1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Universal power supply monitor class 4 * 5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru> 6 * Copyright © 2004 Szabolcs Gyurko 7 * Copyright © 2003 Ian Molton <spyro@f2s.com> 8 * 9 * Modified: 2004, Oct Szabolcs Gyurko 10 */ 11 12 #include <linux/module.h> 13 #include <linux/types.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/delay.h> 17 #include <linux/device.h> 18 #include <linux/notifier.h> 19 #include <linux/err.h> 20 #include <linux/of.h> 21 #include <linux/power_supply.h> 22 #include <linux/property.h> 23 #include <linux/thermal.h> 24 #include <linux/fixp-arith.h> 25 #include "power_supply.h" 26 #include "samsung-sdi-battery.h" 27 28 /* exported for the APM Power driver, APM emulation */ 29 struct class *power_supply_class; 30 EXPORT_SYMBOL_GPL(power_supply_class); 31 32 ATOMIC_NOTIFIER_HEAD(power_supply_notifier); 33 EXPORT_SYMBOL_GPL(power_supply_notifier); 34 35 static struct device_type power_supply_dev_type; 36 37 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME msecs_to_jiffies(10) 38 39 static bool __power_supply_is_supplied_by(struct power_supply *supplier, 40 struct power_supply *supply) 41 { 42 int i; 43 44 if (!supply->supplied_from && !supplier->supplied_to) 45 return false; 46 47 /* Support both supplied_to and supplied_from modes */ 48 if (supply->supplied_from) { 49 if (!supplier->desc->name) 50 return false; 51 for (i = 0; i < supply->num_supplies; i++) 52 if (!strcmp(supplier->desc->name, supply->supplied_from[i])) 53 return true; 54 } else { 55 if (!supply->desc->name) 56 return false; 57 for (i = 0; i < supplier->num_supplicants; i++) 58 if (!strcmp(supplier->supplied_to[i], supply->desc->name)) 59 return true; 60 } 61 62 return false; 63 } 64 65 static int __power_supply_changed_work(struct device *dev, void *data) 66 { 67 struct power_supply *psy = data; 68 struct power_supply *pst = dev_get_drvdata(dev); 69 70 if (__power_supply_is_supplied_by(psy, pst)) { 71 if (pst->desc->external_power_changed) 72 pst->desc->external_power_changed(pst); 73 } 74 75 return 0; 76 } 77 78 static void power_supply_changed_work(struct work_struct *work) 79 { 80 unsigned long flags; 81 struct power_supply *psy = container_of(work, struct power_supply, 82 changed_work); 83 84 dev_dbg(&psy->dev, "%s\n", __func__); 85 86 spin_lock_irqsave(&psy->changed_lock, flags); 87 /* 88 * Check 'changed' here to avoid issues due to race between 89 * power_supply_changed() and this routine. In worst case 90 * power_supply_changed() can be called again just before we take above 91 * lock. During the first call of this routine we will mark 'changed' as 92 * false and it will stay false for the next call as well. 93 */ 94 if (likely(psy->changed)) { 95 psy->changed = false; 96 spin_unlock_irqrestore(&psy->changed_lock, flags); 97 class_for_each_device(power_supply_class, NULL, psy, 98 __power_supply_changed_work); 99 power_supply_update_leds(psy); 100 atomic_notifier_call_chain(&power_supply_notifier, 101 PSY_EVENT_PROP_CHANGED, psy); 102 kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE); 103 spin_lock_irqsave(&psy->changed_lock, flags); 104 } 105 106 /* 107 * Hold the wakeup_source until all events are processed. 108 * power_supply_changed() might have called again and have set 'changed' 109 * to true. 110 */ 111 if (likely(!psy->changed)) 112 pm_relax(&psy->dev); 113 spin_unlock_irqrestore(&psy->changed_lock, flags); 114 } 115 116 void power_supply_changed(struct power_supply *psy) 117 { 118 unsigned long flags; 119 120 dev_dbg(&psy->dev, "%s\n", __func__); 121 122 spin_lock_irqsave(&psy->changed_lock, flags); 123 psy->changed = true; 124 pm_stay_awake(&psy->dev); 125 spin_unlock_irqrestore(&psy->changed_lock, flags); 126 schedule_work(&psy->changed_work); 127 } 128 EXPORT_SYMBOL_GPL(power_supply_changed); 129 130 /* 131 * Notify that power supply was registered after parent finished the probing. 132 * 133 * Often power supply is registered from driver's probe function. However 134 * calling power_supply_changed() directly from power_supply_register() 135 * would lead to execution of get_property() function provided by the driver 136 * too early - before the probe ends. 137 * 138 * Avoid that by waiting on parent's mutex. 139 */ 140 static void power_supply_deferred_register_work(struct work_struct *work) 141 { 142 struct power_supply *psy = container_of(work, struct power_supply, 143 deferred_register_work.work); 144 145 if (psy->dev.parent) { 146 while (!mutex_trylock(&psy->dev.parent->mutex)) { 147 if (psy->removing) 148 return; 149 msleep(10); 150 } 151 } 152 153 power_supply_changed(psy); 154 155 if (psy->dev.parent) 156 mutex_unlock(&psy->dev.parent->mutex); 157 } 158 159 #ifdef CONFIG_OF 160 static int __power_supply_populate_supplied_from(struct device *dev, 161 void *data) 162 { 163 struct power_supply *psy = data; 164 struct power_supply *epsy = dev_get_drvdata(dev); 165 struct device_node *np; 166 int i = 0; 167 168 do { 169 np = of_parse_phandle(psy->of_node, "power-supplies", i++); 170 if (!np) 171 break; 172 173 if (np == epsy->of_node) { 174 dev_dbg(&psy->dev, "%s: Found supply : %s\n", 175 psy->desc->name, epsy->desc->name); 176 psy->supplied_from[i-1] = (char *)epsy->desc->name; 177 psy->num_supplies++; 178 of_node_put(np); 179 break; 180 } 181 of_node_put(np); 182 } while (np); 183 184 return 0; 185 } 186 187 static int power_supply_populate_supplied_from(struct power_supply *psy) 188 { 189 int error; 190 191 error = class_for_each_device(power_supply_class, NULL, psy, 192 __power_supply_populate_supplied_from); 193 194 dev_dbg(&psy->dev, "%s %d\n", __func__, error); 195 196 return error; 197 } 198 199 static int __power_supply_find_supply_from_node(struct device *dev, 200 void *data) 201 { 202 struct device_node *np = data; 203 struct power_supply *epsy = dev_get_drvdata(dev); 204 205 /* returning non-zero breaks out of class_for_each_device loop */ 206 if (epsy->of_node == np) 207 return 1; 208 209 return 0; 210 } 211 212 static int power_supply_find_supply_from_node(struct device_node *supply_node) 213 { 214 int error; 215 216 /* 217 * class_for_each_device() either returns its own errors or values 218 * returned by __power_supply_find_supply_from_node(). 219 * 220 * __power_supply_find_supply_from_node() will return 0 (no match) 221 * or 1 (match). 222 * 223 * We return 0 if class_for_each_device() returned 1, -EPROBE_DEFER if 224 * it returned 0, or error as returned by it. 225 */ 226 error = class_for_each_device(power_supply_class, NULL, supply_node, 227 __power_supply_find_supply_from_node); 228 229 return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER; 230 } 231 232 static int power_supply_check_supplies(struct power_supply *psy) 233 { 234 struct device_node *np; 235 int cnt = 0; 236 237 /* If there is already a list honor it */ 238 if (psy->supplied_from && psy->num_supplies > 0) 239 return 0; 240 241 /* No device node found, nothing to do */ 242 if (!psy->of_node) 243 return 0; 244 245 do { 246 int ret; 247 248 np = of_parse_phandle(psy->of_node, "power-supplies", cnt++); 249 if (!np) 250 break; 251 252 ret = power_supply_find_supply_from_node(np); 253 of_node_put(np); 254 255 if (ret) { 256 dev_dbg(&psy->dev, "Failed to find supply!\n"); 257 return ret; 258 } 259 } while (np); 260 261 /* Missing valid "power-supplies" entries */ 262 if (cnt == 1) 263 return 0; 264 265 /* All supplies found, allocate char ** array for filling */ 266 psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from), 267 GFP_KERNEL); 268 if (!psy->supplied_from) 269 return -ENOMEM; 270 271 *psy->supplied_from = devm_kcalloc(&psy->dev, 272 cnt - 1, sizeof(**psy->supplied_from), 273 GFP_KERNEL); 274 if (!*psy->supplied_from) 275 return -ENOMEM; 276 277 return power_supply_populate_supplied_from(psy); 278 } 279 #else 280 static int power_supply_check_supplies(struct power_supply *psy) 281 { 282 int nval, ret; 283 284 if (!psy->dev.parent) 285 return 0; 286 287 nval = device_property_string_array_count(psy->dev.parent, "supplied-from"); 288 if (nval <= 0) 289 return 0; 290 291 psy->supplied_from = devm_kmalloc_array(&psy->dev, nval, 292 sizeof(char *), GFP_KERNEL); 293 if (!psy->supplied_from) 294 return -ENOMEM; 295 296 ret = device_property_read_string_array(psy->dev.parent, 297 "supplied-from", (const char **)psy->supplied_from, nval); 298 if (ret < 0) 299 return ret; 300 301 psy->num_supplies = nval; 302 303 return 0; 304 } 305 #endif 306 307 struct psy_am_i_supplied_data { 308 struct power_supply *psy; 309 unsigned int count; 310 }; 311 312 static int __power_supply_am_i_supplied(struct device *dev, void *_data) 313 { 314 union power_supply_propval ret = {0,}; 315 struct power_supply *epsy = dev_get_drvdata(dev); 316 struct psy_am_i_supplied_data *data = _data; 317 318 if (__power_supply_is_supplied_by(epsy, data->psy)) { 319 data->count++; 320 if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE, 321 &ret)) 322 return ret.intval; 323 } 324 325 return 0; 326 } 327 328 int power_supply_am_i_supplied(struct power_supply *psy) 329 { 330 struct psy_am_i_supplied_data data = { psy, 0 }; 331 int error; 332 333 error = class_for_each_device(power_supply_class, NULL, &data, 334 __power_supply_am_i_supplied); 335 336 dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error); 337 338 if (data.count == 0) 339 return -ENODEV; 340 341 return error; 342 } 343 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied); 344 345 static int __power_supply_is_system_supplied(struct device *dev, void *data) 346 { 347 union power_supply_propval ret = {0,}; 348 struct power_supply *psy = dev_get_drvdata(dev); 349 unsigned int *count = data; 350 351 (*count)++; 352 if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY) 353 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE, 354 &ret)) 355 return ret.intval; 356 357 return 0; 358 } 359 360 int power_supply_is_system_supplied(void) 361 { 362 int error; 363 unsigned int count = 0; 364 365 error = class_for_each_device(power_supply_class, NULL, &count, 366 __power_supply_is_system_supplied); 367 368 /* 369 * If no power class device was found at all, most probably we are 370 * running on a desktop system, so assume we are on mains power. 371 */ 372 if (count == 0) 373 return 1; 374 375 return error; 376 } 377 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied); 378 379 struct psy_get_supplier_prop_data { 380 struct power_supply *psy; 381 enum power_supply_property psp; 382 union power_supply_propval *val; 383 }; 384 385 static int __power_supply_get_supplier_property(struct device *dev, void *_data) 386 { 387 struct power_supply *epsy = dev_get_drvdata(dev); 388 struct psy_get_supplier_prop_data *data = _data; 389 390 if (__power_supply_is_supplied_by(epsy, data->psy)) 391 if (!epsy->desc->get_property(epsy, data->psp, data->val)) 392 return 1; /* Success */ 393 394 return 0; /* Continue iterating */ 395 } 396 397 int power_supply_get_property_from_supplier(struct power_supply *psy, 398 enum power_supply_property psp, 399 union power_supply_propval *val) 400 { 401 struct psy_get_supplier_prop_data data = { 402 .psy = psy, 403 .psp = psp, 404 .val = val, 405 }; 406 int ret; 407 408 /* 409 * This function is not intended for use with a supply with multiple 410 * suppliers, we simply pick the first supply to report the psp. 411 */ 412 ret = class_for_each_device(power_supply_class, NULL, &data, 413 __power_supply_get_supplier_property); 414 if (ret < 0) 415 return ret; 416 if (ret == 0) 417 return -ENODEV; 418 419 return 0; 420 } 421 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier); 422 423 int power_supply_set_battery_charged(struct power_supply *psy) 424 { 425 if (atomic_read(&psy->use_cnt) >= 0 && 426 psy->desc->type == POWER_SUPPLY_TYPE_BATTERY && 427 psy->desc->set_charged) { 428 psy->desc->set_charged(psy); 429 return 0; 430 } 431 432 return -EINVAL; 433 } 434 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged); 435 436 static int power_supply_match_device_by_name(struct device *dev, const void *data) 437 { 438 const char *name = data; 439 struct power_supply *psy = dev_get_drvdata(dev); 440 441 return strcmp(psy->desc->name, name) == 0; 442 } 443 444 /** 445 * power_supply_get_by_name() - Search for a power supply and returns its ref 446 * @name: Power supply name to fetch 447 * 448 * If power supply was found, it increases reference count for the 449 * internal power supply's device. The user should power_supply_put() 450 * after usage. 451 * 452 * Return: On success returns a reference to a power supply with 453 * matching name equals to @name, a NULL otherwise. 454 */ 455 struct power_supply *power_supply_get_by_name(const char *name) 456 { 457 struct power_supply *psy = NULL; 458 struct device *dev = class_find_device(power_supply_class, NULL, name, 459 power_supply_match_device_by_name); 460 461 if (dev) { 462 psy = dev_get_drvdata(dev); 463 atomic_inc(&psy->use_cnt); 464 } 465 466 return psy; 467 } 468 EXPORT_SYMBOL_GPL(power_supply_get_by_name); 469 470 /** 471 * power_supply_put() - Drop reference obtained with power_supply_get_by_name 472 * @psy: Reference to put 473 * 474 * The reference to power supply should be put before unregistering 475 * the power supply. 476 */ 477 void power_supply_put(struct power_supply *psy) 478 { 479 might_sleep(); 480 481 atomic_dec(&psy->use_cnt); 482 put_device(&psy->dev); 483 } 484 EXPORT_SYMBOL_GPL(power_supply_put); 485 486 #ifdef CONFIG_OF 487 static int power_supply_match_device_node(struct device *dev, const void *data) 488 { 489 return dev->parent && dev->parent->of_node == data; 490 } 491 492 /** 493 * power_supply_get_by_phandle() - Search for a power supply and returns its ref 494 * @np: Pointer to device node holding phandle property 495 * @property: Name of property holding a power supply name 496 * 497 * If power supply was found, it increases reference count for the 498 * internal power supply's device. The user should power_supply_put() 499 * after usage. 500 * 501 * Return: On success returns a reference to a power supply with 502 * matching name equals to value under @property, NULL or ERR_PTR otherwise. 503 */ 504 struct power_supply *power_supply_get_by_phandle(struct device_node *np, 505 const char *property) 506 { 507 struct device_node *power_supply_np; 508 struct power_supply *psy = NULL; 509 struct device *dev; 510 511 power_supply_np = of_parse_phandle(np, property, 0); 512 if (!power_supply_np) 513 return ERR_PTR(-ENODEV); 514 515 dev = class_find_device(power_supply_class, NULL, power_supply_np, 516 power_supply_match_device_node); 517 518 of_node_put(power_supply_np); 519 520 if (dev) { 521 psy = dev_get_drvdata(dev); 522 atomic_inc(&psy->use_cnt); 523 } 524 525 return psy; 526 } 527 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle); 528 529 static void devm_power_supply_put(struct device *dev, void *res) 530 { 531 struct power_supply **psy = res; 532 533 power_supply_put(*psy); 534 } 535 536 /** 537 * devm_power_supply_get_by_phandle() - Resource managed version of 538 * power_supply_get_by_phandle() 539 * @dev: Pointer to device holding phandle property 540 * @property: Name of property holding a power supply phandle 541 * 542 * Return: On success returns a reference to a power supply with 543 * matching name equals to value under @property, NULL or ERR_PTR otherwise. 544 */ 545 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev, 546 const char *property) 547 { 548 struct power_supply **ptr, *psy; 549 550 if (!dev->of_node) 551 return ERR_PTR(-ENODEV); 552 553 ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL); 554 if (!ptr) 555 return ERR_PTR(-ENOMEM); 556 557 psy = power_supply_get_by_phandle(dev->of_node, property); 558 if (IS_ERR_OR_NULL(psy)) { 559 devres_free(ptr); 560 } else { 561 *ptr = psy; 562 devres_add(dev, ptr); 563 } 564 return psy; 565 } 566 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle); 567 #endif /* CONFIG_OF */ 568 569 int power_supply_get_battery_info(struct power_supply *psy, 570 struct power_supply_battery_info **info_out) 571 { 572 struct power_supply_resistance_temp_table *resist_table; 573 struct power_supply_battery_info *info; 574 struct device_node *battery_np = NULL; 575 struct fwnode_reference_args args; 576 struct fwnode_handle *fwnode; 577 const char *value; 578 int err, len, index; 579 const __be32 *list; 580 u32 min_max[2]; 581 582 if (psy->of_node) { 583 battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0); 584 if (!battery_np) 585 return -ENODEV; 586 587 fwnode = fwnode_handle_get(of_fwnode_handle(battery_np)); 588 } else { 589 err = fwnode_property_get_reference_args( 590 dev_fwnode(psy->dev.parent), 591 "monitored-battery", NULL, 0, 0, &args); 592 if (err) 593 return err; 594 595 fwnode = args.fwnode; 596 } 597 598 err = fwnode_property_read_string(fwnode, "compatible", &value); 599 if (err) 600 goto out_put_node; 601 602 603 /* Try static batteries first */ 604 err = samsung_sdi_battery_get_info(&psy->dev, value, &info); 605 if (!err) 606 goto out_ret_pointer; 607 else if (err == -ENODEV) 608 /* 609 * Device does not have a static battery. 610 * Proceed to look for a simple battery. 611 */ 612 err = 0; 613 614 if (strcmp("simple-battery", value)) { 615 err = -ENODEV; 616 goto out_put_node; 617 } 618 619 info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL); 620 if (!info) { 621 err = -ENOMEM; 622 goto out_put_node; 623 } 624 625 info->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN; 626 info->energy_full_design_uwh = -EINVAL; 627 info->charge_full_design_uah = -EINVAL; 628 info->voltage_min_design_uv = -EINVAL; 629 info->voltage_max_design_uv = -EINVAL; 630 info->precharge_current_ua = -EINVAL; 631 info->charge_term_current_ua = -EINVAL; 632 info->constant_charge_current_max_ua = -EINVAL; 633 info->constant_charge_voltage_max_uv = -EINVAL; 634 info->tricklecharge_current_ua = -EINVAL; 635 info->precharge_voltage_max_uv = -EINVAL; 636 info->charge_restart_voltage_uv = -EINVAL; 637 info->overvoltage_limit_uv = -EINVAL; 638 info->maintenance_charge = NULL; 639 info->alert_low_temp_charge_current_ua = -EINVAL; 640 info->alert_low_temp_charge_voltage_uv = -EINVAL; 641 info->alert_high_temp_charge_current_ua = -EINVAL; 642 info->alert_high_temp_charge_voltage_uv = -EINVAL; 643 info->temp_ambient_alert_min = INT_MIN; 644 info->temp_ambient_alert_max = INT_MAX; 645 info->temp_alert_min = INT_MIN; 646 info->temp_alert_max = INT_MAX; 647 info->temp_min = INT_MIN; 648 info->temp_max = INT_MAX; 649 info->factory_internal_resistance_uohm = -EINVAL; 650 info->resist_table = NULL; 651 info->bti_resistance_ohm = -EINVAL; 652 info->bti_resistance_tolerance = -EINVAL; 653 654 for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) { 655 info->ocv_table[index] = NULL; 656 info->ocv_temp[index] = -EINVAL; 657 info->ocv_table_size[index] = -EINVAL; 658 } 659 660 /* The property and field names below must correspond to elements 661 * in enum power_supply_property. For reasoning, see 662 * Documentation/power/power_supply_class.rst. 663 */ 664 665 if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) { 666 if (!strcmp("nickel-cadmium", value)) 667 info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd; 668 else if (!strcmp("nickel-metal-hydride", value)) 669 info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH; 670 else if (!strcmp("lithium-ion", value)) 671 /* Imprecise lithium-ion type */ 672 info->technology = POWER_SUPPLY_TECHNOLOGY_LION; 673 else if (!strcmp("lithium-ion-polymer", value)) 674 info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO; 675 else if (!strcmp("lithium-ion-iron-phosphate", value)) 676 info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe; 677 else if (!strcmp("lithium-ion-manganese-oxide", value)) 678 info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn; 679 else 680 dev_warn(&psy->dev, "%s unknown battery type\n", value); 681 } 682 683 fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours", 684 &info->energy_full_design_uwh); 685 fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours", 686 &info->charge_full_design_uah); 687 fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt", 688 &info->voltage_min_design_uv); 689 fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt", 690 &info->voltage_max_design_uv); 691 fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp", 692 &info->tricklecharge_current_ua); 693 fwnode_property_read_u32(fwnode, "precharge-current-microamp", 694 &info->precharge_current_ua); 695 fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt", 696 &info->precharge_voltage_max_uv); 697 fwnode_property_read_u32(fwnode, "charge-term-current-microamp", 698 &info->charge_term_current_ua); 699 fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt", 700 &info->charge_restart_voltage_uv); 701 fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt", 702 &info->overvoltage_limit_uv); 703 fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp", 704 &info->constant_charge_current_max_ua); 705 fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt", 706 &info->constant_charge_voltage_max_uv); 707 fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms", 708 &info->factory_internal_resistance_uohm); 709 710 if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius", 711 min_max, ARRAY_SIZE(min_max))) { 712 info->temp_ambient_alert_min = min_max[0]; 713 info->temp_ambient_alert_max = min_max[1]; 714 } 715 if (!fwnode_property_read_u32_array(fwnode, "alert-celsius", 716 min_max, ARRAY_SIZE(min_max))) { 717 info->temp_alert_min = min_max[0]; 718 info->temp_alert_max = min_max[1]; 719 } 720 if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius", 721 min_max, ARRAY_SIZE(min_max))) { 722 info->temp_min = min_max[0]; 723 info->temp_max = min_max[1]; 724 } 725 726 /* 727 * The below code uses raw of-data parsing to parse 728 * /schemas/types.yaml#/definitions/uint32-matrix 729 * data, so for now this is only support with of. 730 */ 731 if (!battery_np) 732 goto out_ret_pointer; 733 734 len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius"); 735 if (len < 0 && len != -EINVAL) { 736 err = len; 737 goto out_put_node; 738 } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) { 739 dev_err(&psy->dev, "Too many temperature values\n"); 740 err = -EINVAL; 741 goto out_put_node; 742 } else if (len > 0) { 743 of_property_read_u32_array(battery_np, "ocv-capacity-celsius", 744 info->ocv_temp, len); 745 } 746 747 for (index = 0; index < len; index++) { 748 struct power_supply_battery_ocv_table *table; 749 char *propname; 750 int i, tab_len, size; 751 752 propname = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index); 753 list = of_get_property(battery_np, propname, &size); 754 if (!list || !size) { 755 dev_err(&psy->dev, "failed to get %s\n", propname); 756 kfree(propname); 757 power_supply_put_battery_info(psy, info); 758 err = -EINVAL; 759 goto out_put_node; 760 } 761 762 kfree(propname); 763 tab_len = size / (2 * sizeof(__be32)); 764 info->ocv_table_size[index] = tab_len; 765 766 table = info->ocv_table[index] = 767 devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL); 768 if (!info->ocv_table[index]) { 769 power_supply_put_battery_info(psy, info); 770 err = -ENOMEM; 771 goto out_put_node; 772 } 773 774 for (i = 0; i < tab_len; i++) { 775 table[i].ocv = be32_to_cpu(*list); 776 list++; 777 table[i].capacity = be32_to_cpu(*list); 778 list++; 779 } 780 } 781 782 list = of_get_property(battery_np, "resistance-temp-table", &len); 783 if (!list || !len) 784 goto out_ret_pointer; 785 786 info->resist_table_size = len / (2 * sizeof(__be32)); 787 resist_table = info->resist_table = devm_kcalloc(&psy->dev, 788 info->resist_table_size, 789 sizeof(*resist_table), 790 GFP_KERNEL); 791 if (!info->resist_table) { 792 power_supply_put_battery_info(psy, info); 793 err = -ENOMEM; 794 goto out_put_node; 795 } 796 797 for (index = 0; index < info->resist_table_size; index++) { 798 resist_table[index].temp = be32_to_cpu(*list++); 799 resist_table[index].resistance = be32_to_cpu(*list++); 800 } 801 802 out_ret_pointer: 803 /* Finally return the whole thing */ 804 *info_out = info; 805 806 out_put_node: 807 fwnode_handle_put(fwnode); 808 of_node_put(battery_np); 809 return err; 810 } 811 EXPORT_SYMBOL_GPL(power_supply_get_battery_info); 812 813 void power_supply_put_battery_info(struct power_supply *psy, 814 struct power_supply_battery_info *info) 815 { 816 int i; 817 818 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) { 819 if (info->ocv_table[i]) 820 devm_kfree(&psy->dev, info->ocv_table[i]); 821 } 822 823 if (info->resist_table) 824 devm_kfree(&psy->dev, info->resist_table); 825 826 devm_kfree(&psy->dev, info); 827 } 828 EXPORT_SYMBOL_GPL(power_supply_put_battery_info); 829 830 /** 831 * power_supply_temp2resist_simple() - find the battery internal resistance 832 * percent from temperature 833 * @table: Pointer to battery resistance temperature table 834 * @table_len: The table length 835 * @temp: Current temperature 836 * 837 * This helper function is used to look up battery internal resistance percent 838 * according to current temperature value from the resistance temperature table, 839 * and the table must be ordered descending. Then the actual battery internal 840 * resistance = the ideal battery internal resistance * percent / 100. 841 * 842 * Return: the battery internal resistance percent 843 */ 844 int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table, 845 int table_len, int temp) 846 { 847 int i, high, low; 848 849 for (i = 0; i < table_len; i++) 850 if (temp > table[i].temp) 851 break; 852 853 /* The library function will deal with high == low */ 854 if (i == 0) 855 high = low = i; 856 else if (i == table_len) 857 high = low = i - 1; 858 else 859 high = (low = i) - 1; 860 861 return fixp_linear_interpolate(table[low].temp, 862 table[low].resistance, 863 table[high].temp, 864 table[high].resistance, 865 temp); 866 } 867 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple); 868 869 /** 870 * power_supply_vbat2ri() - find the battery internal resistance 871 * from the battery voltage 872 * @info: The battery information container 873 * @table: Pointer to battery resistance temperature table 874 * @vbat_uv: The battery voltage in microvolt 875 * @charging: If we are charging (true) or not (false) 876 * 877 * This helper function is used to look up battery internal resistance 878 * according to current battery voltage. Depending on whether the battery 879 * is currently charging or not, different resistance will be returned. 880 * 881 * Returns the internal resistance in microohm or negative error code. 882 */ 883 int power_supply_vbat2ri(struct power_supply_battery_info *info, 884 int vbat_uv, bool charging) 885 { 886 struct power_supply_vbat_ri_table *vbat2ri; 887 int table_len; 888 int i, high, low; 889 890 /* 891 * If we are charging, and the battery supplies a separate table 892 * for this state, we use that in order to compensate for the 893 * charging voltage. Otherwise we use the main table. 894 */ 895 if (charging && info->vbat2ri_charging) { 896 vbat2ri = info->vbat2ri_charging; 897 table_len = info->vbat2ri_charging_size; 898 } else { 899 vbat2ri = info->vbat2ri_discharging; 900 table_len = info->vbat2ri_discharging_size; 901 } 902 903 /* 904 * If no tables are specified, or if we are above the highest voltage in 905 * the voltage table, just return the factory specified internal resistance. 906 */ 907 if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) { 908 if (charging && (info->factory_internal_resistance_charging_uohm > 0)) 909 return info->factory_internal_resistance_charging_uohm; 910 else 911 return info->factory_internal_resistance_uohm; 912 } 913 914 /* Break loop at table_len - 1 because that is the highest index */ 915 for (i = 0; i < table_len - 1; i++) 916 if (vbat_uv > vbat2ri[i].vbat_uv) 917 break; 918 919 /* The library function will deal with high == low */ 920 if ((i == 0) || (i == (table_len - 1))) 921 high = i; 922 else 923 high = i - 1; 924 low = i; 925 926 return fixp_linear_interpolate(vbat2ri[low].vbat_uv, 927 vbat2ri[low].ri_uohm, 928 vbat2ri[high].vbat_uv, 929 vbat2ri[high].ri_uohm, 930 vbat_uv); 931 } 932 EXPORT_SYMBOL_GPL(power_supply_vbat2ri); 933 934 struct power_supply_maintenance_charge_table * 935 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, 936 int index) 937 { 938 if (index >= info->maintenance_charge_size) 939 return NULL; 940 return &info->maintenance_charge[index]; 941 } 942 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting); 943 944 /** 945 * power_supply_ocv2cap_simple() - find the battery capacity 946 * @table: Pointer to battery OCV lookup table 947 * @table_len: OCV table length 948 * @ocv: Current OCV value 949 * 950 * This helper function is used to look up battery capacity according to 951 * current OCV value from one OCV table, and the OCV table must be ordered 952 * descending. 953 * 954 * Return: the battery capacity. 955 */ 956 int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table, 957 int table_len, int ocv) 958 { 959 int i, high, low; 960 961 for (i = 0; i < table_len; i++) 962 if (ocv > table[i].ocv) 963 break; 964 965 /* The library function will deal with high == low */ 966 if (i == 0) 967 high = low = i; 968 else if (i == table_len) 969 high = low = i - 1; 970 else 971 high = (low = i) - 1; 972 973 return fixp_linear_interpolate(table[low].ocv, 974 table[low].capacity, 975 table[high].ocv, 976 table[high].capacity, 977 ocv); 978 } 979 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple); 980 981 struct power_supply_battery_ocv_table * 982 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, 983 int temp, int *table_len) 984 { 985 int best_temp_diff = INT_MAX, temp_diff; 986 u8 i, best_index = 0; 987 988 if (!info->ocv_table[0]) 989 return NULL; 990 991 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) { 992 /* Out of capacity tables */ 993 if (!info->ocv_table[i]) 994 break; 995 996 temp_diff = abs(info->ocv_temp[i] - temp); 997 998 if (temp_diff < best_temp_diff) { 999 best_temp_diff = temp_diff; 1000 best_index = i; 1001 } 1002 } 1003 1004 *table_len = info->ocv_table_size[best_index]; 1005 return info->ocv_table[best_index]; 1006 } 1007 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table); 1008 1009 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, 1010 int ocv, int temp) 1011 { 1012 struct power_supply_battery_ocv_table *table; 1013 int table_len; 1014 1015 table = power_supply_find_ocv2cap_table(info, temp, &table_len); 1016 if (!table) 1017 return -EINVAL; 1018 1019 return power_supply_ocv2cap_simple(table, table_len, ocv); 1020 } 1021 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap); 1022 1023 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info, 1024 int resistance) 1025 { 1026 int low, high; 1027 1028 /* Nothing like this can be checked */ 1029 if (info->bti_resistance_ohm <= 0) 1030 return false; 1031 1032 /* This will be extremely strict and unlikely to work */ 1033 if (info->bti_resistance_tolerance <= 0) 1034 return (info->bti_resistance_ohm == resistance); 1035 1036 low = info->bti_resistance_ohm - 1037 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100; 1038 high = info->bti_resistance_ohm + 1039 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100; 1040 1041 return ((resistance >= low) && (resistance <= high)); 1042 } 1043 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range); 1044 1045 int power_supply_get_property(struct power_supply *psy, 1046 enum power_supply_property psp, 1047 union power_supply_propval *val) 1048 { 1049 if (atomic_read(&psy->use_cnt) <= 0) { 1050 if (!psy->initialized) 1051 return -EAGAIN; 1052 return -ENODEV; 1053 } 1054 1055 return psy->desc->get_property(psy, psp, val); 1056 } 1057 EXPORT_SYMBOL_GPL(power_supply_get_property); 1058 1059 int power_supply_set_property(struct power_supply *psy, 1060 enum power_supply_property psp, 1061 const union power_supply_propval *val) 1062 { 1063 if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property) 1064 return -ENODEV; 1065 1066 return psy->desc->set_property(psy, psp, val); 1067 } 1068 EXPORT_SYMBOL_GPL(power_supply_set_property); 1069 1070 int power_supply_property_is_writeable(struct power_supply *psy, 1071 enum power_supply_property psp) 1072 { 1073 if (atomic_read(&psy->use_cnt) <= 0 || 1074 !psy->desc->property_is_writeable) 1075 return -ENODEV; 1076 1077 return psy->desc->property_is_writeable(psy, psp); 1078 } 1079 EXPORT_SYMBOL_GPL(power_supply_property_is_writeable); 1080 1081 void power_supply_external_power_changed(struct power_supply *psy) 1082 { 1083 if (atomic_read(&psy->use_cnt) <= 0 || 1084 !psy->desc->external_power_changed) 1085 return; 1086 1087 psy->desc->external_power_changed(psy); 1088 } 1089 EXPORT_SYMBOL_GPL(power_supply_external_power_changed); 1090 1091 int power_supply_powers(struct power_supply *psy, struct device *dev) 1092 { 1093 return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers"); 1094 } 1095 EXPORT_SYMBOL_GPL(power_supply_powers); 1096 1097 static void power_supply_dev_release(struct device *dev) 1098 { 1099 struct power_supply *psy = to_power_supply(dev); 1100 dev_dbg(dev, "%s\n", __func__); 1101 kfree(psy); 1102 } 1103 1104 int power_supply_reg_notifier(struct notifier_block *nb) 1105 { 1106 return atomic_notifier_chain_register(&power_supply_notifier, nb); 1107 } 1108 EXPORT_SYMBOL_GPL(power_supply_reg_notifier); 1109 1110 void power_supply_unreg_notifier(struct notifier_block *nb) 1111 { 1112 atomic_notifier_chain_unregister(&power_supply_notifier, nb); 1113 } 1114 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier); 1115 1116 static bool psy_has_property(const struct power_supply_desc *psy_desc, 1117 enum power_supply_property psp) 1118 { 1119 bool found = false; 1120 int i; 1121 1122 for (i = 0; i < psy_desc->num_properties; i++) { 1123 if (psy_desc->properties[i] == psp) { 1124 found = true; 1125 break; 1126 } 1127 } 1128 1129 return found; 1130 } 1131 1132 #ifdef CONFIG_THERMAL 1133 static int power_supply_read_temp(struct thermal_zone_device *tzd, 1134 int *temp) 1135 { 1136 struct power_supply *psy; 1137 union power_supply_propval val; 1138 int ret; 1139 1140 WARN_ON(tzd == NULL); 1141 psy = tzd->devdata; 1142 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val); 1143 if (ret) 1144 return ret; 1145 1146 /* Convert tenths of degree Celsius to milli degree Celsius. */ 1147 *temp = val.intval * 100; 1148 1149 return ret; 1150 } 1151 1152 static struct thermal_zone_device_ops psy_tzd_ops = { 1153 .get_temp = power_supply_read_temp, 1154 }; 1155 1156 static int psy_register_thermal(struct power_supply *psy) 1157 { 1158 int ret; 1159 1160 if (psy->desc->no_thermal) 1161 return 0; 1162 1163 /* Register battery zone device psy reports temperature */ 1164 if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) { 1165 psy->tzd = thermal_zone_device_register(psy->desc->name, 1166 0, 0, psy, &psy_tzd_ops, NULL, 0, 0); 1167 if (IS_ERR(psy->tzd)) 1168 return PTR_ERR(psy->tzd); 1169 ret = thermal_zone_device_enable(psy->tzd); 1170 if (ret) 1171 thermal_zone_device_unregister(psy->tzd); 1172 return ret; 1173 } 1174 1175 return 0; 1176 } 1177 1178 static void psy_unregister_thermal(struct power_supply *psy) 1179 { 1180 if (IS_ERR_OR_NULL(psy->tzd)) 1181 return; 1182 thermal_zone_device_unregister(psy->tzd); 1183 } 1184 1185 /* thermal cooling device callbacks */ 1186 static int ps_get_max_charge_cntl_limit(struct thermal_cooling_device *tcd, 1187 unsigned long *state) 1188 { 1189 struct power_supply *psy; 1190 union power_supply_propval val; 1191 int ret; 1192 1193 psy = tcd->devdata; 1194 ret = power_supply_get_property(psy, 1195 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, &val); 1196 if (ret) 1197 return ret; 1198 1199 *state = val.intval; 1200 1201 return ret; 1202 } 1203 1204 static int ps_get_cur_charge_cntl_limit(struct thermal_cooling_device *tcd, 1205 unsigned long *state) 1206 { 1207 struct power_supply *psy; 1208 union power_supply_propval val; 1209 int ret; 1210 1211 psy = tcd->devdata; 1212 ret = power_supply_get_property(psy, 1213 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, &val); 1214 if (ret) 1215 return ret; 1216 1217 *state = val.intval; 1218 1219 return ret; 1220 } 1221 1222 static int ps_set_cur_charge_cntl_limit(struct thermal_cooling_device *tcd, 1223 unsigned long state) 1224 { 1225 struct power_supply *psy; 1226 union power_supply_propval val; 1227 int ret; 1228 1229 psy = tcd->devdata; 1230 val.intval = state; 1231 ret = psy->desc->set_property(psy, 1232 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, &val); 1233 1234 return ret; 1235 } 1236 1237 static const struct thermal_cooling_device_ops psy_tcd_ops = { 1238 .get_max_state = ps_get_max_charge_cntl_limit, 1239 .get_cur_state = ps_get_cur_charge_cntl_limit, 1240 .set_cur_state = ps_set_cur_charge_cntl_limit, 1241 }; 1242 1243 static int psy_register_cooler(struct power_supply *psy) 1244 { 1245 /* Register for cooling device if psy can control charging */ 1246 if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT)) { 1247 psy->tcd = thermal_cooling_device_register( 1248 (char *)psy->desc->name, 1249 psy, &psy_tcd_ops); 1250 return PTR_ERR_OR_ZERO(psy->tcd); 1251 } 1252 1253 return 0; 1254 } 1255 1256 static void psy_unregister_cooler(struct power_supply *psy) 1257 { 1258 if (IS_ERR_OR_NULL(psy->tcd)) 1259 return; 1260 thermal_cooling_device_unregister(psy->tcd); 1261 } 1262 #else 1263 static int psy_register_thermal(struct power_supply *psy) 1264 { 1265 return 0; 1266 } 1267 1268 static void psy_unregister_thermal(struct power_supply *psy) 1269 { 1270 } 1271 1272 static int psy_register_cooler(struct power_supply *psy) 1273 { 1274 return 0; 1275 } 1276 1277 static void psy_unregister_cooler(struct power_supply *psy) 1278 { 1279 } 1280 #endif 1281 1282 static struct power_supply *__must_check 1283 __power_supply_register(struct device *parent, 1284 const struct power_supply_desc *desc, 1285 const struct power_supply_config *cfg, 1286 bool ws) 1287 { 1288 struct device *dev; 1289 struct power_supply *psy; 1290 int rc; 1291 1292 if (!parent) 1293 pr_warn("%s: Expected proper parent device for '%s'\n", 1294 __func__, desc->name); 1295 1296 if (!desc || !desc->name || !desc->properties || !desc->num_properties) 1297 return ERR_PTR(-EINVAL); 1298 1299 if (psy_has_property(desc, POWER_SUPPLY_PROP_USB_TYPE) && 1300 (!desc->usb_types || !desc->num_usb_types)) 1301 return ERR_PTR(-EINVAL); 1302 1303 psy = kzalloc(sizeof(*psy), GFP_KERNEL); 1304 if (!psy) 1305 return ERR_PTR(-ENOMEM); 1306 1307 dev = &psy->dev; 1308 1309 device_initialize(dev); 1310 1311 dev->class = power_supply_class; 1312 dev->type = &power_supply_dev_type; 1313 dev->parent = parent; 1314 dev->release = power_supply_dev_release; 1315 dev_set_drvdata(dev, psy); 1316 psy->desc = desc; 1317 if (cfg) { 1318 dev->groups = cfg->attr_grp; 1319 psy->drv_data = cfg->drv_data; 1320 psy->of_node = 1321 cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node; 1322 psy->supplied_to = cfg->supplied_to; 1323 psy->num_supplicants = cfg->num_supplicants; 1324 } 1325 1326 rc = dev_set_name(dev, "%s", desc->name); 1327 if (rc) 1328 goto dev_set_name_failed; 1329 1330 INIT_WORK(&psy->changed_work, power_supply_changed_work); 1331 INIT_DELAYED_WORK(&psy->deferred_register_work, 1332 power_supply_deferred_register_work); 1333 1334 rc = power_supply_check_supplies(psy); 1335 if (rc) { 1336 dev_dbg(dev, "Not all required supplies found, defer probe\n"); 1337 goto check_supplies_failed; 1338 } 1339 1340 spin_lock_init(&psy->changed_lock); 1341 rc = device_add(dev); 1342 if (rc) 1343 goto device_add_failed; 1344 1345 rc = device_init_wakeup(dev, ws); 1346 if (rc) 1347 goto wakeup_init_failed; 1348 1349 rc = psy_register_thermal(psy); 1350 if (rc) 1351 goto register_thermal_failed; 1352 1353 rc = psy_register_cooler(psy); 1354 if (rc) 1355 goto register_cooler_failed; 1356 1357 rc = power_supply_create_triggers(psy); 1358 if (rc) 1359 goto create_triggers_failed; 1360 1361 rc = power_supply_add_hwmon_sysfs(psy); 1362 if (rc) 1363 goto add_hwmon_sysfs_failed; 1364 1365 /* 1366 * Update use_cnt after any uevents (most notably from device_add()). 1367 * We are here still during driver's probe but 1368 * the power_supply_uevent() calls back driver's get_property 1369 * method so: 1370 * 1. Driver did not assigned the returned struct power_supply, 1371 * 2. Driver could not finish initialization (anything in its probe 1372 * after calling power_supply_register()). 1373 */ 1374 atomic_inc(&psy->use_cnt); 1375 psy->initialized = true; 1376 1377 queue_delayed_work(system_power_efficient_wq, 1378 &psy->deferred_register_work, 1379 POWER_SUPPLY_DEFERRED_REGISTER_TIME); 1380 1381 return psy; 1382 1383 add_hwmon_sysfs_failed: 1384 power_supply_remove_triggers(psy); 1385 create_triggers_failed: 1386 psy_unregister_cooler(psy); 1387 register_cooler_failed: 1388 psy_unregister_thermal(psy); 1389 register_thermal_failed: 1390 device_del(dev); 1391 wakeup_init_failed: 1392 device_add_failed: 1393 check_supplies_failed: 1394 dev_set_name_failed: 1395 put_device(dev); 1396 return ERR_PTR(rc); 1397 } 1398 1399 /** 1400 * power_supply_register() - Register new power supply 1401 * @parent: Device to be a parent of power supply's device, usually 1402 * the device which probe function calls this 1403 * @desc: Description of power supply, must be valid through whole 1404 * lifetime of this power supply 1405 * @cfg: Run-time specific configuration accessed during registering, 1406 * may be NULL 1407 * 1408 * Return: A pointer to newly allocated power_supply on success 1409 * or ERR_PTR otherwise. 1410 * Use power_supply_unregister() on returned power_supply pointer to release 1411 * resources. 1412 */ 1413 struct power_supply *__must_check power_supply_register(struct device *parent, 1414 const struct power_supply_desc *desc, 1415 const struct power_supply_config *cfg) 1416 { 1417 return __power_supply_register(parent, desc, cfg, true); 1418 } 1419 EXPORT_SYMBOL_GPL(power_supply_register); 1420 1421 /** 1422 * power_supply_register_no_ws() - Register new non-waking-source power supply 1423 * @parent: Device to be a parent of power supply's device, usually 1424 * the device which probe function calls this 1425 * @desc: Description of power supply, must be valid through whole 1426 * lifetime of this power supply 1427 * @cfg: Run-time specific configuration accessed during registering, 1428 * may be NULL 1429 * 1430 * Return: A pointer to newly allocated power_supply on success 1431 * or ERR_PTR otherwise. 1432 * Use power_supply_unregister() on returned power_supply pointer to release 1433 * resources. 1434 */ 1435 struct power_supply *__must_check 1436 power_supply_register_no_ws(struct device *parent, 1437 const struct power_supply_desc *desc, 1438 const struct power_supply_config *cfg) 1439 { 1440 return __power_supply_register(parent, desc, cfg, false); 1441 } 1442 EXPORT_SYMBOL_GPL(power_supply_register_no_ws); 1443 1444 static void devm_power_supply_release(struct device *dev, void *res) 1445 { 1446 struct power_supply **psy = res; 1447 1448 power_supply_unregister(*psy); 1449 } 1450 1451 /** 1452 * devm_power_supply_register() - Register managed power supply 1453 * @parent: Device to be a parent of power supply's device, usually 1454 * the device which probe function calls this 1455 * @desc: Description of power supply, must be valid through whole 1456 * lifetime of this power supply 1457 * @cfg: Run-time specific configuration accessed during registering, 1458 * may be NULL 1459 * 1460 * Return: A pointer to newly allocated power_supply on success 1461 * or ERR_PTR otherwise. 1462 * The returned power_supply pointer will be automatically unregistered 1463 * on driver detach. 1464 */ 1465 struct power_supply *__must_check 1466 devm_power_supply_register(struct device *parent, 1467 const struct power_supply_desc *desc, 1468 const struct power_supply_config *cfg) 1469 { 1470 struct power_supply **ptr, *psy; 1471 1472 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL); 1473 1474 if (!ptr) 1475 return ERR_PTR(-ENOMEM); 1476 psy = __power_supply_register(parent, desc, cfg, true); 1477 if (IS_ERR(psy)) { 1478 devres_free(ptr); 1479 } else { 1480 *ptr = psy; 1481 devres_add(parent, ptr); 1482 } 1483 return psy; 1484 } 1485 EXPORT_SYMBOL_GPL(devm_power_supply_register); 1486 1487 /** 1488 * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply 1489 * @parent: Device to be a parent of power supply's device, usually 1490 * the device which probe function calls this 1491 * @desc: Description of power supply, must be valid through whole 1492 * lifetime of this power supply 1493 * @cfg: Run-time specific configuration accessed during registering, 1494 * may be NULL 1495 * 1496 * Return: A pointer to newly allocated power_supply on success 1497 * or ERR_PTR otherwise. 1498 * The returned power_supply pointer will be automatically unregistered 1499 * on driver detach. 1500 */ 1501 struct power_supply *__must_check 1502 devm_power_supply_register_no_ws(struct device *parent, 1503 const struct power_supply_desc *desc, 1504 const struct power_supply_config *cfg) 1505 { 1506 struct power_supply **ptr, *psy; 1507 1508 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL); 1509 1510 if (!ptr) 1511 return ERR_PTR(-ENOMEM); 1512 psy = __power_supply_register(parent, desc, cfg, false); 1513 if (IS_ERR(psy)) { 1514 devres_free(ptr); 1515 } else { 1516 *ptr = psy; 1517 devres_add(parent, ptr); 1518 } 1519 return psy; 1520 } 1521 EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws); 1522 1523 /** 1524 * power_supply_unregister() - Remove this power supply from system 1525 * @psy: Pointer to power supply to unregister 1526 * 1527 * Remove this power supply from the system. The resources of power supply 1528 * will be freed here or on last power_supply_put() call. 1529 */ 1530 void power_supply_unregister(struct power_supply *psy) 1531 { 1532 WARN_ON(atomic_dec_return(&psy->use_cnt)); 1533 psy->removing = true; 1534 cancel_work_sync(&psy->changed_work); 1535 cancel_delayed_work_sync(&psy->deferred_register_work); 1536 sysfs_remove_link(&psy->dev.kobj, "powers"); 1537 power_supply_remove_hwmon_sysfs(psy); 1538 power_supply_remove_triggers(psy); 1539 psy_unregister_cooler(psy); 1540 psy_unregister_thermal(psy); 1541 device_init_wakeup(&psy->dev, false); 1542 device_unregister(&psy->dev); 1543 } 1544 EXPORT_SYMBOL_GPL(power_supply_unregister); 1545 1546 void *power_supply_get_drvdata(struct power_supply *psy) 1547 { 1548 return psy->drv_data; 1549 } 1550 EXPORT_SYMBOL_GPL(power_supply_get_drvdata); 1551 1552 static int __init power_supply_class_init(void) 1553 { 1554 power_supply_class = class_create(THIS_MODULE, "power_supply"); 1555 1556 if (IS_ERR(power_supply_class)) 1557 return PTR_ERR(power_supply_class); 1558 1559 power_supply_class->dev_uevent = power_supply_uevent; 1560 power_supply_init_attrs(&power_supply_dev_type); 1561 1562 return 0; 1563 } 1564 1565 static void __exit power_supply_class_exit(void) 1566 { 1567 class_destroy(power_supply_class); 1568 } 1569 1570 subsys_initcall(power_supply_class_init); 1571 module_exit(power_supply_class_exit); 1572 1573 MODULE_DESCRIPTION("Universal power supply monitor class"); 1574 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>, " 1575 "Szabolcs Gyurko, " 1576 "Anton Vorontsov <cbou@mail.ru>"); 1577 MODULE_LICENSE("GPL"); 1578