 device_add_failed:
1387 check_supplies_failed:
1388 dev_set_name_failed:
1389 	put_device(dev);
1390 	return ERR_PTR(rc);
1391 }
1392 
1393 /**
1394  * power_supply_register() - Register new power supply
1395  * @parent:	Device to be a parent of power supply's device, usually
1396  *		the device which probe function calls this
1397  * @desc:	Description of power supply, must be valid through whole
1398  *		lifetime of this power supply
1399  * @cfg:	Run-time specific configuration accessed during registering,
1400  *		may be NULL
1401  *
1402  * Return: A pointer to newly allocated power_supply on success
1403  * or ERR_PTR otherwise.
1404  * Use power_supply_unregister() on returned power_supply pointer to release
1405  * resources.
1406  */
1407 struct power_supply *__must_check power_supply_register(struct device *parent,
1408 		const struct power_supply_desc *desc,
1409 		const struct power_supply_config *cfg)
1410 {
1411 	return __power_supply_register(parent, desc, cfg, true);
1412 }
1413 EXPORT_SYMBOL_GPL(power_supply_register);
1414 
1415 /**
1416  * power_supply_register_no_ws() - Register new non-waking-source power supply
1417  * @parent:	Device to be a parent of power supply's device, usually
1418  *		the device which probe function calls this
1419  * @desc:	Description of power supply, must be valid through whole
1420  *		lifetime of this power supply
1421  * @cfg:	Run-time specific configuration accessed during registering,
1422  *		may be NULL
1423  *
1424  * Return: A pointer to newly allocated power_supply on success
1425  * or ERR_PTR otherwise.
1426  * Use power_supply_unregister() on returned power_supply pointer to release
1427  * resources.
1428  */
1429 struct power_supply *__must_check
1430 power_supply_register_no_ws(struct device *parent,
1431 		const struct power_supply_desc *desc,
1432 		const struct power_supply_config *cfg)
1433 {
1434 	return __power_supply_register(parent, desc, cfg, false);
1435 }
1436 EXPORT_SYMBOL_GPL(power_supply_register_no_ws);
1437 
1438 static void devm_power_supply_release(struct device *dev, void *res)
1439 {
1440 	struct power_supply **psy = res;
1441 
1442 	power_supply_unregister(*psy);
1443 }
1444 
1445 /**
1446  * devm_power_supply_register() - Register managed power supply
1447  * @parent:	Device to be a parent of power supply's device, usually
1448  *		the device which probe function calls this
1449  * @desc:	Description of power supply, must be valid through whole
1450  *		lifetime of this power supply
1451  * @cfg:	Run-time specific configuration accessed during registering,
1452  *		may be NULL
1453  *
1454  * Return: A pointer to newly allocated power_supply on success
1455  * or ERR_PTR otherwise.
1456  * The returned power_supply pointer will be automatically unregistered
1457  * on driver detach.
1458  */
1459 struct power_supply *__must_check
1460 devm_power_supply_register(struct device *parent,
1461 		const struct power_supply_desc *desc,
1462 		const struct power_supply_config *cfg)
1463 {
1464 	struct power_supply **ptr, *psy;
1465 
1466 	ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1467 
1468 	if (!ptr)
1469 		return ERR_PTR(-ENOMEM);
1470 	psy = __power_supply_register(parent, desc, cfg, true);
1471 	if (IS_ERR(psy)) {
1472 		devres_free(ptr);
1473 	} else {
1474 		*ptr = psy;
1475 		devres_add(parent, ptr);
1476 	}
1477 	return psy;
1478 }
1479 EXPORT_SYMBOL_GPL(devm_power_supply_register);
1480 
1481 /**
1482  * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply
1483  * @parent:	Device to be a parent of power supply's device, usually
1484  *		the device which probe function calls this
1485  * @desc:	Description of power supply, must be valid through whole
1486  *		lifetime of this power supply
1487  * @cfg:	Run-time specific configuration accessed during registering,
1488  *		may be NULL
1489  *
1490  * Return: A pointer to newly allocated power_supply on success
1491  * or ERR_PTR otherwise.
1492  * The returned power_supply pointer will be automatically unregistered
1493  * on driver detach.
1494  */
1495 struct power_supply *__must_check
1496 devm_power_supply_register_no_ws(struct device *parent,
1497 		const struct power_supply_desc *desc,
1498 		const struct power_supply_config *cfg)
1499 {
1500 	struct power_supply **ptr, *psy;
1501 
1502 	ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1503 
1504 	if (!ptr)
1505 		return ERR_PTR(-ENOMEM);
1506 	psy = __power_supply_register(parent, desc, cfg, false);
1507 	if (IS_ERR(psy)) {
1508 		devres_free(ptr);
1509 	} else {
1510 		*ptr = psy;
1511 		devres_add(parent, ptr);
1512 	}
1513 	return psy;
1514 }
1515 EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws);
1516 
1517 /**
1518  * power_supply_unregister() - Remove this power supply from system
1519  * @psy:	Pointer to power supply to unregister
1520  *
1521  * Remove this power supply from the system. The resources of power supply
1522  * will be freed here or on last power_supply_put() call.
1523  */
1524 void power_supply_unregister(struct power_supply *psy)
1525 {
1526 	WARN_ON(atomic_dec_return(&psy->use_cnt));
1527 	psy->removing = true;
1528 	cancel_work_sync(&psy->changed_work);
1529 	cancel_delayed_work_sync(&psy->deferred_register_work);
1530 	sysfs_remove_link(&psy->dev.kobj, "powers");
1531 	power_supply_remove_hwmon_sysfs(psy);
1532 	power_supply_remove_triggers(psy);
1533 	psy_unregister_cooler(psy);
1534 	psy_unregister_thermal(psy);
1535 	device_init_wakeup(&psy->dev, false);
1536 	device_unregister(&psy->dev);
1537 }
1538 EXPORT_SYMBOL_GPL(power_supply_unregister);
1539 
1540 void *power_supply_get_drvdata(struct power_supply *psy)
1541 {
1542 	return psy->drv_data;
1543 }
1544 EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1545 
1546 static int __init power_supply_class_init(void)
1547 {
1548 	power_supply_class = class_create(THIS_MODULE, "power_supply");
1549 
1550 	if (IS_ERR(power_supply_class))
1551 		return PTR_ERR(power_supply_class);
1552 
1553 	power_supply_class->dev_uevent = power_supply_uevent;
1554 	power_supply_init_attrs(&power_supply_dev_type);
1555 
1556 	return 0;
1557 }
1558 
1559 static void __exit power_supply_class_exit(void)
1560 {
1561 	class_destroy(power_supply_class);
1562 }
1563 
1564 subsys_initcall(power_supply_class_init);
1565 module_exit(power_supply_class_exit);
1566 
1567 MODULE_DESCRIPTION("Universal power supply monitor class");
1568 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>, "
1569 	      "Szabolcs Gyurko, "
1570 	      "Anton Vorontsov <cbou@mail.ru>");
1571 MODULE_LICENSE("GPL");
1572