1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Universal power supply monitor class 4 * 5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru> 6 * Copyright © 2004 Szabolcs Gyurko 7 * Copyright © 2003 Ian Molton <spyro@f2s.com> 8 * 9 * Modified: 2004, Oct Szabolcs Gyurko 10 */ 11 12 #include <linux/module.h> 13 #include <linux/types.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/delay.h> 17 #include <linux/device.h> 18 #include <linux/notifier.h> 19 #include <linux/err.h> 20 #include <linux/of.h> 21 #include <linux/power_supply.h> 22 #include <linux/property.h> 23 #include <linux/thermal.h> 24 #include <linux/fixp-arith.h> 25 #include "power_supply.h" 26 #include "samsung-sdi-battery.h" 27 28 /* exported for the APM Power driver, APM emulation */ 29 struct class *power_supply_class; 30 EXPORT_SYMBOL_GPL(power_supply_class); 31 32 BLOCKING_NOTIFIER_HEAD(power_supply_notifier); 33 EXPORT_SYMBOL_GPL(power_supply_notifier); 34 35 static struct device_type power_supply_dev_type; 36 37 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME msecs_to_jiffies(10) 38 39 static bool __power_supply_is_supplied_by(struct power_supply *supplier, 40 struct power_supply *supply) 41 { 42 int i; 43 44 if (!supply->supplied_from && !supplier->supplied_to) 45 return false; 46 47 /* Support both supplied_to and supplied_from modes */ 48 if (supply->supplied_from) { 49 if (!supplier->desc->name) 50 return false; 51 for (i = 0; i < supply->num_supplies; i++) 52 if (!strcmp(supplier->desc->name, supply->supplied_from[i])) 53 return true; 54 } else { 55 if (!supply->desc->name) 56 return false; 57 for (i = 0; i < supplier->num_supplicants; i++) 58 if (!strcmp(supplier->supplied_to[i], supply->desc->name)) 59 return true; 60 } 61 62 return false; 63 } 64 65 static int __power_supply_changed_work(struct device *dev, void *data) 66 { 67 struct power_supply *psy = data; 68 struct power_supply *pst = dev_get_drvdata(dev); 69 70 if (__power_supply_is_supplied_by(psy, pst)) { 71 if (pst->desc->external_power_changed) 72 pst->desc->external_power_changed(pst); 73 } 74 75 return 0; 76 } 77 78 static void power_supply_changed_work(struct work_struct *work) 79 { 80 unsigned long flags; 81 struct power_supply *psy = container_of(work, struct power_supply, 82 changed_work); 83 84 dev_dbg(&psy->dev, "%s\n", __func__); 85 86 spin_lock_irqsave(&psy->changed_lock, flags); 87 /* 88 * Check 'changed' here to avoid issues due to race between 89 * power_supply_changed() and this routine. In worst case 90 * power_supply_changed() can be called again just before we take above 91 * lock. During the first call of this routine we will mark 'changed' as 92 * false and it will stay false for the next call as well. 93 */ 94 if (likely(psy->changed)) { 95 psy->changed = false; 96 spin_unlock_irqrestore(&psy->changed_lock, flags); 97 class_for_each_device(power_supply_class, NULL, psy, 98 __power_supply_changed_work); 99 power_supply_update_leds(psy); 100 blocking_notifier_call_chain(&power_supply_notifier, 101 PSY_EVENT_PROP_CHANGED, psy); 102 kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE); 103 spin_lock_irqsave(&psy->changed_lock, flags); 104 } 105 106 /* 107 * Hold the wakeup_source until all events are processed. 108 * power_supply_changed() might have called again and have set 'changed' 109 * to true. 110 */ 111 if (likely(!psy->changed)) 112 pm_relax(&psy->dev); 113 spin_unlock_irqrestore(&psy->changed_lock, flags); 114 } 115 116 void power_supply_changed(struct power_supply *psy) 117 { 118 unsigned long flags; 119 120 dev_dbg(&psy->dev, "%s\n", __func__); 121 122 spin_lock_irqsave(&psy->changed_lock, flags); 123 psy->changed = true; 124 pm_stay_awake(&psy->dev); 125 spin_unlock_irqrestore(&psy->changed_lock, flags); 126 schedule_work(&psy->changed_work); 127 } 128 EXPORT_SYMBOL_GPL(power_supply_changed); 129 130 /* 131 * Notify that power supply was registered after parent finished the probing. 132 * 133 * Often power supply is registered from driver's probe function. However 134 * calling power_supply_changed() directly from power_supply_register() 135 * would lead to execution of get_property() function provided by the driver 136 * too early - before the probe ends. 137 * 138 * Avoid that by waiting on parent's mutex. 139 */ 140 static void power_supply_deferred_register_work(struct work_struct *work) 141 { 142 struct power_supply *psy = container_of(work, struct power_supply, 143 deferred_register_work.work); 144 145 if (psy->dev.parent) { 146 while (!mutex_trylock(&psy->dev.parent->mutex)) { 147 if (psy->removing) 148 return; 149 msleep(10); 150 } 151 } 152 153 power_supply_changed(psy); 154 155 if (psy->dev.parent) 156 mutex_unlock(&psy->dev.parent->mutex); 157 } 158 159 #ifdef CONFIG_OF 160 static int __power_supply_populate_supplied_from(struct device *dev, 161 void *data) 162 { 163 struct power_supply *psy = data; 164 struct power_supply *epsy = dev_get_drvdata(dev); 165 struct device_node *np; 166 int i = 0; 167 168 do { 169 np = of_parse_phandle(psy->of_node, "power-supplies", i++); 170 if (!np) 171 break; 172 173 if (np == epsy->of_node) { 174 dev_dbg(&psy->dev, "%s: Found supply : %s\n", 175 psy->desc->name, epsy->desc->name); 176 psy->supplied_from[i-1] = (char *)epsy->desc->name; 177 psy->num_supplies++; 178 of_node_put(np); 179 break; 180 } 181 of_node_put(np); 182 } while (np); 183 184 return 0; 185 } 186 187 static int power_supply_populate_supplied_from(struct power_supply *psy) 188 { 189 int error; 190 191 error = class_for_each_device(power_supply_class, NULL, psy, 192 __power_supply_populate_supplied_from); 193 194 dev_dbg(&psy->dev, "%s %d\n", __func__, error); 195 196 return error; 197 } 198 199 static int __power_supply_find_supply_from_node(struct device *dev, 200 void *data) 201 { 202 struct device_node *np = data; 203 struct power_supply *epsy = dev_get_drvdata(dev); 204 205 /* returning non-zero breaks out of class_for_each_device loop */ 206 if (epsy->of_node == np) 207 return 1; 208 209 return 0; 210 } 211 212 static int power_supply_find_supply_from_node(struct device_node *supply_node) 213 { 214 int error; 215 216 /* 217 * class_for_each_device() either returns its own errors or values 218 * returned by __power_supply_find_supply_from_node(). 219 * 220 * __power_supply_find_supply_from_node() will return 0 (no match) 221 * or 1 (match). 222 * 223 * We return 0 if class_for_each_device() returned 1, -EPROBE_DEFER if 224 * it returned 0, or error as returned by it. 225 */ 226 error = class_for_each_device(power_supply_class, NULL, supply_node, 227 __power_supply_find_supply_from_node); 228 229 return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER; 230 } 231 232 static int power_supply_check_supplies(struct power_supply *psy) 233 { 234 struct device_node *np; 235 int cnt = 0; 236 237 /* If there is already a list honor it */ 238 if (psy->supplied_from && psy->num_supplies > 0) 239 return 0; 240 241 /* No device node found, nothing to do */ 242 if (!psy->of_node) 243 return 0; 244 245 do { 246 int ret; 247 248 np = of_parse_phandle(psy->of_node, "power-supplies", cnt++); 249 if (!np) 250 break; 251 252 ret = power_supply_find_supply_from_node(np); 253 of_node_put(np); 254 255 if (ret) { 256 dev_dbg(&psy->dev, "Failed to find supply!\n"); 257 return ret; 258 } 259 } while (np); 260 261 /* Missing valid "power-supplies" entries */ 262 if (cnt == 1) 263 return 0; 264 265 /* All supplies found, allocate char ** array for filling */ 266 psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from), 267 GFP_KERNEL); 268 if (!psy->supplied_from) 269 return -ENOMEM; 270 271 *psy->supplied_from = devm_kcalloc(&psy->dev, 272 cnt - 1, sizeof(**psy->supplied_from), 273 GFP_KERNEL); 274 if (!*psy->supplied_from) 275 return -ENOMEM; 276 277 return power_supply_populate_supplied_from(psy); 278 } 279 #else 280 static int power_supply_check_supplies(struct power_supply *psy) 281 { 282 int nval, ret; 283 284 if (!psy->dev.parent) 285 return 0; 286 287 nval = device_property_string_array_count(psy->dev.parent, "supplied-from"); 288 if (nval <= 0) 289 return 0; 290 291 psy->supplied_from = devm_kmalloc_array(&psy->dev, nval, 292 sizeof(char *), GFP_KERNEL); 293 if (!psy->supplied_from) 294 return -ENOMEM; 295 296 ret = device_property_read_string_array(psy->dev.parent, 297 "supplied-from", (const char **)psy->supplied_from, nval); 298 if (ret < 0) 299 return ret; 300 301 psy->num_supplies = nval; 302 303 return 0; 304 } 305 #endif 306 307 struct psy_am_i_supplied_data { 308 struct power_supply *psy; 309 unsigned int count; 310 }; 311 312 static int __power_supply_am_i_supplied(struct device *dev, void *_data) 313 { 314 union power_supply_propval ret = {0,}; 315 struct power_supply *epsy = dev_get_drvdata(dev); 316 struct psy_am_i_supplied_data *data = _data; 317 318 if (__power_supply_is_supplied_by(epsy, data->psy)) { 319 data->count++; 320 if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE, 321 &ret)) 322 return ret.intval; 323 } 324 325 return 0; 326 } 327 328 int power_supply_am_i_supplied(struct power_supply *psy) 329 { 330 struct psy_am_i_supplied_data data = { psy, 0 }; 331 int error; 332 333 error = class_for_each_device(power_supply_class, NULL, &data, 334 __power_supply_am_i_supplied); 335 336 dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error); 337 338 if (data.count == 0) 339 return -ENODEV; 340 341 return error; 342 } 343 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied); 344 345 static int __power_supply_is_system_supplied(struct device *dev, void *data) 346 { 347 union power_supply_propval ret = {0,}; 348 struct power_supply *psy = dev_get_drvdata(dev); 349 unsigned int *count = data; 350 351 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret)) 352 if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE) 353 return 0; 354 355 (*count)++; 356 if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY) 357 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE, 358 &ret)) 359 return ret.intval; 360 361 return 0; 362 } 363 364 int power_supply_is_system_supplied(void) 365 { 366 int error; 367 unsigned int count = 0; 368 369 error = class_for_each_device(power_supply_class, NULL, &count, 370 __power_supply_is_system_supplied); 371 372 /* 373 * If no system scope power class device was found at all, most probably we 374 * are running on a desktop system, so assume we are on mains power. 375 */ 376 if (count == 0) 377 return 1; 378 379 return error; 380 } 381 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied); 382 383 struct psy_get_supplier_prop_data { 384 struct power_supply *psy; 385 enum power_supply_property psp; 386 union power_supply_propval *val; 387 }; 388 389 static int __power_supply_get_supplier_property(struct device *dev, void *_data) 390 { 391 struct power_supply *epsy = dev_get_drvdata(dev); 392 struct psy_get_supplier_prop_data *data = _data; 393 394 if (__power_supply_is_supplied_by(epsy, data->psy)) 395 if (!power_supply_get_property(epsy, data->psp, data->val)) 396 return 1; /* Success */ 397 398 return 0; /* Continue iterating */ 399 } 400 401 int power_supply_get_property_from_supplier(struct power_supply *psy, 402 enum power_supply_property psp, 403 union power_supply_propval *val) 404 { 405 struct psy_get_supplier_prop_data data = { 406 .psy = psy, 407 .psp = psp, 408 .val = val, 409 }; 410 int ret; 411 412 /* 413 * This function is not intended for use with a supply with multiple 414 * suppliers, we simply pick the first supply to report the psp. 415 */ 416 ret = class_for_each_device(power_supply_class, NULL, &data, 417 __power_supply_get_supplier_property); 418 if (ret < 0) 419 return ret; 420 if (ret == 0) 421 return -ENODEV; 422 423 return 0; 424 } 425 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier); 426 427 int power_supply_set_battery_charged(struct power_supply *psy) 428 { 429 if (atomic_read(&psy->use_cnt) >= 0 && 430 psy->desc->type == POWER_SUPPLY_TYPE_BATTERY && 431 psy->desc->set_charged) { 432 psy->desc->set_charged(psy); 433 return 0; 434 } 435 436 return -EINVAL; 437 } 438 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged); 439 440 static int power_supply_match_device_by_name(struct device *dev, const void *data) 441 { 442 const char *name = data; 443 struct power_supply *psy = dev_get_drvdata(dev); 444 445 return strcmp(psy->desc->name, name) == 0; 446 } 447 448 /** 449 * power_supply_get_by_name() - Search for a power supply and returns its ref 450 * @name: Power supply name to fetch 451 * 452 * If power supply was found, it increases reference count for the 453 * internal power supply's device. The user should power_supply_put() 454 * after usage. 455 * 456 * Return: On success returns a reference to a power supply with 457 * matching name equals to @name, a NULL otherwise. 458 */ 459 struct power_supply *power_supply_get_by_name(const char *name) 460 { 461 struct power_supply *psy = NULL; 462 struct device *dev = class_find_device(power_supply_class, NULL, name, 463 power_supply_match_device_by_name); 464 465 if (dev) { 466 psy = dev_get_drvdata(dev); 467 atomic_inc(&psy->use_cnt); 468 } 469 470 return psy; 471 } 472 EXPORT_SYMBOL_GPL(power_supply_get_by_name); 473 474 /** 475 * power_supply_put() - Drop reference obtained with power_supply_get_by_name 476 * @psy: Reference to put 477 * 478 * The reference to power supply should be put before unregistering 479 * the power supply. 480 */ 481 void power_supply_put(struct power_supply *psy) 482 { 483 atomic_dec(&psy->use_cnt); 484 put_device(&psy->dev); 485 } 486 EXPORT_SYMBOL_GPL(power_supply_put); 487 488 #ifdef CONFIG_OF 489 static int power_supply_match_device_node(struct device *dev, const void *data) 490 { 491 return dev->parent && dev->parent->of_node == data; 492 } 493 494 /** 495 * power_supply_get_by_phandle() - Search for a power supply and returns its ref 496 * @np: Pointer to device node holding phandle property 497 * @property: Name of property holding a power supply name 498 * 499 * If power supply was found, it increases reference count for the 500 * internal power supply's device. The user should power_supply_put() 501 * after usage. 502 * 503 * Return: On success returns a reference to a power supply with 504 * matching name equals to value under @property, NULL or ERR_PTR otherwise. 505 */ 506 struct power_supply *power_supply_get_by_phandle(struct device_node *np, 507 const char *property) 508 { 509 struct device_node *power_supply_np; 510 struct power_supply *psy = NULL; 511 struct device *dev; 512 513 power_supply_np = of_parse_phandle(np, property, 0); 514 if (!power_supply_np) 515 return ERR_PTR(-ENODEV); 516 517 dev = class_find_device(power_supply_class, NULL, power_supply_np, 518 power_supply_match_device_node); 519 520 of_node_put(power_supply_np); 521 522 if (dev) { 523 psy = dev_get_drvdata(dev); 524 atomic_inc(&psy->use_cnt); 525 } 526 527 return psy; 528 } 529 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle); 530 531 static void devm_power_supply_put(struct device *dev, void *res) 532 { 533 struct power_supply **psy = res; 534 535 power_supply_put(*psy); 536 } 537 538 /** 539 * devm_power_supply_get_by_phandle() - Resource managed version of 540 * power_supply_get_by_phandle() 541 * @dev: Pointer to device holding phandle property 542 * @property: Name of property holding a power supply phandle 543 * 544 * Return: On success returns a reference to a power supply with 545 * matching name equals to value under @property, NULL or ERR_PTR otherwise. 546 */ 547 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev, 548 const char *property) 549 { 550 struct power_supply **ptr, *psy; 551 552 if (!dev->of_node) 553 return ERR_PTR(-ENODEV); 554 555 ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL); 556 if (!ptr) 557 return ERR_PTR(-ENOMEM); 558 559 psy = power_supply_get_by_phandle(dev->of_node, property); 560 if (IS_ERR_OR_NULL(psy)) { 561 devres_free(ptr); 562 } else { 563 *ptr = psy; 564 devres_add(dev, ptr); 565 } 566 return psy; 567 } 568 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle); 569 #endif /* CONFIG_OF */ 570 571 int power_supply_get_battery_info(struct power_supply *psy, 572 struct power_supply_battery_info **info_out) 573 { 574 struct power_supply_resistance_temp_table *resist_table; 575 struct power_supply_battery_info *info; 576 struct device_node *battery_np = NULL; 577 struct fwnode_reference_args args; 578 struct fwnode_handle *fwnode = NULL; 579 const char *value; 580 int err, len, index; 581 const __be32 *list; 582 u32 min_max[2]; 583 584 if (psy->of_node) { 585 battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0); 586 if (!battery_np) 587 return -ENODEV; 588 589 fwnode = fwnode_handle_get(of_fwnode_handle(battery_np)); 590 } else if (psy->dev.parent) { 591 err = fwnode_property_get_reference_args( 592 dev_fwnode(psy->dev.parent), 593 "monitored-battery", NULL, 0, 0, &args); 594 if (err) 595 return err; 596 597 fwnode = args.fwnode; 598 } 599 600 if (!fwnode) 601 return -ENOENT; 602 603 err = fwnode_property_read_string(fwnode, "compatible", &value); 604 if (err) 605 goto out_put_node; 606 607 608 /* Try static batteries first */ 609 err = samsung_sdi_battery_get_info(&psy->dev, value, &info); 610 if (!err) 611 goto out_ret_pointer; 612 else if (err == -ENODEV) 613 /* 614 * Device does not have a static battery. 615 * Proceed to look for a simple battery. 616 */ 617 err = 0; 618 619 if (strcmp("simple-battery", value)) { 620 err = -ENODEV; 621 goto out_put_node; 622 } 623 624 info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL); 625 if (!info) { 626 err = -ENOMEM; 627 goto out_put_node; 628 } 629 630 info->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN; 631 info->energy_full_design_uwh = -EINVAL; 632 info->charge_full_design_uah = -EINVAL; 633 info->voltage_min_design_uv = -EINVAL; 634 info->voltage_max_design_uv = -EINVAL; 635 info->precharge_current_ua = -EINVAL; 636 info->charge_term_current_ua = -EINVAL; 637 info->constant_charge_current_max_ua = -EINVAL; 638 info->constant_charge_voltage_max_uv = -EINVAL; 639 info->tricklecharge_current_ua = -EINVAL; 640 info->precharge_voltage_max_uv = -EINVAL; 641 info->charge_restart_voltage_uv = -EINVAL; 642 info->overvoltage_limit_uv = -EINVAL; 643 info->maintenance_charge = NULL; 644 info->alert_low_temp_charge_current_ua = -EINVAL; 645 info->alert_low_temp_charge_voltage_uv = -EINVAL; 646 info->alert_high_temp_charge_current_ua = -EINVAL; 647 info->alert_high_temp_charge_voltage_uv = -EINVAL; 648 info->temp_ambient_alert_min = INT_MIN; 649 info->temp_ambient_alert_max = INT_MAX; 650 info->temp_alert_min = INT_MIN; 651 info->temp_alert_max = INT_MAX; 652 info->temp_min = INT_MIN; 653 info->temp_max = INT_MAX; 654 info->factory_internal_resistance_uohm = -EINVAL; 655 info->resist_table = NULL; 656 info->bti_resistance_ohm = -EINVAL; 657 info->bti_resistance_tolerance = -EINVAL; 658 659 for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) { 660 info->ocv_table[index] = NULL; 661 info->ocv_temp[index] = -EINVAL; 662 info->ocv_table_size[index] = -EINVAL; 663 } 664 665 /* The property and field names below must correspond to elements 666 * in enum power_supply_property. For reasoning, see 667 * Documentation/power/power_supply_class.rst. 668 */ 669 670 if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) { 671 if (!strcmp("nickel-cadmium", value)) 672 info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd; 673 else if (!strcmp("nickel-metal-hydride", value)) 674 info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH; 675 else if (!strcmp("lithium-ion", value)) 676 /* Imprecise lithium-ion type */ 677 info->technology = POWER_SUPPLY_TECHNOLOGY_LION; 678 else if (!strcmp("lithium-ion-polymer", value)) 679 info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO; 680 else if (!strcmp("lithium-ion-iron-phosphate", value)) 681 info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe; 682 else if (!strcmp("lithium-ion-manganese-oxide", value)) 683 info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn; 684 else 685 dev_warn(&psy->dev, "%s unknown battery type\n", value); 686 } 687 688 fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours", 689 &info->energy_full_design_uwh); 690 fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours", 691 &info->charge_full_design_uah); 692 fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt", 693 &info->voltage_min_design_uv); 694 fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt", 695 &info->voltage_max_design_uv); 696 fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp", 697 &info->tricklecharge_current_ua); 698 fwnode_property_read_u32(fwnode, "precharge-current-microamp", 699 &info->precharge_current_ua); 700 fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt", 701 &info->precharge_voltage_max_uv); 702 fwnode_property_read_u32(fwnode, "charge-term-current-microamp", 703 &info->charge_term_current_ua); 704 fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt", 705 &info->charge_restart_voltage_uv); 706 fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt", 707 &info->overvoltage_limit_uv); 708 fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp", 709 &info->constant_charge_current_max_ua); 710 fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt", 711 &info->constant_charge_voltage_max_uv); 712 fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms", 713 &info->factory_internal_resistance_uohm); 714 715 if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius", 716 min_max, ARRAY_SIZE(min_max))) { 717 info->temp_ambient_alert_min = min_max[0]; 718 info->temp_ambient_alert_max = min_max[1]; 719 } 720 if (!fwnode_property_read_u32_array(fwnode, "alert-celsius", 721 min_max, ARRAY_SIZE(min_max))) { 722 info->temp_alert_min = min_max[0]; 723 info->temp_alert_max = min_max[1]; 724 } 725 if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius", 726 min_max, ARRAY_SIZE(min_max))) { 727 info->temp_min = min_max[0]; 728 info->temp_max = min_max[1]; 729 } 730 731 /* 732 * The below code uses raw of-data parsing to parse 733 * /schemas/types.yaml#/definitions/uint32-matrix 734 * data, so for now this is only support with of. 735 */ 736 if (!battery_np) 737 goto out_ret_pointer; 738 739 len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius"); 740 if (len < 0 && len != -EINVAL) { 741 err = len; 742 goto out_put_node; 743 } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) { 744 dev_err(&psy->dev, "Too many temperature values\n"); 745 err = -EINVAL; 746 goto out_put_node; 747 } else if (len > 0) { 748 of_property_read_u32_array(battery_np, "ocv-capacity-celsius", 749 info->ocv_temp, len); 750 } 751 752 for (index = 0; index < len; index++) { 753 struct power_supply_battery_ocv_table *table; 754 char *propname; 755 int i, tab_len, size; 756 757 propname = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index); 758 if (!propname) { 759 power_supply_put_battery_info(psy, info); 760 err = -ENOMEM; 761 goto out_put_node; 762 } 763 list = of_get_property(battery_np, propname, &size); 764 if (!list || !size) { 765 dev_err(&psy->dev, "failed to get %s\n", propname); 766 kfree(propname); 767 power_supply_put_battery_info(psy, info); 768 err = -EINVAL; 769 goto out_put_node; 770 } 771 772 kfree(propname); 773 tab_len = size / (2 * sizeof(__be32)); 774 info->ocv_table_size[index] = tab_len; 775 776 table = info->ocv_table[index] = 777 devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL); 778 if (!info->ocv_table[index]) { 779 power_supply_put_battery_info(psy, info); 780 err = -ENOMEM; 781 goto out_put_node; 782 } 783 784 for (i = 0; i < tab_len; i++) { 785 table[i].ocv = be32_to_cpu(*list); 786 list++; 787 table[i].capacity = be32_to_cpu(*list); 788 list++; 789 } 790 } 791 792 list = of_get_property(battery_np, "resistance-temp-table", &len); 793 if (!list || !len) 794 goto out_ret_pointer; 795 796 info->resist_table_size = len / (2 * sizeof(__be32)); 797 resist_table = info->resist_table = devm_kcalloc(&psy->dev, 798 info->resist_table_size, 799 sizeof(*resist_table), 800 GFP_KERNEL); 801 if (!info->resist_table) { 802 power_supply_put_battery_info(psy, info); 803 err = -ENOMEM; 804 goto out_put_node; 805 } 806 807 for (index = 0; index < info->resist_table_size; index++) { 808 resist_table[index].temp = be32_to_cpu(*list++); 809 resist_table[index].resistance = be32_to_cpu(*list++); 810 } 811 812 out_ret_pointer: 813 /* Finally return the whole thing */ 814 *info_out = info; 815 816 out_put_node: 817 fwnode_handle_put(fwnode); 818 of_node_put(battery_np); 819 return err; 820 } 821 EXPORT_SYMBOL_GPL(power_supply_get_battery_info); 822 823 void power_supply_put_battery_info(struct power_supply *psy, 824 struct power_supply_battery_info *info) 825 { 826 int i; 827 828 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) { 829 if (info->ocv_table[i]) 830 devm_kfree(&psy->dev, info->ocv_table[i]); 831 } 832 833 if (info->resist_table) 834 devm_kfree(&psy->dev, info->resist_table); 835 836 devm_kfree(&psy->dev, info); 837 } 838 EXPORT_SYMBOL_GPL(power_supply_put_battery_info); 839 840 const enum power_supply_property power_supply_battery_info_properties[] = { 841 POWER_SUPPLY_PROP_TECHNOLOGY, 842 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 843 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 844 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 845 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 846 POWER_SUPPLY_PROP_PRECHARGE_CURRENT, 847 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, 848 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 849 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, 850 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN, 851 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX, 852 POWER_SUPPLY_PROP_TEMP_ALERT_MIN, 853 POWER_SUPPLY_PROP_TEMP_ALERT_MAX, 854 POWER_SUPPLY_PROP_TEMP_MIN, 855 POWER_SUPPLY_PROP_TEMP_MAX, 856 }; 857 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties); 858 859 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties); 860 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size); 861 862 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info, 863 enum power_supply_property psp) 864 { 865 if (!info) 866 return false; 867 868 switch (psp) { 869 case POWER_SUPPLY_PROP_TECHNOLOGY: 870 return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN; 871 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 872 return info->energy_full_design_uwh >= 0; 873 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 874 return info->charge_full_design_uah >= 0; 875 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 876 return info->voltage_min_design_uv >= 0; 877 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 878 return info->voltage_max_design_uv >= 0; 879 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 880 return info->precharge_current_ua >= 0; 881 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 882 return info->charge_term_current_ua >= 0; 883 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 884 return info->constant_charge_current_max_ua >= 0; 885 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 886 return info->constant_charge_voltage_max_uv >= 0; 887 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN: 888 return info->temp_ambient_alert_min > INT_MIN; 889 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX: 890 return info->temp_ambient_alert_max < INT_MAX; 891 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: 892 return info->temp_alert_min > INT_MIN; 893 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: 894 return info->temp_alert_max < INT_MAX; 895 case POWER_SUPPLY_PROP_TEMP_MIN: 896 return info->temp_min > INT_MIN; 897 case POWER_SUPPLY_PROP_TEMP_MAX: 898 return info->temp_max < INT_MAX; 899 default: 900 return false; 901 } 902 } 903 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop); 904 905 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info, 906 enum power_supply_property psp, 907 union power_supply_propval *val) 908 { 909 if (!info) 910 return -EINVAL; 911 912 if (!power_supply_battery_info_has_prop(info, psp)) 913 return -EINVAL; 914 915 switch (psp) { 916 case POWER_SUPPLY_PROP_TECHNOLOGY: 917 val->intval = info->technology; 918 return 0; 919 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 920 val->intval = info->energy_full_design_uwh; 921 return 0; 922 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 923 val->intval = info->charge_full_design_uah; 924 return 0; 925 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 926 val->intval = info->voltage_min_design_uv; 927 return 0; 928 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 929 val->intval = info->voltage_max_design_uv; 930 return 0; 931 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 932 val->intval = info->precharge_current_ua; 933 return 0; 934 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 935 val->intval = info->charge_term_current_ua; 936 return 0; 937 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 938 val->intval = info->constant_charge_current_max_ua; 939 return 0; 940 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 941 val->intval = info->constant_charge_voltage_max_uv; 942 return 0; 943 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN: 944 val->intval = info->temp_ambient_alert_min; 945 return 0; 946 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX: 947 val->intval = info->temp_ambient_alert_max; 948 return 0; 949 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: 950 val->intval = info->temp_alert_min; 951 return 0; 952 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: 953 val->intval = info->temp_alert_max; 954 return 0; 955 case POWER_SUPPLY_PROP_TEMP_MIN: 956 val->intval = info->temp_min; 957 return 0; 958 case POWER_SUPPLY_PROP_TEMP_MAX: 959 val->intval = info->temp_max; 960 return 0; 961 default: 962 return -EINVAL; 963 } 964 } 965 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop); 966 967 /** 968 * power_supply_temp2resist_simple() - find the battery internal resistance 969 * percent from temperature 970 * @table: Pointer to battery resistance temperature table 971 * @table_len: The table length 972 * @temp: Current temperature 973 * 974 * This helper function is used to look up battery internal resistance percent 975 * according to current temperature value from the resistance temperature table, 976 * and the table must be ordered descending. Then the actual battery internal 977 * resistance = the ideal battery internal resistance * percent / 100. 978 * 979 * Return: the battery internal resistance percent 980 */ 981 int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table, 982 int table_len, int temp) 983 { 984 int i, high, low; 985 986 for (i = 0; i < table_len; i++) 987 if (temp > table[i].temp) 988 break; 989 990 /* The library function will deal with high == low */ 991 if (i == 0) 992 high = low = i; 993 else if (i == table_len) 994 high = low = i - 1; 995 else 996 high = (low = i) - 1; 997 998 return fixp_linear_interpolate(table[low].temp, 999 table[low].resistance, 1000 table[high].temp, 1001 table[high].resistance, 1002 temp); 1003 } 1004 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple); 1005 1006 /** 1007 * power_supply_vbat2ri() - find the battery internal resistance 1008 * from the battery voltage 1009 * @info: The battery information container 1010 * @vbat_uv: The battery voltage in microvolt 1011 * @charging: If we are charging (true) or not (false) 1012 * 1013 * This helper function is used to look up battery internal resistance 1014 * according to current battery voltage. Depending on whether the battery 1015 * is currently charging or not, different resistance will be returned. 1016 * 1017 * Returns the internal resistance in microohm or negative error code. 1018 */ 1019 int power_supply_vbat2ri(struct power_supply_battery_info *info, 1020 int vbat_uv, bool charging) 1021 { 1022 struct power_supply_vbat_ri_table *vbat2ri; 1023 int table_len; 1024 int i, high, low; 1025 1026 /* 1027 * If we are charging, and the battery supplies a separate table 1028 * for this state, we use that in order to compensate for the 1029 * charging voltage. Otherwise we use the main table. 1030 */ 1031 if (charging && info->vbat2ri_charging) { 1032 vbat2ri = info->vbat2ri_charging; 1033 table_len = info->vbat2ri_charging_size; 1034 } else { 1035 vbat2ri = info->vbat2ri_discharging; 1036 table_len = info->vbat2ri_discharging_size; 1037 } 1038 1039 /* 1040 * If no tables are specified, or if we are above the highest voltage in 1041 * the voltage table, just return the factory specified internal resistance. 1042 */ 1043 if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) { 1044 if (charging && (info->factory_internal_resistance_charging_uohm > 0)) 1045 return info->factory_internal_resistance_charging_uohm; 1046 else 1047 return info->factory_internal_resistance_uohm; 1048 } 1049 1050 /* Break loop at table_len - 1 because that is the highest index */ 1051 for (i = 0; i < table_len - 1; i++) 1052 if (vbat_uv > vbat2ri[i].vbat_uv) 1053 break; 1054 1055 /* The library function will deal with high == low */ 1056 if ((i == 0) || (i == (table_len - 1))) 1057 high = i; 1058 else 1059 high = i - 1; 1060 low = i; 1061 1062 return fixp_linear_interpolate(vbat2ri[low].vbat_uv, 1063 vbat2ri[low].ri_uohm, 1064 vbat2ri[high].vbat_uv, 1065 vbat2ri[high].ri_uohm, 1066 vbat_uv); 1067 } 1068 EXPORT_SYMBOL_GPL(power_supply_vbat2ri); 1069 1070 struct power_supply_maintenance_charge_table * 1071 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, 1072 int index) 1073 { 1074 if (index >= info->maintenance_charge_size) 1075 return NULL; 1076 return &info->maintenance_charge[index]; 1077 } 1078 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting); 1079 1080 /** 1081 * power_supply_ocv2cap_simple() - find the battery capacity 1082 * @table: Pointer to battery OCV lookup table 1083 * @table_len: OCV table length 1084 * @ocv: Current OCV value 1085 * 1086 * This helper function is used to look up battery capacity according to 1087 * current OCV value from one OCV table, and the OCV table must be ordered 1088 * descending. 1089 * 1090 * Return: the battery capacity. 1091 */ 1092 int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table, 1093 int table_len, int ocv) 1094 { 1095 int i, high, low; 1096 1097 for (i = 0; i < table_len; i++) 1098 if (ocv > table[i].ocv) 1099 break; 1100 1101 /* The library function will deal with high == low */ 1102 if (i == 0) 1103 high = low = i; 1104 else if (i == table_len) 1105 high = low = i - 1; 1106 else 1107 high = (low = i) - 1; 1108 1109 return fixp_linear_interpolate(table[low].ocv, 1110 table[low].capacity, 1111 table[high].ocv, 1112 table[high].capacity, 1113 ocv); 1114 } 1115 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple); 1116 1117 struct power_supply_battery_ocv_table * 1118 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, 1119 int temp, int *table_len) 1120 { 1121 int best_temp_diff = INT_MAX, temp_diff; 1122 u8 i, best_index = 0; 1123 1124 if (!info->ocv_table[0]) 1125 return NULL; 1126 1127 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) { 1128 /* Out of capacity tables */ 1129 if (!info->ocv_table[i]) 1130 break; 1131 1132 temp_diff = abs(info->ocv_temp[i] - temp); 1133 1134 if (temp_diff < best_temp_diff) { 1135 best_temp_diff = temp_diff; 1136 best_index = i; 1137 } 1138 } 1139 1140 *table_len = info->ocv_table_size[best_index]; 1141 return info->ocv_table[best_index]; 1142 } 1143 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table); 1144 1145 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, 1146 int ocv, int temp) 1147 { 1148 struct power_supply_battery_ocv_table *table; 1149 int table_len; 1150 1151 table = power_supply_find_ocv2cap_table(info, temp, &table_len); 1152 if (!table) 1153 return -EINVAL; 1154 1155 return power_supply_ocv2cap_simple(table, table_len, ocv); 1156 } 1157 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap); 1158 1159 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info, 1160 int resistance) 1161 { 1162 int low, high; 1163 1164 /* Nothing like this can be checked */ 1165 if (info->bti_resistance_ohm <= 0) 1166 return false; 1167 1168 /* This will be extremely strict and unlikely to work */ 1169 if (info->bti_resistance_tolerance <= 0) 1170 return (info->bti_resistance_ohm == resistance); 1171 1172 low = info->bti_resistance_ohm - 1173 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100; 1174 high = info->bti_resistance_ohm + 1175 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100; 1176 1177 return ((resistance >= low) && (resistance <= high)); 1178 } 1179 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range); 1180 1181 static bool psy_has_property(const struct power_supply_desc *psy_desc, 1182 enum power_supply_property psp) 1183 { 1184 bool found = false; 1185 int i; 1186 1187 for (i = 0; i < psy_desc->num_properties; i++) { 1188 if (psy_desc->properties[i] == psp) { 1189 found = true; 1190 break; 1191 } 1192 } 1193 1194 return found; 1195 } 1196 1197 int power_supply_get_property(struct power_supply *psy, 1198 enum power_supply_property psp, 1199 union power_supply_propval *val) 1200 { 1201 if (atomic_read(&psy->use_cnt) <= 0) { 1202 if (!psy->initialized) 1203 return -EAGAIN; 1204 return -ENODEV; 1205 } 1206 1207 if (psy_has_property(psy->desc, psp)) 1208 return psy->desc->get_property(psy, psp, val); 1209 else if (power_supply_battery_info_has_prop(psy->battery_info, psp)) 1210 return power_supply_battery_info_get_prop(psy->battery_info, psp, val); 1211 else 1212 return -EINVAL; 1213 } 1214 EXPORT_SYMBOL_GPL(power_supply_get_property); 1215 1216 int power_supply_set_property(struct power_supply *psy, 1217 enum power_supply_property psp, 1218 const union power_supply_propval *val) 1219 { 1220 if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property) 1221 return -ENODEV; 1222 1223 return psy->desc->set_property(psy, psp, val); 1224 } 1225 EXPORT_SYMBOL_GPL(power_supply_set_property); 1226 1227 int power_supply_property_is_writeable(struct power_supply *psy, 1228 enum power_supply_property psp) 1229 { 1230 if (atomic_read(&psy->use_cnt) <= 0 || 1231 !psy->desc->property_is_writeable) 1232 return -ENODEV; 1233 1234 return psy->desc->property_is_writeable(psy, psp); 1235 } 1236 EXPORT_SYMBOL_GPL(power_supply_property_is_writeable); 1237 1238 void power_supply_external_power_changed(struct power_supply *psy) 1239 { 1240 if (atomic_read(&psy->use_cnt) <= 0 || 1241 !psy->desc->external_power_changed) 1242 return; 1243 1244 psy->desc->external_power_changed(psy); 1245 } 1246 EXPORT_SYMBOL_GPL(power_supply_external_power_changed); 1247 1248 int power_supply_powers(struct power_supply *psy, struct device *dev) 1249 { 1250 return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers"); 1251 } 1252 EXPORT_SYMBOL_GPL(power_supply_powers); 1253 1254 static void power_supply_dev_release(struct device *dev) 1255 { 1256 struct power_supply *psy = to_power_supply(dev); 1257 dev_dbg(dev, "%s\n", __func__); 1258 kfree(psy); 1259 } 1260 1261 int power_supply_reg_notifier(struct notifier_block *nb) 1262 { 1263 return blocking_notifier_chain_register(&power_supply_notifier, nb); 1264 } 1265 EXPORT_SYMBOL_GPL(power_supply_reg_notifier); 1266 1267 void power_supply_unreg_notifier(struct notifier_block *nb) 1268 { 1269 blocking_notifier_chain_unregister(&power_supply_notifier, nb); 1270 } 1271 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier); 1272 1273 #ifdef CONFIG_THERMAL 1274 static int power_supply_read_temp(struct thermal_zone_device *tzd, 1275 int *temp) 1276 { 1277 struct power_supply *psy; 1278 union power_supply_propval val; 1279 int ret; 1280 1281 WARN_ON(tzd == NULL); 1282 psy = thermal_zone_device_priv(tzd); 1283 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val); 1284 if (ret) 1285 return ret; 1286 1287 /* Convert tenths of degree Celsius to milli degree Celsius. */ 1288 *temp = val.intval * 100; 1289 1290 return ret; 1291 } 1292 1293 static struct thermal_zone_device_ops psy_tzd_ops = { 1294 .get_temp = power_supply_read_temp, 1295 }; 1296 1297 static int psy_register_thermal(struct power_supply *psy) 1298 { 1299 int ret; 1300 1301 if (psy->desc->no_thermal) 1302 return 0; 1303 1304 /* Register battery zone device psy reports temperature */ 1305 if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) { 1306 /* Prefer our hwmon device and avoid duplicates */ 1307 struct thermal_zone_params tzp = { 1308 .no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON) 1309 }; 1310 psy->tzd = thermal_tripless_zone_device_register(psy->desc->name, 1311 psy, &psy_tzd_ops, &tzp); 1312 if (IS_ERR(psy->tzd)) 1313 return PTR_ERR(psy->tzd); 1314 ret = thermal_zone_device_enable(psy->tzd); 1315 if (ret) 1316 thermal_zone_device_unregister(psy->tzd); 1317 return ret; 1318 } 1319 1320 return 0; 1321 } 1322 1323 static void psy_unregister_thermal(struct power_supply *psy) 1324 { 1325 if (IS_ERR_OR_NULL(psy->tzd)) 1326 return; 1327 thermal_zone_device_unregister(psy->tzd); 1328 } 1329 1330 #else 1331 static int psy_register_thermal(struct power_supply *psy) 1332 { 1333 return 0; 1334 } 1335 1336 static void psy_unregister_thermal(struct power_supply *psy) 1337 { 1338 } 1339 #endif 1340 1341 static struct power_supply *__must_check 1342 __power_supply_register(struct device *parent, 1343 const struct power_supply_desc *desc, 1344 const struct power_supply_config *cfg, 1345 bool ws) 1346 { 1347 struct device *dev; 1348 struct power_supply *psy; 1349 int rc; 1350 1351 if (!desc || !desc->name || !desc->properties || !desc->num_properties) 1352 return ERR_PTR(-EINVAL); 1353 1354 if (!parent) 1355 pr_warn("%s: Expected proper parent device for '%s'\n", 1356 __func__, desc->name); 1357 1358 if (psy_has_property(desc, POWER_SUPPLY_PROP_USB_TYPE) && 1359 (!desc->usb_types || !desc->num_usb_types)) 1360 return ERR_PTR(-EINVAL); 1361 1362 psy = kzalloc(sizeof(*psy), GFP_KERNEL); 1363 if (!psy) 1364 return ERR_PTR(-ENOMEM); 1365 1366 dev = &psy->dev; 1367 1368 device_initialize(dev); 1369 1370 dev->class = power_supply_class; 1371 dev->type = &power_supply_dev_type; 1372 dev->parent = parent; 1373 dev->release = power_supply_dev_release; 1374 dev_set_drvdata(dev, psy); 1375 psy->desc = desc; 1376 if (cfg) { 1377 dev->groups = cfg->attr_grp; 1378 psy->drv_data = cfg->drv_data; 1379 psy->of_node = 1380 cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node; 1381 psy->supplied_to = cfg->supplied_to; 1382 psy->num_supplicants = cfg->num_supplicants; 1383 } 1384 1385 rc = dev_set_name(dev, "%s", desc->name); 1386 if (rc) 1387 goto dev_set_name_failed; 1388 1389 INIT_WORK(&psy->changed_work, power_supply_changed_work); 1390 INIT_DELAYED_WORK(&psy->deferred_register_work, 1391 power_supply_deferred_register_work); 1392 1393 rc = power_supply_check_supplies(psy); 1394 if (rc) { 1395 dev_dbg(dev, "Not all required supplies found, defer probe\n"); 1396 goto check_supplies_failed; 1397 } 1398 1399 /* 1400 * Expose constant battery info, if it is available. While there are 1401 * some chargers accessing constant battery data, we only want to 1402 * expose battery data to userspace for battery devices. 1403 */ 1404 if (desc->type == POWER_SUPPLY_TYPE_BATTERY) { 1405 rc = power_supply_get_battery_info(psy, &psy->battery_info); 1406 if (rc && rc != -ENODEV && rc != -ENOENT) 1407 goto check_supplies_failed; 1408 } 1409 1410 spin_lock_init(&psy->changed_lock); 1411 rc = device_add(dev); 1412 if (rc) 1413 goto device_add_failed; 1414 1415 rc = device_init_wakeup(dev, ws); 1416 if (rc) 1417 goto wakeup_init_failed; 1418 1419 rc = psy_register_thermal(psy); 1420 if (rc) 1421 goto register_thermal_failed; 1422 1423 rc = power_supply_create_triggers(psy); 1424 if (rc) 1425 goto create_triggers_failed; 1426 1427 rc = power_supply_add_hwmon_sysfs(psy); 1428 if (rc) 1429 goto add_hwmon_sysfs_failed; 1430 1431 /* 1432 * Update use_cnt after any uevents (most notably from device_add()). 1433 * We are here still during driver's probe but 1434 * the power_supply_uevent() calls back driver's get_property 1435 * method so: 1436 * 1. Driver did not assigned the returned struct power_supply, 1437 * 2. Driver could not finish initialization (anything in its probe 1438 * after calling power_supply_register()). 1439 */ 1440 atomic_inc(&psy->use_cnt); 1441 psy->initialized = true; 1442 1443 queue_delayed_work(system_power_efficient_wq, 1444 &psy->deferred_register_work, 1445 POWER_SUPPLY_DEFERRED_REGISTER_TIME); 1446 1447 return psy; 1448 1449 add_hwmon_sysfs_failed: 1450 power_supply_remove_triggers(psy); 1451 create_triggers_failed: 1452 psy_unregister_thermal(psy); 1453 register_thermal_failed: 1454 wakeup_init_failed: 1455 device_del(dev); 1456 device_add_failed: 1457 check_supplies_failed: 1458 dev_set_name_failed: 1459 put_device(dev); 1460 return ERR_PTR(rc); 1461 } 1462 1463 /** 1464 * power_supply_register() - Register new power supply 1465 * @parent: Device to be a parent of power supply's device, usually 1466 * the device which probe function calls this 1467 * @desc: Description of power supply, must be valid through whole 1468 * lifetime of this power supply 1469 * @cfg: Run-time specific configuration accessed during registering, 1470 * may be NULL 1471 * 1472 * Return: A pointer to newly allocated power_supply on success 1473 * or ERR_PTR otherwise. 1474 * Use power_supply_unregister() on returned power_supply pointer to release 1475 * resources. 1476 */ 1477 struct power_supply *__must_check power_supply_register(struct device *parent, 1478 const struct power_supply_desc *desc, 1479 const struct power_supply_config *cfg) 1480 { 1481 return __power_supply_register(parent, desc, cfg, true); 1482 } 1483 EXPORT_SYMBOL_GPL(power_supply_register); 1484 1485 /** 1486 * power_supply_register_no_ws() - Register new non-waking-source power supply 1487 * @parent: Device to be a parent of power supply's device, usually 1488 * the device which probe function calls this 1489 * @desc: Description of power supply, must be valid through whole 1490 * lifetime of this power supply 1491 * @cfg: Run-time specific configuration accessed during registering, 1492 * may be NULL 1493 * 1494 * Return: A pointer to newly allocated power_supply on success 1495 * or ERR_PTR otherwise. 1496 * Use power_supply_unregister() on returned power_supply pointer to release 1497 * resources. 1498 */ 1499 struct power_supply *__must_check 1500 power_supply_register_no_ws(struct device *parent, 1501 const struct power_supply_desc *desc, 1502 const struct power_supply_config *cfg) 1503 { 1504 return __power_supply_register(parent, desc, cfg, false); 1505 } 1506 EXPORT_SYMBOL_GPL(power_supply_register_no_ws); 1507 1508 static void devm_power_supply_release(struct device *dev, void *res) 1509 { 1510 struct power_supply **psy = res; 1511 1512 power_supply_unregister(*psy); 1513 } 1514 1515 /** 1516 * devm_power_supply_register() - Register managed power supply 1517 * @parent: Device to be a parent of power supply's device, usually 1518 * the device which probe function calls this 1519 * @desc: Description of power supply, must be valid through whole 1520 * lifetime of this power supply 1521 * @cfg: Run-time specific configuration accessed during registering, 1522 * may be NULL 1523 * 1524 * Return: A pointer to newly allocated power_supply on success 1525 * or ERR_PTR otherwise. 1526 * The returned power_supply pointer will be automatically unregistered 1527 * on driver detach. 1528 */ 1529 struct power_supply *__must_check 1530 devm_power_supply_register(struct device *parent, 1531 const struct power_supply_desc *desc, 1532 const struct power_supply_config *cfg) 1533 { 1534 struct power_supply **ptr, *psy; 1535 1536 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL); 1537 1538 if (!ptr) 1539 return ERR_PTR(-ENOMEM); 1540 psy = __power_supply_register(parent, desc, cfg, true); 1541 if (IS_ERR(psy)) { 1542 devres_free(ptr); 1543 } else { 1544 *ptr = psy; 1545 devres_add(parent, ptr); 1546 } 1547 return psy; 1548 } 1549 EXPORT_SYMBOL_GPL(devm_power_supply_register); 1550 1551 /** 1552 * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply 1553 * @parent: Device to be a parent of power supply's device, usually 1554 * the device which probe function calls this 1555 * @desc: Description of power supply, must be valid through whole 1556 * lifetime of this power supply 1557 * @cfg: Run-time specific configuration accessed during registering, 1558 * may be NULL 1559 * 1560 * Return: A pointer to newly allocated power_supply on success 1561 * or ERR_PTR otherwise. 1562 * The returned power_supply pointer will be automatically unregistered 1563 * on driver detach. 1564 */ 1565 struct power_supply *__must_check 1566 devm_power_supply_register_no_ws(struct device *parent, 1567 const struct power_supply_desc *desc, 1568 const struct power_supply_config *cfg) 1569 { 1570 struct power_supply **ptr, *psy; 1571 1572 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL); 1573 1574 if (!ptr) 1575 return ERR_PTR(-ENOMEM); 1576 psy = __power_supply_register(parent, desc, cfg, false); 1577 if (IS_ERR(psy)) { 1578 devres_free(ptr); 1579 } else { 1580 *ptr = psy; 1581 devres_add(parent, ptr); 1582 } 1583 return psy; 1584 } 1585 EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws); 1586 1587 /** 1588 * power_supply_unregister() - Remove this power supply from system 1589 * @psy: Pointer to power supply to unregister 1590 * 1591 * Remove this power supply from the system. The resources of power supply 1592 * will be freed here or on last power_supply_put() call. 1593 */ 1594 void power_supply_unregister(struct power_supply *psy) 1595 { 1596 WARN_ON(atomic_dec_return(&psy->use_cnt)); 1597 psy->removing = true; 1598 cancel_work_sync(&psy->changed_work); 1599 cancel_delayed_work_sync(&psy->deferred_register_work); 1600 sysfs_remove_link(&psy->dev.kobj, "powers"); 1601 power_supply_remove_hwmon_sysfs(psy); 1602 power_supply_remove_triggers(psy); 1603 psy_unregister_thermal(psy); 1604 device_init_wakeup(&psy->dev, false); 1605 device_unregister(&psy->dev); 1606 } 1607 EXPORT_SYMBOL_GPL(power_supply_unregister); 1608 1609 void *power_supply_get_drvdata(struct power_supply *psy) 1610 { 1611 return psy->drv_data; 1612 } 1613 EXPORT_SYMBOL_GPL(power_supply_get_drvdata); 1614 1615 static int __init power_supply_class_init(void) 1616 { 1617 power_supply_class = class_create("power_supply"); 1618 1619 if (IS_ERR(power_supply_class)) 1620 return PTR_ERR(power_supply_class); 1621 1622 power_supply_class->dev_uevent = power_supply_uevent; 1623 power_supply_init_attrs(&power_supply_dev_type); 1624 1625 return 0; 1626 } 1627 1628 static void __exit power_supply_class_exit(void) 1629 { 1630 class_destroy(power_supply_class); 1631 } 1632 1633 subsys_initcall(power_supply_class_init); 1634 module_exit(power_supply_class_exit); 1635 1636 MODULE_DESCRIPTION("Universal power supply monitor class"); 1637 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>, " 1638 "Szabolcs Gyurko, " 1639 "Anton Vorontsov <cbou@mail.ru>"); 1640