1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Universal power supply monitor class 4 * 5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru> 6 * Copyright © 2004 Szabolcs Gyurko 7 * Copyright © 2003 Ian Molton <spyro@f2s.com> 8 * 9 * Modified: 2004, Oct Szabolcs Gyurko 10 */ 11 12 #include <linux/module.h> 13 #include <linux/types.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/delay.h> 17 #include <linux/device.h> 18 #include <linux/notifier.h> 19 #include <linux/err.h> 20 #include <linux/of.h> 21 #include <linux/power_supply.h> 22 #include <linux/property.h> 23 #include <linux/thermal.h> 24 #include <linux/fixp-arith.h> 25 #include "power_supply.h" 26 #include "samsung-sdi-battery.h" 27 28 /* exported for the APM Power driver, APM emulation */ 29 struct class *power_supply_class; 30 EXPORT_SYMBOL_GPL(power_supply_class); 31 32 ATOMIC_NOTIFIER_HEAD(power_supply_notifier); 33 EXPORT_SYMBOL_GPL(power_supply_notifier); 34 35 static struct device_type power_supply_dev_type; 36 37 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME msecs_to_jiffies(10) 38 39 static bool __power_supply_is_supplied_by(struct power_supply *supplier, 40 struct power_supply *supply) 41 { 42 int i; 43 44 if (!supply->supplied_from && !supplier->supplied_to) 45 return false; 46 47 /* Support both supplied_to and supplied_from modes */ 48 if (supply->supplied_from) { 49 if (!supplier->desc->name) 50 return false; 51 for (i = 0; i < supply->num_supplies; i++) 52 if (!strcmp(supplier->desc->name, supply->supplied_from[i])) 53 return true; 54 } else { 55 if (!supply->desc->name) 56 return false; 57 for (i = 0; i < supplier->num_supplicants; i++) 58 if (!strcmp(supplier->supplied_to[i], supply->desc->name)) 59 return true; 60 } 61 62 return false; 63 } 64 65 static int __power_supply_changed_work(struct device *dev, void *data) 66 { 67 struct power_supply *psy = data; 68 struct power_supply *pst = dev_get_drvdata(dev); 69 70 if (__power_supply_is_supplied_by(psy, pst)) { 71 if (pst->desc->external_power_changed) 72 pst->desc->external_power_changed(pst); 73 } 74 75 return 0; 76 } 77 78 static void power_supply_changed_work(struct work_struct *work) 79 { 80 unsigned long flags; 81 struct power_supply *psy = container_of(work, struct power_supply, 82 changed_work); 83 84 dev_dbg(&psy->dev, "%s\n", __func__); 85 86 spin_lock_irqsave(&psy->changed_lock, flags); 87 /* 88 * Check 'changed' here to avoid issues due to race between 89 * power_supply_changed() and this routine. In worst case 90 * power_supply_changed() can be called again just before we take above 91 * lock. During the first call of this routine we will mark 'changed' as 92 * false and it will stay false for the next call as well. 93 */ 94 if (likely(psy->changed)) { 95 psy->changed = false; 96 spin_unlock_irqrestore(&psy->changed_lock, flags); 97 class_for_each_device(power_supply_class, NULL, psy, 98 __power_supply_changed_work); 99 power_supply_update_leds(psy); 100 atomic_notifier_call_chain(&power_supply_notifier, 101 PSY_EVENT_PROP_CHANGED, psy); 102 kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE); 103 spin_lock_irqsave(&psy->changed_lock, flags); 104 } 105 106 /* 107 * Hold the wakeup_source until all events are processed. 108 * power_supply_changed() might have called again and have set 'changed' 109 * to true. 110 */ 111 if (likely(!psy->changed)) 112 pm_relax(&psy->dev); 113 spin_unlock_irqrestore(&psy->changed_lock, flags); 114 } 115 116 void power_supply_changed(struct power_supply *psy) 117 { 118 unsigned long flags; 119 120 dev_dbg(&psy->dev, "%s\n", __func__); 121 122 spin_lock_irqsave(&psy->changed_lock, flags); 123 psy->changed = true; 124 pm_stay_awake(&psy->dev); 125 spin_unlock_irqrestore(&psy->changed_lock, flags); 126 schedule_work(&psy->changed_work); 127 } 128 EXPORT_SYMBOL_GPL(power_supply_changed); 129 130 /* 131 * Notify that power supply was registered after parent finished the probing. 132 * 133 * Often power supply is registered from driver's probe function. However 134 * calling power_supply_changed() directly from power_supply_register() 135 * would lead to execution of get_property() function provided by the driver 136 * too early - before the probe ends. 137 * 138 * Avoid that by waiting on parent's mutex. 139 */ 140 static void power_supply_deferred_register_work(struct work_struct *work) 141 { 142 struct power_supply *psy = container_of(work, struct power_supply, 143 deferred_register_work.work); 144 145 if (psy->dev.parent) { 146 while (!mutex_trylock(&psy->dev.parent->mutex)) { 147 if (psy->removing) 148 return; 149 msleep(10); 150 } 151 } 152 153 power_supply_changed(psy); 154 155 if (psy->dev.parent) 156 mutex_unlock(&psy->dev.parent->mutex); 157 } 158 159 #ifdef CONFIG_OF 160 static int __power_supply_populate_supplied_from(struct device *dev, 161 void *data) 162 { 163 struct power_supply *psy = data; 164 struct power_supply *epsy = dev_get_drvdata(dev); 165 struct device_node *np; 166 int i = 0; 167 168 do { 169 np = of_parse_phandle(psy->of_node, "power-supplies", i++); 170 if (!np) 171 break; 172 173 if (np == epsy->of_node) { 174 dev_dbg(&psy->dev, "%s: Found supply : %s\n", 175 psy->desc->name, epsy->desc->name); 176 psy->supplied_from[i-1] = (char *)epsy->desc->name; 177 psy->num_supplies++; 178 of_node_put(np); 179 break; 180 } 181 of_node_put(np); 182 } while (np); 183 184 return 0; 185 } 186 187 static int power_supply_populate_supplied_from(struct power_supply *psy) 188 { 189 int error; 190 191 error = class_for_each_device(power_supply_class, NULL, psy, 192 __power_supply_populate_supplied_from); 193 194 dev_dbg(&psy->dev, "%s %d\n", __func__, error); 195 196 return error; 197 } 198 199 static int __power_supply_find_supply_from_node(struct device *dev, 200 void *data) 201 { 202 struct device_node *np = data; 203 struct power_supply *epsy = dev_get_drvdata(dev); 204 205 /* returning non-zero breaks out of class_for_each_device loop */ 206 if (epsy->of_node == np) 207 return 1; 208 209 return 0; 210 } 211 212 static int power_supply_find_supply_from_node(struct device_node *supply_node) 213 { 214 int error; 215 216 /* 217 * class_for_each_device() either returns its own errors or values 218 * returned by __power_supply_find_supply_from_node(). 219 * 220 * __power_supply_find_supply_from_node() will return 0 (no match) 221 * or 1 (match). 222 * 223 * We return 0 if class_for_each_device() returned 1, -EPROBE_DEFER if 224 * it returned 0, or error as returned by it. 225 */ 226 error = class_for_each_device(power_supply_class, NULL, supply_node, 227 __power_supply_find_supply_from_node); 228 229 return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER; 230 } 231 232 static int power_supply_check_supplies(struct power_supply *psy) 233 { 234 struct device_node *np; 235 int cnt = 0; 236 237 /* If there is already a list honor it */ 238 if (psy->supplied_from && psy->num_supplies > 0) 239 return 0; 240 241 /* No device node found, nothing to do */ 242 if (!psy->of_node) 243 return 0; 244 245 do { 246 int ret; 247 248 np = of_parse_phandle(psy->of_node, "power-supplies", cnt++); 249 if (!np) 250 break; 251 252 ret = power_supply_find_supply_from_node(np); 253 of_node_put(np); 254 255 if (ret) { 256 dev_dbg(&psy->dev, "Failed to find supply!\n"); 257 return ret; 258 } 259 } while (np); 260 261 /* Missing valid "power-supplies" entries */ 262 if (cnt == 1) 263 return 0; 264 265 /* All supplies found, allocate char ** array for filling */ 266 psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from), 267 GFP_KERNEL); 268 if (!psy->supplied_from) 269 return -ENOMEM; 270 271 *psy->supplied_from = devm_kcalloc(&psy->dev, 272 cnt - 1, sizeof(**psy->supplied_from), 273 GFP_KERNEL); 274 if (!*psy->supplied_from) 275 return -ENOMEM; 276 277 return power_supply_populate_supplied_from(psy); 278 } 279 #else 280 static int power_supply_check_supplies(struct power_supply *psy) 281 { 282 int nval, ret; 283 284 if (!psy->dev.parent) 285 return 0; 286 287 nval = device_property_string_array_count(psy->dev.parent, "supplied-from"); 288 if (nval <= 0) 289 return 0; 290 291 psy->supplied_from = devm_kmalloc_array(&psy->dev, nval, 292 sizeof(char *), GFP_KERNEL); 293 if (!psy->supplied_from) 294 return -ENOMEM; 295 296 ret = device_property_read_string_array(psy->dev.parent, 297 "supplied-from", (const char **)psy->supplied_from, nval); 298 if (ret < 0) 299 return ret; 300 301 psy->num_supplies = nval; 302 303 return 0; 304 } 305 #endif 306 307 struct psy_am_i_supplied_data { 308 struct power_supply *psy; 309 unsigned int count; 310 }; 311 312 static int __power_supply_am_i_supplied(struct device *dev, void *_data) 313 { 314 union power_supply_propval ret = {0,}; 315 struct power_supply *epsy = dev_get_drvdata(dev); 316 struct psy_am_i_supplied_data *data = _data; 317 318 if (__power_supply_is_supplied_by(epsy, data->psy)) { 319 data->count++; 320 if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE, 321 &ret)) 322 return ret.intval; 323 } 324 325 return 0; 326 } 327 328 int power_supply_am_i_supplied(struct power_supply *psy) 329 { 330 struct psy_am_i_supplied_data data = { psy, 0 }; 331 int error; 332 333 error = class_for_each_device(power_supply_class, NULL, &data, 334 __power_supply_am_i_supplied); 335 336 dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error); 337 338 if (data.count == 0) 339 return -ENODEV; 340 341 return error; 342 } 343 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied); 344 345 static int __power_supply_is_system_supplied(struct device *dev, void *data) 346 { 347 union power_supply_propval ret = {0,}; 348 struct power_supply *psy = dev_get_drvdata(dev); 349 unsigned int *count = data; 350 351 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret)) 352 if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE) 353 return 0; 354 355 (*count)++; 356 if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY) 357 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE, 358 &ret)) 359 return ret.intval; 360 361 return 0; 362 } 363 364 int power_supply_is_system_supplied(void) 365 { 366 int error; 367 unsigned int count = 0; 368 369 error = class_for_each_device(power_supply_class, NULL, &count, 370 __power_supply_is_system_supplied); 371 372 /* 373 * If no system scope power class device was found at all, most probably we 374 * are running on a desktop system, so assume we are on mains power. 375 */ 376 if (count == 0) 377 return 1; 378 379 return error; 380 } 381 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied); 382 383 struct psy_get_supplier_prop_data { 384 struct power_supply *psy; 385 enum power_supply_property psp; 386 union power_supply_propval *val; 387 }; 388 389 static int __power_supply_get_supplier_property(struct device *dev, void *_data) 390 { 391 struct power_supply *epsy = dev_get_drvdata(dev); 392 struct psy_get_supplier_prop_data *data = _data; 393 394 if (__power_supply_is_supplied_by(epsy, data->psy)) 395 if (!power_supply_get_property(epsy, data->psp, data->val)) 396 return 1; /* Success */ 397 398 return 0; /* Continue iterating */ 399 } 400 401 int power_supply_get_property_from_supplier(struct power_supply *psy, 402 enum power_supply_property psp, 403 union power_supply_propval *val) 404 { 405 struct psy_get_supplier_prop_data data = { 406 .psy = psy, 407 .psp = psp, 408 .val = val, 409 }; 410 int ret; 411 412 /* 413 * This function is not intended for use with a supply with multiple 414 * suppliers, we simply pick the first supply to report the psp. 415 */ 416 ret = class_for_each_device(power_supply_class, NULL, &data, 417 __power_supply_get_supplier_property); 418 if (ret < 0) 419 return ret; 420 if (ret == 0) 421 return -ENODEV; 422 423 return 0; 424 } 425 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier); 426 427 int power_supply_set_battery_charged(struct power_supply *psy) 428 { 429 if (atomic_read(&psy->use_cnt) >= 0 && 430 psy->desc->type == POWER_SUPPLY_TYPE_BATTERY && 431 psy->desc->set_charged) { 432 psy->desc->set_charged(psy); 433 return 0; 434 } 435 436 return -EINVAL; 437 } 438 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged); 439 440 static int power_supply_match_device_by_name(struct device *dev, const void *data) 441 { 442 const char *name = data; 443 struct power_supply *psy = dev_get_drvdata(dev); 444 445 return strcmp(psy->desc->name, name) == 0; 446 } 447 448 /** 449 * power_supply_get_by_name() - Search for a power supply and returns its ref 450 * @name: Power supply name to fetch 451 * 452 * If power supply was found, it increases reference count for the 453 * internal power supply's device. The user should power_supply_put() 454 * after usage. 455 * 456 * Return: On success returns a reference to a power supply with 457 * matching name equals to @name, a NULL otherwise. 458 */ 459 struct power_supply *power_supply_get_by_name(const char *name) 460 { 461 struct power_supply *psy = NULL; 462 struct device *dev = class_find_device(power_supply_class, NULL, name, 463 power_supply_match_device_by_name); 464 465 if (dev) { 466 psy = dev_get_drvdata(dev); 467 atomic_inc(&psy->use_cnt); 468 } 469 470 return psy; 471 } 472 EXPORT_SYMBOL_GPL(power_supply_get_by_name); 473 474 /** 475 * power_supply_put() - Drop reference obtained with power_supply_get_by_name 476 * @psy: Reference to put 477 * 478 * The reference to power supply should be put before unregistering 479 * the power supply. 480 */ 481 void power_supply_put(struct power_supply *psy) 482 { 483 might_sleep(); 484 485 atomic_dec(&psy->use_cnt); 486 put_device(&psy->dev); 487 } 488 EXPORT_SYMBOL_GPL(power_supply_put); 489 490 #ifdef CONFIG_OF 491 static int power_supply_match_device_node(struct device *dev, const void *data) 492 { 493 return dev->parent && dev->parent->of_node == data; 494 } 495 496 /** 497 * power_supply_get_by_phandle() - Search for a power supply and returns its ref 498 * @np: Pointer to device node holding phandle property 499 * @property: Name of property holding a power supply name 500 * 501 * If power supply was found, it increases reference count for the 502 * internal power supply's device. The user should power_supply_put() 503 * after usage. 504 * 505 * Return: On success returns a reference to a power supply with 506 * matching name equals to value under @property, NULL or ERR_PTR otherwise. 507 */ 508 struct power_supply *power_supply_get_by_phandle(struct device_node *np, 509 const char *property) 510 { 511 struct device_node *power_supply_np; 512 struct power_supply *psy = NULL; 513 struct device *dev; 514 515 power_supply_np = of_parse_phandle(np, property, 0); 516 if (!power_supply_np) 517 return ERR_PTR(-ENODEV); 518 519 dev = class_find_device(power_supply_class, NULL, power_supply_np, 520 power_supply_match_device_node); 521 522 of_node_put(power_supply_np); 523 524 if (dev) { 525 psy = dev_get_drvdata(dev); 526 atomic_inc(&psy->use_cnt); 527 } 528 529 return psy; 530 } 531 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle); 532 533 static void devm_power_supply_put(struct device *dev, void *res) 534 { 535 struct power_supply **psy = res; 536 537 power_supply_put(*psy); 538 } 539 540 /** 541 * devm_power_supply_get_by_phandle() - Resource managed version of 542 * power_supply_get_by_phandle() 543 * @dev: Pointer to device holding phandle property 544 * @property: Name of property holding a power supply phandle 545 * 546 * Return: On success returns a reference to a power supply with 547 * matching name equals to value under @property, NULL or ERR_PTR otherwise. 548 */ 549 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev, 550 const char *property) 551 { 552 struct power_supply **ptr, *psy; 553 554 if (!dev->of_node) 555 return ERR_PTR(-ENODEV); 556 557 ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL); 558 if (!ptr) 559 return ERR_PTR(-ENOMEM); 560 561 psy = power_supply_get_by_phandle(dev->of_node, property); 562 if (IS_ERR_OR_NULL(psy)) { 563 devres_free(ptr); 564 } else { 565 *ptr = psy; 566 devres_add(dev, ptr); 567 } 568 return psy; 569 } 570 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle); 571 #endif /* CONFIG_OF */ 572 573 int power_supply_get_battery_info(struct power_supply *psy, 574 struct power_supply_battery_info **info_out) 575 { 576 struct power_supply_resistance_temp_table *resist_table; 577 struct power_supply_battery_info *info; 578 struct device_node *battery_np = NULL; 579 struct fwnode_reference_args args; 580 struct fwnode_handle *fwnode = NULL; 581 const char *value; 582 int err, len, index; 583 const __be32 *list; 584 u32 min_max[2]; 585 586 if (psy->of_node) { 587 battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0); 588 if (!battery_np) 589 return -ENODEV; 590 591 fwnode = fwnode_handle_get(of_fwnode_handle(battery_np)); 592 } else if (psy->dev.parent) { 593 err = fwnode_property_get_reference_args( 594 dev_fwnode(psy->dev.parent), 595 "monitored-battery", NULL, 0, 0, &args); 596 if (err) 597 return err; 598 599 fwnode = args.fwnode; 600 } 601 602 if (!fwnode) 603 return -ENOENT; 604 605 err = fwnode_property_read_string(fwnode, "compatible", &value); 606 if (err) 607 goto out_put_node; 608 609 610 /* Try static batteries first */ 611 err = samsung_sdi_battery_get_info(&psy->dev, value, &info); 612 if (!err) 613 goto out_ret_pointer; 614 else if (err == -ENODEV) 615 /* 616 * Device does not have a static battery. 617 * Proceed to look for a simple battery. 618 */ 619 err = 0; 620 621 if (strcmp("simple-battery", value)) { 622 err = -ENODEV; 623 goto out_put_node; 624 } 625 626 info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL); 627 if (!info) { 628 err = -ENOMEM; 629 goto out_put_node; 630 } 631 632 info->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN; 633 info->energy_full_design_uwh = -EINVAL; 634 info->charge_full_design_uah = -EINVAL; 635 info->voltage_min_design_uv = -EINVAL; 636 info->voltage_max_design_uv = -EINVAL; 637 info->precharge_current_ua = -EINVAL; 638 info->charge_term_current_ua = -EINVAL; 639 info->constant_charge_current_max_ua = -EINVAL; 640 info->constant_charge_voltage_max_uv = -EINVAL; 641 info->tricklecharge_current_ua = -EINVAL; 642 info->precharge_voltage_max_uv = -EINVAL; 643 info->charge_restart_voltage_uv = -EINVAL; 644 info->overvoltage_limit_uv = -EINVAL; 645 info->maintenance_charge = NULL; 646 info->alert_low_temp_charge_current_ua = -EINVAL; 647 info->alert_low_temp_charge_voltage_uv = -EINVAL; 648 info->alert_high_temp_charge_current_ua = -EINVAL; 649 info->alert_high_temp_charge_voltage_uv = -EINVAL; 650 info->temp_ambient_alert_min = INT_MIN; 651 info->temp_ambient_alert_max = INT_MAX; 652 info->temp_alert_min = INT_MIN; 653 info->temp_alert_max = INT_MAX; 654 info->temp_min = INT_MIN; 655 info->temp_max = INT_MAX; 656 info->factory_internal_resistance_uohm = -EINVAL; 657 info->resist_table = NULL; 658 info->bti_resistance_ohm = -EINVAL; 659 info->bti_resistance_tolerance = -EINVAL; 660 661 for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) { 662 info->ocv_table[index] = NULL; 663 info->ocv_temp[index] = -EINVAL; 664 info->ocv_table_size[index] = -EINVAL; 665 } 666 667 /* The property and field names below must correspond to elements 668 * in enum power_supply_property. For reasoning, see 669 * Documentation/power/power_supply_class.rst. 670 */ 671 672 if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) { 673 if (!strcmp("nickel-cadmium", value)) 674 info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd; 675 else if (!strcmp("nickel-metal-hydride", value)) 676 info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH; 677 else if (!strcmp("lithium-ion", value)) 678 /* Imprecise lithium-ion type */ 679 info->technology = POWER_SUPPLY_TECHNOLOGY_LION; 680 else if (!strcmp("lithium-ion-polymer", value)) 681 info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO; 682 else if (!strcmp("lithium-ion-iron-phosphate", value)) 683 info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe; 684 else if (!strcmp("lithium-ion-manganese-oxide", value)) 685 info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn; 686 else 687 dev_warn(&psy->dev, "%s unknown battery type\n", value); 688 } 689 690 fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours", 691 &info->energy_full_design_uwh); 692 fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours", 693 &info->charge_full_design_uah); 694 fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt", 695 &info->voltage_min_design_uv); 696 fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt", 697 &info->voltage_max_design_uv); 698 fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp", 699 &info->tricklecharge_current_ua); 700 fwnode_property_read_u32(fwnode, "precharge-current-microamp", 701 &info->precharge_current_ua); 702 fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt", 703 &info->precharge_voltage_max_uv); 704 fwnode_property_read_u32(fwnode, "charge-term-current-microamp", 705 &info->charge_term_current_ua); 706 fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt", 707 &info->charge_restart_voltage_uv); 708 fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt", 709 &info->overvoltage_limit_uv); 710 fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp", 711 &info->constant_charge_current_max_ua); 712 fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt", 713 &info->constant_charge_voltage_max_uv); 714 fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms", 715 &info->factory_internal_resistance_uohm); 716 717 if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius", 718 min_max, ARRAY_SIZE(min_max))) { 719 info->temp_ambient_alert_min = min_max[0]; 720 info->temp_ambient_alert_max = min_max[1]; 721 } 722 if (!fwnode_property_read_u32_array(fwnode, "alert-celsius", 723 min_max, ARRAY_SIZE(min_max))) { 724 info->temp_alert_min = min_max[0]; 725 info->temp_alert_max = min_max[1]; 726 } 727 if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius", 728 min_max, ARRAY_SIZE(min_max))) { 729 info->temp_min = min_max[0]; 730 info->temp_max = min_max[1]; 731 } 732 733 /* 734 * The below code uses raw of-data parsing to parse 735 * /schemas/types.yaml#/definitions/uint32-matrix 736 * data, so for now this is only support with of. 737 */ 738 if (!battery_np) 739 goto out_ret_pointer; 740 741 len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius"); 742 if (len < 0 && len != -EINVAL) { 743 err = len; 744 goto out_put_node; 745 } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) { 746 dev_err(&psy->dev, "Too many temperature values\n"); 747 err = -EINVAL; 748 goto out_put_node; 749 } else if (len > 0) { 750 of_property_read_u32_array(battery_np, "ocv-capacity-celsius", 751 info->ocv_temp, len); 752 } 753 754 for (index = 0; index < len; index++) { 755 struct power_supply_battery_ocv_table *table; 756 char *propname; 757 int i, tab_len, size; 758 759 propname = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index); 760 if (!propname) { 761 power_supply_put_battery_info(psy, info); 762 err = -ENOMEM; 763 goto out_put_node; 764 } 765 list = of_get_property(battery_np, propname, &size); 766 if (!list || !size) { 767 dev_err(&psy->dev, "failed to get %s\n", propname); 768 kfree(propname); 769 power_supply_put_battery_info(psy, info); 770 err = -EINVAL; 771 goto out_put_node; 772 } 773 774 kfree(propname); 775 tab_len = size / (2 * sizeof(__be32)); 776 info->ocv_table_size[index] = tab_len; 777 778 table = info->ocv_table[index] = 779 devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL); 780 if (!info->ocv_table[index]) { 781 power_supply_put_battery_info(psy, info); 782 err = -ENOMEM; 783 goto out_put_node; 784 } 785 786 for (i = 0; i < tab_len; i++) { 787 table[i].ocv = be32_to_cpu(*list); 788 list++; 789 table[i].capacity = be32_to_cpu(*list); 790 list++; 791 } 792 } 793 794 list = of_get_property(battery_np, "resistance-temp-table", &len); 795 if (!list || !len) 796 goto out_ret_pointer; 797 798 info->resist_table_size = len / (2 * sizeof(__be32)); 799 resist_table = info->resist_table = devm_kcalloc(&psy->dev, 800 info->resist_table_size, 801 sizeof(*resist_table), 802 GFP_KERNEL); 803 if (!info->resist_table) { 804 power_supply_put_battery_info(psy, info); 805 err = -ENOMEM; 806 goto out_put_node; 807 } 808 809 for (index = 0; index < info->resist_table_size; index++) { 810 resist_table[index].temp = be32_to_cpu(*list++); 811 resist_table[index].resistance = be32_to_cpu(*list++); 812 } 813 814 out_ret_pointer: 815 /* Finally return the whole thing */ 816 *info_out = info; 817 818 out_put_node: 819 fwnode_handle_put(fwnode); 820 of_node_put(battery_np); 821 return err; 822 } 823 EXPORT_SYMBOL_GPL(power_supply_get_battery_info); 824 825 void power_supply_put_battery_info(struct power_supply *psy, 826 struct power_supply_battery_info *info) 827 { 828 int i; 829 830 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) { 831 if (info->ocv_table[i]) 832 devm_kfree(&psy->dev, info->ocv_table[i]); 833 } 834 835 if (info->resist_table) 836 devm_kfree(&psy->dev, info->resist_table); 837 838 devm_kfree(&psy->dev, info); 839 } 840 EXPORT_SYMBOL_GPL(power_supply_put_battery_info); 841 842 const enum power_supply_property power_supply_battery_info_properties[] = { 843 POWER_SUPPLY_PROP_TECHNOLOGY, 844 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 845 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 846 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 847 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 848 POWER_SUPPLY_PROP_PRECHARGE_CURRENT, 849 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, 850 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 851 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, 852 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN, 853 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX, 854 POWER_SUPPLY_PROP_TEMP_ALERT_MIN, 855 POWER_SUPPLY_PROP_TEMP_ALERT_MAX, 856 POWER_SUPPLY_PROP_TEMP_MIN, 857 POWER_SUPPLY_PROP_TEMP_MAX, 858 }; 859 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties); 860 861 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties); 862 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size); 863 864 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info, 865 enum power_supply_property psp) 866 { 867 if (!info) 868 return false; 869 870 switch (psp) { 871 case POWER_SUPPLY_PROP_TECHNOLOGY: 872 return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN; 873 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 874 return info->energy_full_design_uwh >= 0; 875 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 876 return info->charge_full_design_uah >= 0; 877 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 878 return info->voltage_min_design_uv >= 0; 879 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 880 return info->voltage_max_design_uv >= 0; 881 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 882 return info->precharge_current_ua >= 0; 883 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 884 return info->charge_term_current_ua >= 0; 885 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 886 return info->constant_charge_current_max_ua >= 0; 887 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 888 return info->constant_charge_voltage_max_uv >= 0; 889 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN: 890 return info->temp_ambient_alert_min > INT_MIN; 891 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX: 892 return info->temp_ambient_alert_max < INT_MAX; 893 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: 894 return info->temp_alert_min > INT_MIN; 895 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: 896 return info->temp_alert_max < INT_MAX; 897 case POWER_SUPPLY_PROP_TEMP_MIN: 898 return info->temp_min > INT_MIN; 899 case POWER_SUPPLY_PROP_TEMP_MAX: 900 return info->temp_max < INT_MAX; 901 default: 902 return false; 903 } 904 } 905 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop); 906 907 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info, 908 enum power_supply_property psp, 909 union power_supply_propval *val) 910 { 911 if (!info) 912 return -EINVAL; 913 914 if (!power_supply_battery_info_has_prop(info, psp)) 915 return -EINVAL; 916 917 switch (psp) { 918 case POWER_SUPPLY_PROP_TECHNOLOGY: 919 val->intval = info->technology; 920 return 0; 921 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 922 val->intval = info->energy_full_design_uwh; 923 return 0; 924 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 925 val->intval = info->charge_full_design_uah; 926 return 0; 927 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 928 val->intval = info->voltage_min_design_uv; 929 return 0; 930 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 931 val->intval = info->voltage_max_design_uv; 932 return 0; 933 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 934 val->intval = info->precharge_current_ua; 935 return 0; 936 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 937 val->intval = info->charge_term_current_ua; 938 return 0; 939 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 940 val->intval = info->constant_charge_current_max_ua; 941 return 0; 942 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 943 val->intval = info->constant_charge_voltage_max_uv; 944 return 0; 945 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN: 946 val->intval = info->temp_ambient_alert_min; 947 return 0; 948 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX: 949 val->intval = info->temp_ambient_alert_max; 950 return 0; 951 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: 952 val->intval = info->temp_alert_min; 953 return 0; 954 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: 955 val->intval = info->temp_alert_max; 956 return 0; 957 case POWER_SUPPLY_PROP_TEMP_MIN: 958 val->intval = info->temp_min; 959 return 0; 960 case POWER_SUPPLY_PROP_TEMP_MAX: 961 val->intval = info->temp_max; 962 return 0; 963 default: 964 return -EINVAL; 965 } 966 } 967 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop); 968 969 /** 970 * power_supply_temp2resist_simple() - find the battery internal resistance 971 * percent from temperature 972 * @table: Pointer to battery resistance temperature table 973 * @table_len: The table length 974 * @temp: Current temperature 975 * 976 * This helper function is used to look up battery internal resistance percent 977 * according to current temperature value from the resistance temperature table, 978 * and the table must be ordered descending. Then the actual battery internal 979 * resistance = the ideal battery internal resistance * percent / 100. 980 * 981 * Return: the battery internal resistance percent 982 */ 983 int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table, 984 int table_len, int temp) 985 { 986 int i, high, low; 987 988 for (i = 0; i < table_len; i++) 989 if (temp > table[i].temp) 990 break; 991 992 /* The library function will deal with high == low */ 993 if (i == 0) 994 high = low = i; 995 else if (i == table_len) 996 high = low = i - 1; 997 else 998 high = (low = i) - 1; 999 1000 return fixp_linear_interpolate(table[low].temp, 1001 table[low].resistance, 1002 table[high].temp, 1003 table[high].resistance, 1004 temp); 1005 } 1006 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple); 1007 1008 /** 1009 * power_supply_vbat2ri() - find the battery internal resistance 1010 * from the battery voltage 1011 * @info: The battery information container 1012 * @vbat_uv: The battery voltage in microvolt 1013 * @charging: If we are charging (true) or not (false) 1014 * 1015 * This helper function is used to look up battery internal resistance 1016 * according to current battery voltage. Depending on whether the battery 1017 * is currently charging or not, different resistance will be returned. 1018 * 1019 * Returns the internal resistance in microohm or negative error code. 1020 */ 1021 int power_supply_vbat2ri(struct power_supply_battery_info *info, 1022 int vbat_uv, bool charging) 1023 { 1024 struct power_supply_vbat_ri_table *vbat2ri; 1025 int table_len; 1026 int i, high, low; 1027 1028 /* 1029 * If we are charging, and the battery supplies a separate table 1030 * for this state, we use that in order to compensate for the 1031 * charging voltage. Otherwise we use the main table. 1032 */ 1033 if (charging && info->vbat2ri_charging) { 1034 vbat2ri = info->vbat2ri_charging; 1035 table_len = info->vbat2ri_charging_size; 1036 } else { 1037 vbat2ri = info->vbat2ri_discharging; 1038 table_len = info->vbat2ri_discharging_size; 1039 } 1040 1041 /* 1042 * If no tables are specified, or if we are above the highest voltage in 1043 * the voltage table, just return the factory specified internal resistance. 1044 */ 1045 if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) { 1046 if (charging && (info->factory_internal_resistance_charging_uohm > 0)) 1047 return info->factory_internal_resistance_charging_uohm; 1048 else 1049 return info->factory_internal_resistance_uohm; 1050 } 1051 1052 /* Break loop at table_len - 1 because that is the highest index */ 1053 for (i = 0; i < table_len - 1; i++) 1054 if (vbat_uv > vbat2ri[i].vbat_uv) 1055 break; 1056 1057 /* The library function will deal with high == low */ 1058 if ((i == 0) || (i == (table_len - 1))) 1059 high = i; 1060 else 1061 high = i - 1; 1062 low = i; 1063 1064 return fixp_linear_interpolate(vbat2ri[low].vbat_uv, 1065 vbat2ri[low].ri_uohm, 1066 vbat2ri[high].vbat_uv, 1067 vbat2ri[high].ri_uohm, 1068 vbat_uv); 1069 } 1070 EXPORT_SYMBOL_GPL(power_supply_vbat2ri); 1071 1072 struct power_supply_maintenance_charge_table * 1073 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, 1074 int index) 1075 { 1076 if (index >= info->maintenance_charge_size) 1077 return NULL; 1078 return &info->maintenance_charge[index]; 1079 } 1080 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting); 1081 1082 /** 1083 * power_supply_ocv2cap_simple() - find the battery capacity 1084 * @table: Pointer to battery OCV lookup table 1085 * @table_len: OCV table length 1086 * @ocv: Current OCV value 1087 * 1088 * This helper function is used to look up battery capacity according to 1089 * current OCV value from one OCV table, and the OCV table must be ordered 1090 * descending. 1091 * 1092 * Return: the battery capacity. 1093 */ 1094 int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table, 1095 int table_len, int ocv) 1096 { 1097 int i, high, low; 1098 1099 for (i = 0; i < table_len; i++) 1100 if (ocv > table[i].ocv) 1101 break; 1102 1103 /* The library function will deal with high == low */ 1104 if (i == 0) 1105 high = low = i; 1106 else if (i == table_len) 1107 high = low = i - 1; 1108 else 1109 high = (low = i) - 1; 1110 1111 return fixp_linear_interpolate(table[low].ocv, 1112 table[low].capacity, 1113 table[high].ocv, 1114 table[high].capacity, 1115 ocv); 1116 } 1117 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple); 1118 1119 struct power_supply_battery_ocv_table * 1120 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, 1121 int temp, int *table_len) 1122 { 1123 int best_temp_diff = INT_MAX, temp_diff; 1124 u8 i, best_index = 0; 1125 1126 if (!info->ocv_table[0]) 1127 return NULL; 1128 1129 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) { 1130 /* Out of capacity tables */ 1131 if (!info->ocv_table[i]) 1132 break; 1133 1134 temp_diff = abs(info->ocv_temp[i] - temp); 1135 1136 if (temp_diff < best_temp_diff) { 1137 best_temp_diff = temp_diff; 1138 best_index = i; 1139 } 1140 } 1141 1142 *table_len = info->ocv_table_size[best_index]; 1143 return info->ocv_table[best_index]; 1144 } 1145 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table); 1146 1147 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, 1148 int ocv, int temp) 1149 { 1150 struct power_supply_battery_ocv_table *table; 1151 int table_len; 1152 1153 table = power_supply_find_ocv2cap_table(info, temp, &table_len); 1154 if (!table) 1155 return -EINVAL; 1156 1157 return power_supply_ocv2cap_simple(table, table_len, ocv); 1158 } 1159 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap); 1160 1161 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info, 1162 int resistance) 1163 { 1164 int low, high; 1165 1166 /* Nothing like this can be checked */ 1167 if (info->bti_resistance_ohm <= 0) 1168 return false; 1169 1170 /* This will be extremely strict and unlikely to work */ 1171 if (info->bti_resistance_tolerance <= 0) 1172 return (info->bti_resistance_ohm == resistance); 1173 1174 low = info->bti_resistance_ohm - 1175 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100; 1176 high = info->bti_resistance_ohm + 1177 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100; 1178 1179 return ((resistance >= low) && (resistance <= high)); 1180 } 1181 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range); 1182 1183 static bool psy_has_property(const struct power_supply_desc *psy_desc, 1184 enum power_supply_property psp) 1185 { 1186 bool found = false; 1187 int i; 1188 1189 for (i = 0; i < psy_desc->num_properties; i++) { 1190 if (psy_desc->properties[i] == psp) { 1191 found = true; 1192 break; 1193 } 1194 } 1195 1196 return found; 1197 } 1198 1199 int power_supply_get_property(struct power_supply *psy, 1200 enum power_supply_property psp, 1201 union power_supply_propval *val) 1202 { 1203 if (atomic_read(&psy->use_cnt) <= 0) { 1204 if (!psy->initialized) 1205 return -EAGAIN; 1206 return -ENODEV; 1207 } 1208 1209 if (psy_has_property(psy->desc, psp)) 1210 return psy->desc->get_property(psy, psp, val); 1211 else if (power_supply_battery_info_has_prop(psy->battery_info, psp)) 1212 return power_supply_battery_info_get_prop(psy->battery_info, psp, val); 1213 else 1214 return -EINVAL; 1215 } 1216 EXPORT_SYMBOL_GPL(power_supply_get_property); 1217 1218 int power_supply_set_property(struct power_supply *psy, 1219 enum power_supply_property psp, 1220 const union power_supply_propval *val) 1221 { 1222 if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property) 1223 return -ENODEV; 1224 1225 return psy->desc->set_property(psy, psp, val); 1226 } 1227 EXPORT_SYMBOL_GPL(power_supply_set_property); 1228 1229 int power_supply_property_is_writeable(struct power_supply *psy, 1230 enum power_supply_property psp) 1231 { 1232 if (atomic_read(&psy->use_cnt) <= 0 || 1233 !psy->desc->property_is_writeable) 1234 return -ENODEV; 1235 1236 return psy->desc->property_is_writeable(psy, psp); 1237 } 1238 EXPORT_SYMBOL_GPL(power_supply_property_is_writeable); 1239 1240 void power_supply_external_power_changed(struct power_supply *psy) 1241 { 1242 if (atomic_read(&psy->use_cnt) <= 0 || 1243 !psy->desc->external_power_changed) 1244 return; 1245 1246 psy->desc->external_power_changed(psy); 1247 } 1248 EXPORT_SYMBOL_GPL(power_supply_external_power_changed); 1249 1250 int power_supply_powers(struct power_supply *psy, struct device *dev) 1251 { 1252 return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers"); 1253 } 1254 EXPORT_SYMBOL_GPL(power_supply_powers); 1255 1256 static void power_supply_dev_release(struct device *dev) 1257 { 1258 struct power_supply *psy = to_power_supply(dev); 1259 dev_dbg(dev, "%s\n", __func__); 1260 kfree(psy); 1261 } 1262 1263 int power_supply_reg_notifier(struct notifier_block *nb) 1264 { 1265 return atomic_notifier_chain_register(&power_supply_notifier, nb); 1266 } 1267 EXPORT_SYMBOL_GPL(power_supply_reg_notifier); 1268 1269 void power_supply_unreg_notifier(struct notifier_block *nb) 1270 { 1271 atomic_notifier_chain_unregister(&power_supply_notifier, nb); 1272 } 1273 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier); 1274 1275 #ifdef CONFIG_THERMAL 1276 static int power_supply_read_temp(struct thermal_zone_device *tzd, 1277 int *temp) 1278 { 1279 struct power_supply *psy; 1280 union power_supply_propval val; 1281 int ret; 1282 1283 WARN_ON(tzd == NULL); 1284 psy = thermal_zone_device_priv(tzd); 1285 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val); 1286 if (ret) 1287 return ret; 1288 1289 /* Convert tenths of degree Celsius to milli degree Celsius. */ 1290 *temp = val.intval * 100; 1291 1292 return ret; 1293 } 1294 1295 static struct thermal_zone_device_ops psy_tzd_ops = { 1296 .get_temp = power_supply_read_temp, 1297 }; 1298 1299 static int psy_register_thermal(struct power_supply *psy) 1300 { 1301 int ret; 1302 1303 if (psy->desc->no_thermal) 1304 return 0; 1305 1306 /* Register battery zone device psy reports temperature */ 1307 if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) { 1308 /* Prefer our hwmon device and avoid duplicates */ 1309 struct thermal_zone_params tzp = { 1310 .no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON) 1311 }; 1312 psy->tzd = thermal_tripless_zone_device_register(psy->desc->name, 1313 psy, &psy_tzd_ops, &tzp); 1314 if (IS_ERR(psy->tzd)) 1315 return PTR_ERR(psy->tzd); 1316 ret = thermal_zone_device_enable(psy->tzd); 1317 if (ret) 1318 thermal_zone_device_unregister(psy->tzd); 1319 return ret; 1320 } 1321 1322 return 0; 1323 } 1324 1325 static void psy_unregister_thermal(struct power_supply *psy) 1326 { 1327 if (IS_ERR_OR_NULL(psy->tzd)) 1328 return; 1329 thermal_zone_device_unregister(psy->tzd); 1330 } 1331 1332 #else 1333 static int psy_register_thermal(struct power_supply *psy) 1334 { 1335 return 0; 1336 } 1337 1338 static void psy_unregister_thermal(struct power_supply *psy) 1339 { 1340 } 1341 #endif 1342 1343 static struct power_supply *__must_check 1344 __power_supply_register(struct device *parent, 1345 const struct power_supply_desc *desc, 1346 const struct power_supply_config *cfg, 1347 bool ws) 1348 { 1349 struct device *dev; 1350 struct power_supply *psy; 1351 int rc; 1352 1353 if (!desc || !desc->name || !desc->properties || !desc->num_properties) 1354 return ERR_PTR(-EINVAL); 1355 1356 if (!parent) 1357 pr_warn("%s: Expected proper parent device for '%s'\n", 1358 __func__, desc->name); 1359 1360 if (psy_has_property(desc, POWER_SUPPLY_PROP_USB_TYPE) && 1361 (!desc->usb_types || !desc->num_usb_types)) 1362 return ERR_PTR(-EINVAL); 1363 1364 psy = kzalloc(sizeof(*psy), GFP_KERNEL); 1365 if (!psy) 1366 return ERR_PTR(-ENOMEM); 1367 1368 dev = &psy->dev; 1369 1370 device_initialize(dev); 1371 1372 dev->class = power_supply_class; 1373 dev->type = &power_supply_dev_type; 1374 dev->parent = parent; 1375 dev->release = power_supply_dev_release; 1376 dev_set_drvdata(dev, psy); 1377 psy->desc = desc; 1378 if (cfg) { 1379 dev->groups = cfg->attr_grp; 1380 psy->drv_data = cfg->drv_data; 1381 psy->of_node = 1382 cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node; 1383 psy->supplied_to = cfg->supplied_to; 1384 psy->num_supplicants = cfg->num_supplicants; 1385 } 1386 1387 rc = dev_set_name(dev, "%s", desc->name); 1388 if (rc) 1389 goto dev_set_name_failed; 1390 1391 INIT_WORK(&psy->changed_work, power_supply_changed_work); 1392 INIT_DELAYED_WORK(&psy->deferred_register_work, 1393 power_supply_deferred_register_work); 1394 1395 rc = power_supply_check_supplies(psy); 1396 if (rc) { 1397 dev_dbg(dev, "Not all required supplies found, defer probe\n"); 1398 goto check_supplies_failed; 1399 } 1400 1401 /* 1402 * Expose constant battery info, if it is available. While there are 1403 * some chargers accessing constant battery data, we only want to 1404 * expose battery data to userspace for battery devices. 1405 */ 1406 if (desc->type == POWER_SUPPLY_TYPE_BATTERY) { 1407 rc = power_supply_get_battery_info(psy, &psy->battery_info); 1408 if (rc && rc != -ENODEV && rc != -ENOENT) 1409 goto check_supplies_failed; 1410 } 1411 1412 spin_lock_init(&psy->changed_lock); 1413 rc = device_add(dev); 1414 if (rc) 1415 goto device_add_failed; 1416 1417 rc = device_init_wakeup(dev, ws); 1418 if (rc) 1419 goto wakeup_init_failed; 1420 1421 rc = psy_register_thermal(psy); 1422 if (rc) 1423 goto register_thermal_failed; 1424 1425 rc = power_supply_create_triggers(psy); 1426 if (rc) 1427 goto create_triggers_failed; 1428 1429 rc = power_supply_add_hwmon_sysfs(psy); 1430 if (rc) 1431 goto add_hwmon_sysfs_failed; 1432 1433 /* 1434 * Update use_cnt after any uevents (most notably from device_add()). 1435 * We are here still during driver's probe but 1436 * the power_supply_uevent() calls back driver's get_property 1437 * method so: 1438 * 1. Driver did not assigned the returned struct power_supply, 1439 * 2. Driver could not finish initialization (anything in its probe 1440 * after calling power_supply_register()). 1441 */ 1442 atomic_inc(&psy->use_cnt); 1443 psy->initialized = true; 1444 1445 queue_delayed_work(system_power_efficient_wq, 1446 &psy->deferred_register_work, 1447 POWER_SUPPLY_DEFERRED_REGISTER_TIME); 1448 1449 return psy; 1450 1451 add_hwmon_sysfs_failed: 1452 power_supply_remove_triggers(psy); 1453 create_triggers_failed: 1454 psy_unregister_thermal(psy); 1455 register_thermal_failed: 1456 wakeup_init_failed: 1457 device_del(dev); 1458 device_add_failed: 1459 check_supplies_failed: 1460 dev_set_name_failed: 1461 put_device(dev); 1462 return ERR_PTR(rc); 1463 } 1464 1465 /** 1466 * power_supply_register() - Register new power supply 1467 * @parent: Device to be a parent of power supply's device, usually 1468 * the device which probe function calls this 1469 * @desc: Description of power supply, must be valid through whole 1470 * lifetime of this power supply 1471 * @cfg: Run-time specific configuration accessed during registering, 1472 * may be NULL 1473 * 1474 * Return: A pointer to newly allocated power_supply on success 1475 * or ERR_PTR otherwise. 1476 * Use power_supply_unregister() on returned power_supply pointer to release 1477 * resources. 1478 */ 1479 struct power_supply *__must_check power_supply_register(struct device *parent, 1480 const struct power_supply_desc *desc, 1481 const struct power_supply_config *cfg) 1482 { 1483 return __power_supply_register(parent, desc, cfg, true); 1484 } 1485 EXPORT_SYMBOL_GPL(power_supply_register); 1486 1487 /** 1488 * power_supply_register_no_ws() - Register new non-waking-source power supply 1489 * @parent: Device to be a parent of power supply's device, usually 1490 * the device which probe function calls this 1491 * @desc: Description of power supply, must be valid through whole 1492 * lifetime of this power supply 1493 * @cfg: Run-time specific configuration accessed during registering, 1494 * may be NULL 1495 * 1496 * Return: A pointer to newly allocated power_supply on success 1497 * or ERR_PTR otherwise. 1498 * Use power_supply_unregister() on returned power_supply pointer to release 1499 * resources. 1500 */ 1501 struct power_supply *__must_check 1502 power_supply_register_no_ws(struct device *parent, 1503 const struct power_supply_desc *desc, 1504 const struct power_supply_config *cfg) 1505 { 1506 return __power_supply_register(parent, desc, cfg, false); 1507 } 1508 EXPORT_SYMBOL_GPL(power_supply_register_no_ws); 1509 1510 static void devm_power_supply_release(struct device *dev, void *res) 1511 { 1512 struct power_supply **psy = res; 1513 1514 power_supply_unregister(*psy); 1515 } 1516 1517 /** 1518 * devm_power_supply_register() - Register managed power supply 1519 * @parent: Device to be a parent of power supply's device, usually 1520 * the device which probe function calls this 1521 * @desc: Description of power supply, must be valid through whole 1522 * lifetime of this power supply 1523 * @cfg: Run-time specific configuration accessed during registering, 1524 * may be NULL 1525 * 1526 * Return: A pointer to newly allocated power_supply on success 1527 * or ERR_PTR otherwise. 1528 * The returned power_supply pointer will be automatically unregistered 1529 * on driver detach. 1530 */ 1531 struct power_supply *__must_check 1532 devm_power_supply_register(struct device *parent, 1533 const struct power_supply_desc *desc, 1534 const struct power_supply_config *cfg) 1535 { 1536 struct power_supply **ptr, *psy; 1537 1538 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL); 1539 1540 if (!ptr) 1541 return ERR_PTR(-ENOMEM); 1542 psy = __power_supply_register(parent, desc, cfg, true); 1543 if (IS_ERR(psy)) { 1544 devres_free(ptr); 1545 } else { 1546 *ptr = psy; 1547 devres_add(parent, ptr); 1548 } 1549 return psy; 1550 } 1551 EXPORT_SYMBOL_GPL(devm_power_supply_register); 1552 1553 /** 1554 * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply 1555 * @parent: Device to be a parent of power supply's device, usually 1556 * the device which probe function calls this 1557 * @desc: Description of power supply, must be valid through whole 1558 * lifetime of this power supply 1559 * @cfg: Run-time specific configuration accessed during registering, 1560 * may be NULL 1561 * 1562 * Return: A pointer to newly allocated power_supply on success 1563 * or ERR_PTR otherwise. 1564 * The returned power_supply pointer will be automatically unregistered 1565 * on driver detach. 1566 */ 1567 struct power_supply *__must_check 1568 devm_power_supply_register_no_ws(struct device *parent, 1569 const struct power_supply_desc *desc, 1570 const struct power_supply_config *cfg) 1571 { 1572 struct power_supply **ptr, *psy; 1573 1574 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL); 1575 1576 if (!ptr) 1577 return ERR_PTR(-ENOMEM); 1578 psy = __power_supply_register(parent, desc, cfg, false); 1579 if (IS_ERR(psy)) { 1580 devres_free(ptr); 1581 } else { 1582 *ptr = psy; 1583 devres_add(parent, ptr); 1584 } 1585 return psy; 1586 } 1587 EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws); 1588 1589 /** 1590 * power_supply_unregister() - Remove this power supply from system 1591 * @psy: Pointer to power supply to unregister 1592 * 1593 * Remove this power supply from the system. The resources of power supply 1594 * will be freed here or on last power_supply_put() call. 1595 */ 1596 void power_supply_unregister(struct power_supply *psy) 1597 { 1598 WARN_ON(atomic_dec_return(&psy->use_cnt)); 1599 psy->removing = true; 1600 cancel_work_sync(&psy->changed_work); 1601 cancel_delayed_work_sync(&psy->deferred_register_work); 1602 sysfs_remove_link(&psy->dev.kobj, "powers"); 1603 power_supply_remove_hwmon_sysfs(psy); 1604 power_supply_remove_triggers(psy); 1605 psy_unregister_thermal(psy); 1606 device_init_wakeup(&psy->dev, false); 1607 device_unregister(&psy->dev); 1608 } 1609 EXPORT_SYMBOL_GPL(power_supply_unregister); 1610 1611 void *power_supply_get_drvdata(struct power_supply *psy) 1612 { 1613 return psy->drv_data; 1614 } 1615 EXPORT_SYMBOL_GPL(power_supply_get_drvdata); 1616 1617 static int __init power_supply_class_init(void) 1618 { 1619 power_supply_class = class_create("power_supply"); 1620 1621 if (IS_ERR(power_supply_class)) 1622 return PTR_ERR(power_supply_class); 1623 1624 power_supply_class->dev_uevent = power_supply_uevent; 1625 power_supply_init_attrs(&power_supply_dev_type); 1626 1627 return 0; 1628 } 1629 1630 static void __exit power_supply_class_exit(void) 1631 { 1632 class_destroy(power_supply_class); 1633 } 1634 1635 subsys_initcall(power_supply_class_init); 1636 module_exit(power_supply_class_exit); 1637 1638 MODULE_DESCRIPTION("Universal power supply monitor class"); 1639 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>, " 1640 "Szabolcs Gyurko, " 1641 "Anton Vorontsov <cbou@mail.ru>"); 1642