xref: /openbmc/linux/drivers/power/supply/power_supply_core.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Universal power supply monitor class
4  *
5  *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
6  *  Copyright © 2004  Szabolcs Gyurko
7  *  Copyright © 2003  Ian Molton <spyro@f2s.com>
8  *
9  *  Modified: 2004, Oct     Szabolcs Gyurko
10  */
11 
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/notifier.h>
19 #include <linux/err.h>
20 #include <linux/of.h>
21 #include <linux/power_supply.h>
22 #include <linux/property.h>
23 #include <linux/thermal.h>
24 #include <linux/fixp-arith.h>
25 #include "power_supply.h"
26 #include "samsung-sdi-battery.h"
27 
28 /* exported for the APM Power driver, APM emulation */
29 struct class *power_supply_class;
30 EXPORT_SYMBOL_GPL(power_supply_class);
31 
32 BLOCKING_NOTIFIER_HEAD(power_supply_notifier);
33 EXPORT_SYMBOL_GPL(power_supply_notifier);
34 
35 static struct device_type power_supply_dev_type;
36 
37 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME	msecs_to_jiffies(10)
38 
39 static bool __power_supply_is_supplied_by(struct power_supply *supplier,
40 					 struct power_supply *supply)
41 {
42 	int i;
43 
44 	if (!supply->supplied_from && !supplier->supplied_to)
45 		return false;
46 
47 	/* Support both supplied_to and supplied_from modes */
48 	if (supply->supplied_from) {
49 		if (!supplier->desc->name)
50 			return false;
51 		for (i = 0; i < supply->num_supplies; i++)
52 			if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
53 				return true;
54 	} else {
55 		if (!supply->desc->name)
56 			return false;
57 		for (i = 0; i < supplier->num_supplicants; i++)
58 			if (!strcmp(supplier->supplied_to[i], supply->desc->name))
59 				return true;
60 	}
61 
62 	return false;
63 }
64 
65 static int __power_supply_changed_work(struct device *dev, void *data)
66 {
67 	struct power_supply *psy = data;
68 	struct power_supply *pst = dev_get_drvdata(dev);
69 
70 	if (__power_supply_is_supplied_by(psy, pst)) {
71 		if (pst->desc->external_power_changed)
72 			pst->desc->external_power_changed(pst);
73 	}
74 
75 	return 0;
76 }
77 
78 static void power_supply_changed_work(struct work_struct *work)
79 {
80 	unsigned long flags;
81 	struct power_supply *psy = container_of(work, struct power_supply,
82 						changed_work);
83 
84 	dev_dbg(&psy->dev, "%s\n", __func__);
85 
86 	spin_lock_irqsave(&psy->changed_lock, flags);
87 	/*
88 	 * Check 'changed' here to avoid issues due to race between
89 	 * power_supply_changed() and this routine. In worst case
90 	 * power_supply_changed() can be called again just before we take above
91 	 * lock. During the first call of this routine we will mark 'changed' as
92 	 * false and it will stay false for the next call as well.
93 	 */
94 	if (likely(psy->changed)) {
95 		psy->changed = false;
96 		spin_unlock_irqrestore(&psy->changed_lock, flags);
97 		class_for_each_device(power_supply_class, NULL, psy,
98 				      __power_supply_changed_work);
99 		power_supply_update_leds(psy);
100 		blocking_notifier_call_chain(&power_supply_notifier,
101 				PSY_EVENT_PROP_CHANGED, psy);
102 		kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
103 		spin_lock_irqsave(&psy->changed_lock, flags);
104 	}
105 
106 	/*
107 	 * Hold the wakeup_source until all events are processed.
108 	 * power_supply_changed() might have called again and have set 'changed'
109 	 * to true.
110 	 */
111 	if (likely(!psy->changed))
112 		pm_relax(&psy->dev);
113 	spin_unlock_irqrestore(&psy->changed_lock, flags);
114 }
115 
116 void power_supply_changed(struct power_supply *psy)
117 {
118 	unsigned long flags;
119 
120 	dev_dbg(&psy->dev, "%s\n", __func__);
121 
122 	spin_lock_irqsave(&psy->changed_lock, flags);
123 	psy->changed = true;
124 	pm_stay_awake(&psy->dev);
125 	spin_unlock_irqrestore(&psy->changed_lock, flags);
126 	schedule_work(&psy->changed_work);
127 }
128 EXPORT_SYMBOL_GPL(power_supply_changed);
129 
130 /*
131  * Notify that power supply was registered after parent finished the probing.
132  *
133  * Often power supply is registered from driver's probe function. However
134  * calling power_supply_changed() directly from power_supply_register()
135  * would lead to execution of get_property() function provided by the driver
136  * too early - before the probe ends.
137  *
138  * Avoid that by waiting on parent's mutex.
139  */
140 static void power_supply_deferred_register_work(struct work_struct *work)
141 {
142 	struct power_supply *psy = container_of(work, struct power_supply,
143 						deferred_register_work.work);
144 
145 	if (psy->dev.parent) {
146 		while (!mutex_trylock(&psy->dev.parent->mutex)) {
147 			if (psy->removing)
148 				return;
149 			msleep(10);
150 		}
151 	}
152 
153 	power_supply_changed(psy);
154 
155 	if (psy->dev.parent)
156 		mutex_unlock(&psy->dev.parent->mutex);
157 }
158 
159 #ifdef CONFIG_OF
160 static int __power_supply_populate_supplied_from(struct device *dev,
161 						 void *data)
162 {
163 	struct power_supply *psy = data;
164 	struct power_supply *epsy = dev_get_drvdata(dev);
165 	struct device_node *np;
166 	int i = 0;
167 
168 	do {
169 		np = of_parse_phandle(psy->of_node, "power-supplies", i++);
170 		if (!np)
171 			break;
172 
173 		if (np == epsy->of_node) {
174 			dev_dbg(&psy->dev, "%s: Found supply : %s\n",
175 				psy->desc->name, epsy->desc->name);
176 			psy->supplied_from[i-1] = (char *)epsy->desc->name;
177 			psy->num_supplies++;
178 			of_node_put(np);
179 			break;
180 		}
181 		of_node_put(np);
182 	} while (np);
183 
184 	return 0;
185 }
186 
187 static int power_supply_populate_supplied_from(struct power_supply *psy)
188 {
189 	int error;
190 
191 	error = class_for_each_device(power_supply_class, NULL, psy,
192 				      __power_supply_populate_supplied_from);
193 
194 	dev_dbg(&psy->dev, "%s %d\n", __func__, error);
195 
196 	return error;
197 }
198 
199 static int  __power_supply_find_supply_from_node(struct device *dev,
200 						 void *data)
201 {
202 	struct device_node *np = data;
203 	struct power_supply *epsy = dev_get_drvdata(dev);
204 
205 	/* returning non-zero breaks out of class_for_each_device loop */
206 	if (epsy->of_node == np)
207 		return 1;
208 
209 	return 0;
210 }
211 
212 static int power_supply_find_supply_from_node(struct device_node *supply_node)
213 {
214 	int error;
215 
216 	/*
217 	 * class_for_each_device() either returns its own errors or values
218 	 * returned by __power_supply_find_supply_from_node().
219 	 *
220 	 * __power_supply_find_supply_from_node() will return 0 (no match)
221 	 * or 1 (match).
222 	 *
223 	 * We return 0 if class_for_each_device() returned 1, -EPROBE_DEFER if
224 	 * it returned 0, or error as returned by it.
225 	 */
226 	error = class_for_each_device(power_supply_class, NULL, supply_node,
227 				       __power_supply_find_supply_from_node);
228 
229 	return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
230 }
231 
232 static int power_supply_check_supplies(struct power_supply *psy)
233 {
234 	struct device_node *np;
235 	int cnt = 0;
236 
237 	/* If there is already a list honor it */
238 	if (psy->supplied_from && psy->num_supplies > 0)
239 		return 0;
240 
241 	/* No device node found, nothing to do */
242 	if (!psy->of_node)
243 		return 0;
244 
245 	do {
246 		int ret;
247 
248 		np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
249 		if (!np)
250 			break;
251 
252 		ret = power_supply_find_supply_from_node(np);
253 		of_node_put(np);
254 
255 		if (ret) {
256 			dev_dbg(&psy->dev, "Failed to find supply!\n");
257 			return ret;
258 		}
259 	} while (np);
260 
261 	/* Missing valid "power-supplies" entries */
262 	if (cnt == 1)
263 		return 0;
264 
265 	/* All supplies found, allocate char ** array for filling */
266 	psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from),
267 					  GFP_KERNEL);
268 	if (!psy->supplied_from)
269 		return -ENOMEM;
270 
271 	*psy->supplied_from = devm_kcalloc(&psy->dev,
272 					   cnt - 1, sizeof(**psy->supplied_from),
273 					   GFP_KERNEL);
274 	if (!*psy->supplied_from)
275 		return -ENOMEM;
276 
277 	return power_supply_populate_supplied_from(psy);
278 }
279 #else
280 static int power_supply_check_supplies(struct power_supply *psy)
281 {
282 	int nval, ret;
283 
284 	if (!psy->dev.parent)
285 		return 0;
286 
287 	nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
288 	if (nval <= 0)
289 		return 0;
290 
291 	psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
292 						sizeof(char *), GFP_KERNEL);
293 	if (!psy->supplied_from)
294 		return -ENOMEM;
295 
296 	ret = device_property_read_string_array(psy->dev.parent,
297 		"supplied-from", (const char **)psy->supplied_from, nval);
298 	if (ret < 0)
299 		return ret;
300 
301 	psy->num_supplies = nval;
302 
303 	return 0;
304 }
305 #endif
306 
307 struct psy_am_i_supplied_data {
308 	struct power_supply *psy;
309 	unsigned int count;
310 };
311 
312 static int __power_supply_am_i_supplied(struct device *dev, void *_data)
313 {
314 	union power_supply_propval ret = {0,};
315 	struct power_supply *epsy = dev_get_drvdata(dev);
316 	struct psy_am_i_supplied_data *data = _data;
317 
318 	if (__power_supply_is_supplied_by(epsy, data->psy)) {
319 		data->count++;
320 		if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
321 					&ret))
322 			return ret.intval;
323 	}
324 
325 	return 0;
326 }
327 
328 int power_supply_am_i_supplied(struct power_supply *psy)
329 {
330 	struct psy_am_i_supplied_data data = { psy, 0 };
331 	int error;
332 
333 	error = class_for_each_device(power_supply_class, NULL, &data,
334 				      __power_supply_am_i_supplied);
335 
336 	dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
337 
338 	if (data.count == 0)
339 		return -ENODEV;
340 
341 	return error;
342 }
343 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
344 
345 static int __power_supply_is_system_supplied(struct device *dev, void *data)
346 {
347 	union power_supply_propval ret = {0,};
348 	struct power_supply *psy = dev_get_drvdata(dev);
349 	unsigned int *count = data;
350 
351 	if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret))
352 		if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE)
353 			return 0;
354 
355 	(*count)++;
356 	if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
357 		if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
358 					&ret))
359 			return ret.intval;
360 
361 	return 0;
362 }
363 
364 int power_supply_is_system_supplied(void)
365 {
366 	int error;
367 	unsigned int count = 0;
368 
369 	error = class_for_each_device(power_supply_class, NULL, &count,
370 				      __power_supply_is_system_supplied);
371 
372 	/*
373 	 * If no system scope power class device was found at all, most probably we
374 	 * are running on a desktop system, so assume we are on mains power.
375 	 */
376 	if (count == 0)
377 		return 1;
378 
379 	return error;
380 }
381 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
382 
383 struct psy_get_supplier_prop_data {
384 	struct power_supply *psy;
385 	enum power_supply_property psp;
386 	union power_supply_propval *val;
387 };
388 
389 static int __power_supply_get_supplier_property(struct device *dev, void *_data)
390 {
391 	struct power_supply *epsy = dev_get_drvdata(dev);
392 	struct psy_get_supplier_prop_data *data = _data;
393 
394 	if (__power_supply_is_supplied_by(epsy, data->psy))
395 		if (!power_supply_get_property(epsy, data->psp, data->val))
396 			return 1; /* Success */
397 
398 	return 0; /* Continue iterating */
399 }
400 
401 int power_supply_get_property_from_supplier(struct power_supply *psy,
402 					    enum power_supply_property psp,
403 					    union power_supply_propval *val)
404 {
405 	struct psy_get_supplier_prop_data data = {
406 		.psy = psy,
407 		.psp = psp,
408 		.val = val,
409 	};
410 	int ret;
411 
412 	/*
413 	 * This function is not intended for use with a supply with multiple
414 	 * suppliers, we simply pick the first supply to report the psp.
415 	 */
416 	ret = class_for_each_device(power_supply_class, NULL, &data,
417 				    __power_supply_get_supplier_property);
418 	if (ret < 0)
419 		return ret;
420 	if (ret == 0)
421 		return -ENODEV;
422 
423 	return 0;
424 }
425 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
426 
427 int power_supply_set_battery_charged(struct power_supply *psy)
428 {
429 	if (atomic_read(&psy->use_cnt) >= 0 &&
430 			psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
431 			psy->desc->set_charged) {
432 		psy->desc->set_charged(psy);
433 		return 0;
434 	}
435 
436 	return -EINVAL;
437 }
438 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
439 
440 static int power_supply_match_device_by_name(struct device *dev, const void *data)
441 {
442 	const char *name = data;
443 	struct power_supply *psy = dev_get_drvdata(dev);
444 
445 	return strcmp(psy->desc->name, name) == 0;
446 }
447 
448 /**
449  * power_supply_get_by_name() - Search for a power supply and returns its ref
450  * @name: Power supply name to fetch
451  *
452  * If power supply was found, it increases reference count for the
453  * internal power supply's device. The user should power_supply_put()
454  * after usage.
455  *
456  * Return: On success returns a reference to a power supply with
457  * matching name equals to @name, a NULL otherwise.
458  */
459 struct power_supply *power_supply_get_by_name(const char *name)
460 {
461 	struct power_supply *psy = NULL;
462 	struct device *dev = class_find_device(power_supply_class, NULL, name,
463 					power_supply_match_device_by_name);
464 
465 	if (dev) {
466 		psy = dev_get_drvdata(dev);
467 		atomic_inc(&psy->use_cnt);
468 	}
469 
470 	return psy;
471 }
472 EXPORT_SYMBOL_GPL(power_supply_get_by_name);
473 
474 /**
475  * power_supply_put() - Drop reference obtained with power_supply_get_by_name
476  * @psy: Reference to put
477  *
478  * The reference to power supply should be put before unregistering
479  * the power supply.
480  */
481 void power_supply_put(struct power_supply *psy)
482 {
483 	atomic_dec(&psy->use_cnt);
484 	put_device(&psy->dev);
485 }
486 EXPORT_SYMBOL_GPL(power_supply_put);
487 
488 #ifdef CONFIG_OF
489 static int power_supply_match_device_node(struct device *dev, const void *data)
490 {
491 	return dev->parent && dev->parent->of_node == data;
492 }
493 
494 /**
495  * power_supply_get_by_phandle() - Search for a power supply and returns its ref
496  * @np: Pointer to device node holding phandle property
497  * @property: Name of property holding a power supply name
498  *
499  * If power supply was found, it increases reference count for the
500  * internal power supply's device. The user should power_supply_put()
501  * after usage.
502  *
503  * Return: On success returns a reference to a power supply with
504  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
505  */
506 struct power_supply *power_supply_get_by_phandle(struct device_node *np,
507 							const char *property)
508 {
509 	struct device_node *power_supply_np;
510 	struct power_supply *psy = NULL;
511 	struct device *dev;
512 
513 	power_supply_np = of_parse_phandle(np, property, 0);
514 	if (!power_supply_np)
515 		return ERR_PTR(-ENODEV);
516 
517 	dev = class_find_device(power_supply_class, NULL, power_supply_np,
518 						power_supply_match_device_node);
519 
520 	of_node_put(power_supply_np);
521 
522 	if (dev) {
523 		psy = dev_get_drvdata(dev);
524 		atomic_inc(&psy->use_cnt);
525 	}
526 
527 	return psy;
528 }
529 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
530 
531 static void devm_power_supply_put(struct device *dev, void *res)
532 {
533 	struct power_supply **psy = res;
534 
535 	power_supply_put(*psy);
536 }
537 
538 /**
539  * devm_power_supply_get_by_phandle() - Resource managed version of
540  *  power_supply_get_by_phandle()
541  * @dev: Pointer to device holding phandle property
542  * @property: Name of property holding a power supply phandle
543  *
544  * Return: On success returns a reference to a power supply with
545  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
546  */
547 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
548 						      const char *property)
549 {
550 	struct power_supply **ptr, *psy;
551 
552 	if (!dev->of_node)
553 		return ERR_PTR(-ENODEV);
554 
555 	ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
556 	if (!ptr)
557 		return ERR_PTR(-ENOMEM);
558 
559 	psy = power_supply_get_by_phandle(dev->of_node, property);
560 	if (IS_ERR_OR_NULL(psy)) {
561 		devres_free(ptr);
562 	} else {
563 		*ptr = psy;
564 		devres_add(dev, ptr);
565 	}
566 	return psy;
567 }
568 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
569 #endif /* CONFIG_OF */
570 
571 int power_supply_get_battery_info(struct power_supply *psy,
572 				  struct power_supply_battery_info **info_out)
573 {
574 	struct power_supply_resistance_temp_table *resist_table;
575 	struct power_supply_battery_info *info;
576 	struct device_node *battery_np = NULL;
577 	struct fwnode_reference_args args;
578 	struct fwnode_handle *fwnode = NULL;
579 	const char *value;
580 	int err, len, index;
581 	const __be32 *list;
582 	u32 min_max[2];
583 
584 	if (psy->of_node) {
585 		battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
586 		if (!battery_np)
587 			return -ENODEV;
588 
589 		fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
590 	} else if (psy->dev.parent) {
591 		err = fwnode_property_get_reference_args(
592 					dev_fwnode(psy->dev.parent),
593 					"monitored-battery", NULL, 0, 0, &args);
594 		if (err)
595 			return err;
596 
597 		fwnode = args.fwnode;
598 	}
599 
600 	if (!fwnode)
601 		return -ENOENT;
602 
603 	err = fwnode_property_read_string(fwnode, "compatible", &value);
604 	if (err)
605 		goto out_put_node;
606 
607 
608 	/* Try static batteries first */
609 	err = samsung_sdi_battery_get_info(&psy->dev, value, &info);
610 	if (!err)
611 		goto out_ret_pointer;
612 	else if (err == -ENODEV)
613 		/*
614 		 * Device does not have a static battery.
615 		 * Proceed to look for a simple battery.
616 		 */
617 		err = 0;
618 
619 	if (strcmp("simple-battery", value)) {
620 		err = -ENODEV;
621 		goto out_put_node;
622 	}
623 
624 	info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL);
625 	if (!info) {
626 		err = -ENOMEM;
627 		goto out_put_node;
628 	}
629 
630 	info->technology                     = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
631 	info->energy_full_design_uwh         = -EINVAL;
632 	info->charge_full_design_uah         = -EINVAL;
633 	info->voltage_min_design_uv          = -EINVAL;
634 	info->voltage_max_design_uv          = -EINVAL;
635 	info->precharge_current_ua           = -EINVAL;
636 	info->charge_term_current_ua         = -EINVAL;
637 	info->constant_charge_current_max_ua = -EINVAL;
638 	info->constant_charge_voltage_max_uv = -EINVAL;
639 	info->tricklecharge_current_ua       = -EINVAL;
640 	info->precharge_voltage_max_uv       = -EINVAL;
641 	info->charge_restart_voltage_uv      = -EINVAL;
642 	info->overvoltage_limit_uv           = -EINVAL;
643 	info->maintenance_charge             = NULL;
644 	info->alert_low_temp_charge_current_ua = -EINVAL;
645 	info->alert_low_temp_charge_voltage_uv = -EINVAL;
646 	info->alert_high_temp_charge_current_ua = -EINVAL;
647 	info->alert_high_temp_charge_voltage_uv = -EINVAL;
648 	info->temp_ambient_alert_min         = INT_MIN;
649 	info->temp_ambient_alert_max         = INT_MAX;
650 	info->temp_alert_min                 = INT_MIN;
651 	info->temp_alert_max                 = INT_MAX;
652 	info->temp_min                       = INT_MIN;
653 	info->temp_max                       = INT_MAX;
654 	info->factory_internal_resistance_uohm  = -EINVAL;
655 	info->resist_table                   = NULL;
656 	info->bti_resistance_ohm             = -EINVAL;
657 	info->bti_resistance_tolerance       = -EINVAL;
658 
659 	for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
660 		info->ocv_table[index]       = NULL;
661 		info->ocv_temp[index]        = -EINVAL;
662 		info->ocv_table_size[index]  = -EINVAL;
663 	}
664 
665 	/* The property and field names below must correspond to elements
666 	 * in enum power_supply_property. For reasoning, see
667 	 * Documentation/power/power_supply_class.rst.
668 	 */
669 
670 	if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) {
671 		if (!strcmp("nickel-cadmium", value))
672 			info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
673 		else if (!strcmp("nickel-metal-hydride", value))
674 			info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
675 		else if (!strcmp("lithium-ion", value))
676 			/* Imprecise lithium-ion type */
677 			info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
678 		else if (!strcmp("lithium-ion-polymer", value))
679 			info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
680 		else if (!strcmp("lithium-ion-iron-phosphate", value))
681 			info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
682 		else if (!strcmp("lithium-ion-manganese-oxide", value))
683 			info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
684 		else
685 			dev_warn(&psy->dev, "%s unknown battery type\n", value);
686 	}
687 
688 	fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours",
689 			     &info->energy_full_design_uwh);
690 	fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours",
691 			     &info->charge_full_design_uah);
692 	fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt",
693 			     &info->voltage_min_design_uv);
694 	fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt",
695 			     &info->voltage_max_design_uv);
696 	fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp",
697 			     &info->tricklecharge_current_ua);
698 	fwnode_property_read_u32(fwnode, "precharge-current-microamp",
699 			     &info->precharge_current_ua);
700 	fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt",
701 			     &info->precharge_voltage_max_uv);
702 	fwnode_property_read_u32(fwnode, "charge-term-current-microamp",
703 			     &info->charge_term_current_ua);
704 	fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt",
705 			     &info->charge_restart_voltage_uv);
706 	fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt",
707 			     &info->overvoltage_limit_uv);
708 	fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp",
709 			     &info->constant_charge_current_max_ua);
710 	fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt",
711 			     &info->constant_charge_voltage_max_uv);
712 	fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms",
713 			     &info->factory_internal_resistance_uohm);
714 
715 	if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius",
716 					    min_max, ARRAY_SIZE(min_max))) {
717 		info->temp_ambient_alert_min = min_max[0];
718 		info->temp_ambient_alert_max = min_max[1];
719 	}
720 	if (!fwnode_property_read_u32_array(fwnode, "alert-celsius",
721 					    min_max, ARRAY_SIZE(min_max))) {
722 		info->temp_alert_min = min_max[0];
723 		info->temp_alert_max = min_max[1];
724 	}
725 	if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius",
726 					    min_max, ARRAY_SIZE(min_max))) {
727 		info->temp_min = min_max[0];
728 		info->temp_max = min_max[1];
729 	}
730 
731 	/*
732 	 * The below code uses raw of-data parsing to parse
733 	 * /schemas/types.yaml#/definitions/uint32-matrix
734 	 * data, so for now this is only support with of.
735 	 */
736 	if (!battery_np)
737 		goto out_ret_pointer;
738 
739 	len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
740 	if (len < 0 && len != -EINVAL) {
741 		err = len;
742 		goto out_put_node;
743 	} else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
744 		dev_err(&psy->dev, "Too many temperature values\n");
745 		err = -EINVAL;
746 		goto out_put_node;
747 	} else if (len > 0) {
748 		of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
749 					   info->ocv_temp, len);
750 	}
751 
752 	for (index = 0; index < len; index++) {
753 		struct power_supply_battery_ocv_table *table;
754 		char *propname;
755 		int i, tab_len, size;
756 
757 		propname = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index);
758 		if (!propname) {
759 			power_supply_put_battery_info(psy, info);
760 			err = -ENOMEM;
761 			goto out_put_node;
762 		}
763 		list = of_get_property(battery_np, propname, &size);
764 		if (!list || !size) {
765 			dev_err(&psy->dev, "failed to get %s\n", propname);
766 			kfree(propname);
767 			power_supply_put_battery_info(psy, info);
768 			err = -EINVAL;
769 			goto out_put_node;
770 		}
771 
772 		kfree(propname);
773 		tab_len = size / (2 * sizeof(__be32));
774 		info->ocv_table_size[index] = tab_len;
775 
776 		table = info->ocv_table[index] =
777 			devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
778 		if (!info->ocv_table[index]) {
779 			power_supply_put_battery_info(psy, info);
780 			err = -ENOMEM;
781 			goto out_put_node;
782 		}
783 
784 		for (i = 0; i < tab_len; i++) {
785 			table[i].ocv = be32_to_cpu(*list);
786 			list++;
787 			table[i].capacity = be32_to_cpu(*list);
788 			list++;
789 		}
790 	}
791 
792 	list = of_get_property(battery_np, "resistance-temp-table", &len);
793 	if (!list || !len)
794 		goto out_ret_pointer;
795 
796 	info->resist_table_size = len / (2 * sizeof(__be32));
797 	resist_table = info->resist_table = devm_kcalloc(&psy->dev,
798 							 info->resist_table_size,
799 							 sizeof(*resist_table),
800 							 GFP_KERNEL);
801 	if (!info->resist_table) {
802 		power_supply_put_battery_info(psy, info);
803 		err = -ENOMEM;
804 		goto out_put_node;
805 	}
806 
807 	for (index = 0; index < info->resist_table_size; index++) {
808 		resist_table[index].temp = be32_to_cpu(*list++);
809 		resist_table[index].resistance = be32_to_cpu(*list++);
810 	}
811 
812 out_ret_pointer:
813 	/* Finally return the whole thing */
814 	*info_out = info;
815 
816 out_put_node:
817 	fwnode_handle_put(fwnode);
818 	of_node_put(battery_np);
819 	return err;
820 }
821 EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
822 
823 void power_supply_put_battery_info(struct power_supply *psy,
824 				   struct power_supply_battery_info *info)
825 {
826 	int i;
827 
828 	for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
829 		if (info->ocv_table[i])
830 			devm_kfree(&psy->dev, info->ocv_table[i]);
831 	}
832 
833 	if (info->resist_table)
834 		devm_kfree(&psy->dev, info->resist_table);
835 
836 	devm_kfree(&psy->dev, info);
837 }
838 EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
839 
840 const enum power_supply_property power_supply_battery_info_properties[] = {
841 	POWER_SUPPLY_PROP_TECHNOLOGY,
842 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
843 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
844 	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
845 	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
846 	POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
847 	POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
848 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
849 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
850 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
851 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
852 	POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
853 	POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
854 	POWER_SUPPLY_PROP_TEMP_MIN,
855 	POWER_SUPPLY_PROP_TEMP_MAX,
856 };
857 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties);
858 
859 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties);
860 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size);
861 
862 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
863 				        enum power_supply_property psp)
864 {
865 	if (!info)
866 		return false;
867 
868 	switch (psp) {
869 		case POWER_SUPPLY_PROP_TECHNOLOGY:
870 			return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
871 		case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
872 			return info->energy_full_design_uwh >= 0;
873 		case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
874 			return info->charge_full_design_uah >= 0;
875 		case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
876 			return info->voltage_min_design_uv >= 0;
877 		case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
878 			return info->voltage_max_design_uv >= 0;
879 		case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
880 			return info->precharge_current_ua >= 0;
881 		case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
882 			return info->charge_term_current_ua >= 0;
883 		case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
884 			return info->constant_charge_current_max_ua >= 0;
885 		case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
886 			return info->constant_charge_voltage_max_uv >= 0;
887 		case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
888 			return info->temp_ambient_alert_min > INT_MIN;
889 		case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
890 			return info->temp_ambient_alert_max < INT_MAX;
891 		case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
892 			return info->temp_alert_min > INT_MIN;
893 		case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
894 			return info->temp_alert_max < INT_MAX;
895 		case POWER_SUPPLY_PROP_TEMP_MIN:
896 			return info->temp_min > INT_MIN;
897 		case POWER_SUPPLY_PROP_TEMP_MAX:
898 			return info->temp_max < INT_MAX;
899 		default:
900 			return false;
901 	}
902 }
903 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop);
904 
905 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
906 				       enum power_supply_property psp,
907 				       union power_supply_propval *val)
908 {
909 	if (!info)
910 		return -EINVAL;
911 
912 	if (!power_supply_battery_info_has_prop(info, psp))
913 		return -EINVAL;
914 
915 	switch (psp) {
916 		case POWER_SUPPLY_PROP_TECHNOLOGY:
917 			val->intval = info->technology;
918 			return 0;
919 		case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
920 			val->intval = info->energy_full_design_uwh;
921 			return 0;
922 		case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
923 			val->intval = info->charge_full_design_uah;
924 			return 0;
925 		case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
926 			val->intval = info->voltage_min_design_uv;
927 			return 0;
928 		case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
929 			val->intval = info->voltage_max_design_uv;
930 			return 0;
931 		case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
932 			val->intval = info->precharge_current_ua;
933 			return 0;
934 		case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
935 			val->intval = info->charge_term_current_ua;
936 			return 0;
937 		case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
938 			val->intval = info->constant_charge_current_max_ua;
939 			return 0;
940 		case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
941 			val->intval = info->constant_charge_voltage_max_uv;
942 			return 0;
943 		case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
944 			val->intval = info->temp_ambient_alert_min;
945 			return 0;
946 		case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
947 			val->intval = info->temp_ambient_alert_max;
948 			return 0;
949 		case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
950 			val->intval = info->temp_alert_min;
951 			return 0;
952 		case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
953 			val->intval = info->temp_alert_max;
954 			return 0;
955 		case POWER_SUPPLY_PROP_TEMP_MIN:
956 			val->intval = info->temp_min;
957 			return 0;
958 		case POWER_SUPPLY_PROP_TEMP_MAX:
959 			val->intval = info->temp_max;
960 			return 0;
961 		default:
962 			return -EINVAL;
963 	}
964 }
965 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop);
966 
967 /**
968  * power_supply_temp2resist_simple() - find the battery internal resistance
969  * percent from temperature
970  * @table: Pointer to battery resistance temperature table
971  * @table_len: The table length
972  * @temp: Current temperature
973  *
974  * This helper function is used to look up battery internal resistance percent
975  * according to current temperature value from the resistance temperature table,
976  * and the table must be ordered descending. Then the actual battery internal
977  * resistance = the ideal battery internal resistance * percent / 100.
978  *
979  * Return: the battery internal resistance percent
980  */
981 int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
982 				    int table_len, int temp)
983 {
984 	int i, high, low;
985 
986 	for (i = 0; i < table_len; i++)
987 		if (temp > table[i].temp)
988 			break;
989 
990 	/* The library function will deal with high == low */
991 	if (i == 0)
992 		high = low = i;
993 	else if (i == table_len)
994 		high = low = i - 1;
995 	else
996 		high = (low = i) - 1;
997 
998 	return fixp_linear_interpolate(table[low].temp,
999 				       table[low].resistance,
1000 				       table[high].temp,
1001 				       table[high].resistance,
1002 				       temp);
1003 }
1004 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
1005 
1006 /**
1007  * power_supply_vbat2ri() - find the battery internal resistance
1008  * from the battery voltage
1009  * @info: The battery information container
1010  * @vbat_uv: The battery voltage in microvolt
1011  * @charging: If we are charging (true) or not (false)
1012  *
1013  * This helper function is used to look up battery internal resistance
1014  * according to current battery voltage. Depending on whether the battery
1015  * is currently charging or not, different resistance will be returned.
1016  *
1017  * Returns the internal resistance in microohm or negative error code.
1018  */
1019 int power_supply_vbat2ri(struct power_supply_battery_info *info,
1020 			 int vbat_uv, bool charging)
1021 {
1022 	struct power_supply_vbat_ri_table *vbat2ri;
1023 	int table_len;
1024 	int i, high, low;
1025 
1026 	/*
1027 	 * If we are charging, and the battery supplies a separate table
1028 	 * for this state, we use that in order to compensate for the
1029 	 * charging voltage. Otherwise we use the main table.
1030 	 */
1031 	if (charging && info->vbat2ri_charging) {
1032 		vbat2ri = info->vbat2ri_charging;
1033 		table_len = info->vbat2ri_charging_size;
1034 	} else {
1035 		vbat2ri = info->vbat2ri_discharging;
1036 		table_len = info->vbat2ri_discharging_size;
1037 	}
1038 
1039 	/*
1040 	 * If no tables are specified, or if we are above the highest voltage in
1041 	 * the voltage table, just return the factory specified internal resistance.
1042 	 */
1043 	if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
1044 		if (charging && (info->factory_internal_resistance_charging_uohm > 0))
1045 			return info->factory_internal_resistance_charging_uohm;
1046 		else
1047 			return info->factory_internal_resistance_uohm;
1048 	}
1049 
1050 	/* Break loop at table_len - 1 because that is the highest index */
1051 	for (i = 0; i < table_len - 1; i++)
1052 		if (vbat_uv > vbat2ri[i].vbat_uv)
1053 			break;
1054 
1055 	/* The library function will deal with high == low */
1056 	if ((i == 0) || (i == (table_len - 1)))
1057 		high = i;
1058 	else
1059 		high = i - 1;
1060 	low = i;
1061 
1062 	return fixp_linear_interpolate(vbat2ri[low].vbat_uv,
1063 				       vbat2ri[low].ri_uohm,
1064 				       vbat2ri[high].vbat_uv,
1065 				       vbat2ri[high].ri_uohm,
1066 				       vbat_uv);
1067 }
1068 EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
1069 
1070 struct power_supply_maintenance_charge_table *
1071 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
1072 					      int index)
1073 {
1074 	if (index >= info->maintenance_charge_size)
1075 		return NULL;
1076 	return &info->maintenance_charge[index];
1077 }
1078 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
1079 
1080 /**
1081  * power_supply_ocv2cap_simple() - find the battery capacity
1082  * @table: Pointer to battery OCV lookup table
1083  * @table_len: OCV table length
1084  * @ocv: Current OCV value
1085  *
1086  * This helper function is used to look up battery capacity according to
1087  * current OCV value from one OCV table, and the OCV table must be ordered
1088  * descending.
1089  *
1090  * Return: the battery capacity.
1091  */
1092 int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
1093 				int table_len, int ocv)
1094 {
1095 	int i, high, low;
1096 
1097 	for (i = 0; i < table_len; i++)
1098 		if (ocv > table[i].ocv)
1099 			break;
1100 
1101 	/* The library function will deal with high == low */
1102 	if (i == 0)
1103 		high = low = i;
1104 	else if (i == table_len)
1105 		high = low = i - 1;
1106 	else
1107 		high = (low = i) - 1;
1108 
1109 	return fixp_linear_interpolate(table[low].ocv,
1110 				       table[low].capacity,
1111 				       table[high].ocv,
1112 				       table[high].capacity,
1113 				       ocv);
1114 }
1115 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
1116 
1117 struct power_supply_battery_ocv_table *
1118 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
1119 				int temp, int *table_len)
1120 {
1121 	int best_temp_diff = INT_MAX, temp_diff;
1122 	u8 i, best_index = 0;
1123 
1124 	if (!info->ocv_table[0])
1125 		return NULL;
1126 
1127 	for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
1128 		/* Out of capacity tables */
1129 		if (!info->ocv_table[i])
1130 			break;
1131 
1132 		temp_diff = abs(info->ocv_temp[i] - temp);
1133 
1134 		if (temp_diff < best_temp_diff) {
1135 			best_temp_diff = temp_diff;
1136 			best_index = i;
1137 		}
1138 	}
1139 
1140 	*table_len = info->ocv_table_size[best_index];
1141 	return info->ocv_table[best_index];
1142 }
1143 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
1144 
1145 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
1146 				 int ocv, int temp)
1147 {
1148 	struct power_supply_battery_ocv_table *table;
1149 	int table_len;
1150 
1151 	table = power_supply_find_ocv2cap_table(info, temp, &table_len);
1152 	if (!table)
1153 		return -EINVAL;
1154 
1155 	return power_supply_ocv2cap_simple(table, table_len, ocv);
1156 }
1157 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
1158 
1159 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
1160 				       int resistance)
1161 {
1162 	int low, high;
1163 
1164 	/* Nothing like this can be checked */
1165 	if (info->bti_resistance_ohm <= 0)
1166 		return false;
1167 
1168 	/* This will be extremely strict and unlikely to work */
1169 	if (info->bti_resistance_tolerance <= 0)
1170 		return (info->bti_resistance_ohm == resistance);
1171 
1172 	low = info->bti_resistance_ohm -
1173 		(info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1174 	high = info->bti_resistance_ohm +
1175 		(info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1176 
1177 	return ((resistance >= low) && (resistance <= high));
1178 }
1179 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
1180 
1181 static bool psy_has_property(const struct power_supply_desc *psy_desc,
1182 			     enum power_supply_property psp)
1183 {
1184 	bool found = false;
1185 	int i;
1186 
1187 	for (i = 0; i < psy_desc->num_properties; i++) {
1188 		if (psy_desc->properties[i] == psp) {
1189 			found = true;
1190 			break;
1191 		}
1192 	}
1193 
1194 	return found;
1195 }
1196 
1197 int power_supply_get_property(struct power_supply *psy,
1198 			    enum power_supply_property psp,
1199 			    union power_supply_propval *val)
1200 {
1201 	if (atomic_read(&psy->use_cnt) <= 0) {
1202 		if (!psy->initialized)
1203 			return -EAGAIN;
1204 		return -ENODEV;
1205 	}
1206 
1207 	if (psy_has_property(psy->desc, psp))
1208 		return psy->desc->get_property(psy, psp, val);
1209 	else if (power_supply_battery_info_has_prop(psy->battery_info, psp))
1210 		return power_supply_battery_info_get_prop(psy->battery_info, psp, val);
1211 	else
1212 		return -EINVAL;
1213 }
1214 EXPORT_SYMBOL_GPL(power_supply_get_property);
1215 
1216 int power_supply_set_property(struct power_supply *psy,
1217 			    enum power_supply_property psp,
1218 			    const union power_supply_propval *val)
1219 {
1220 	if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property)
1221 		return -ENODEV;
1222 
1223 	return psy->desc->set_property(psy, psp, val);
1224 }
1225 EXPORT_SYMBOL_GPL(power_supply_set_property);
1226 
1227 int power_supply_property_is_writeable(struct power_supply *psy,
1228 					enum power_supply_property psp)
1229 {
1230 	if (atomic_read(&psy->use_cnt) <= 0 ||
1231 			!psy->desc->property_is_writeable)
1232 		return -ENODEV;
1233 
1234 	return psy->desc->property_is_writeable(psy, psp);
1235 }
1236 EXPORT_SYMBOL_GPL(power_supply_property_is_writeable);
1237 
1238 void power_supply_external_power_changed(struct power_supply *psy)
1239 {
1240 	if (atomic_read(&psy->use_cnt) <= 0 ||
1241 			!psy->desc->external_power_changed)
1242 		return;
1243 
1244 	psy->desc->external_power_changed(psy);
1245 }
1246 EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1247 
1248 int power_supply_powers(struct power_supply *psy, struct device *dev)
1249 {
1250 	return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
1251 }
1252 EXPORT_SYMBOL_GPL(power_supply_powers);
1253 
1254 static void power_supply_dev_release(struct device *dev)
1255 {
1256 	struct power_supply *psy = to_power_supply(dev);
1257 	dev_dbg(dev, "%s\n", __func__);
1258 	kfree(psy);
1259 }
1260 
1261 int power_supply_reg_notifier(struct notifier_block *nb)
1262 {
1263 	return blocking_notifier_chain_register(&power_supply_notifier, nb);
1264 }
1265 EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1266 
1267 void power_supply_unreg_notifier(struct notifier_block *nb)
1268 {
1269 	blocking_notifier_chain_unregister(&power_supply_notifier, nb);
1270 }
1271 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1272 
1273 #ifdef CONFIG_THERMAL
1274 static int power_supply_read_temp(struct thermal_zone_device *tzd,
1275 		int *temp)
1276 {
1277 	struct power_supply *psy;
1278 	union power_supply_propval val;
1279 	int ret;
1280 
1281 	WARN_ON(tzd == NULL);
1282 	psy = thermal_zone_device_priv(tzd);
1283 	ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1284 	if (ret)
1285 		return ret;
1286 
1287 	/* Convert tenths of degree Celsius to milli degree Celsius. */
1288 	*temp = val.intval * 100;
1289 
1290 	return ret;
1291 }
1292 
1293 static struct thermal_zone_device_ops psy_tzd_ops = {
1294 	.get_temp = power_supply_read_temp,
1295 };
1296 
1297 static int psy_register_thermal(struct power_supply *psy)
1298 {
1299 	int ret;
1300 
1301 	if (psy->desc->no_thermal)
1302 		return 0;
1303 
1304 	/* Register battery zone device psy reports temperature */
1305 	if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) {
1306 		/* Prefer our hwmon device and avoid duplicates */
1307 		struct thermal_zone_params tzp = {
1308 			.no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON)
1309 		};
1310 		psy->tzd = thermal_tripless_zone_device_register(psy->desc->name,
1311 				psy, &psy_tzd_ops, &tzp);
1312 		if (IS_ERR(psy->tzd))
1313 			return PTR_ERR(psy->tzd);
1314 		ret = thermal_zone_device_enable(psy->tzd);
1315 		if (ret)
1316 			thermal_zone_device_unregister(psy->tzd);
1317 		return ret;
1318 	}
1319 
1320 	return 0;
1321 }
1322 
1323 static void psy_unregister_thermal(struct power_supply *psy)
1324 {
1325 	if (IS_ERR_OR_NULL(psy->tzd))
1326 		return;
1327 	thermal_zone_device_unregister(psy->tzd);
1328 }
1329 
1330 #else
1331 static int psy_register_thermal(struct power_supply *psy)
1332 {
1333 	return 0;
1334 }
1335 
1336 static void psy_unregister_thermal(struct power_supply *psy)
1337 {
1338 }
1339 #endif
1340 
1341 static struct power_supply *__must_check
1342 __power_supply_register(struct device *parent,
1343 				   const struct power_supply_desc *desc,
1344 				   const struct power_supply_config *cfg,
1345 				   bool ws)
1346 {
1347 	struct device *dev;
1348 	struct power_supply *psy;
1349 	int rc;
1350 
1351 	if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1352 		return ERR_PTR(-EINVAL);
1353 
1354 	if (!parent)
1355 		pr_warn("%s: Expected proper parent device for '%s'\n",
1356 			__func__, desc->name);
1357 
1358 	if (psy_has_property(desc, POWER_SUPPLY_PROP_USB_TYPE) &&
1359 	    (!desc->usb_types || !desc->num_usb_types))
1360 		return ERR_PTR(-EINVAL);
1361 
1362 	psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1363 	if (!psy)
1364 		return ERR_PTR(-ENOMEM);
1365 
1366 	dev = &psy->dev;
1367 
1368 	device_initialize(dev);
1369 
1370 	dev->class = power_supply_class;
1371 	dev->type = &power_supply_dev_type;
1372 	dev->parent = parent;
1373 	dev->release = power_supply_dev_release;
1374 	dev_set_drvdata(dev, psy);
1375 	psy->desc = desc;
1376 	if (cfg) {
1377 		dev->groups = cfg->attr_grp;
1378 		psy->drv_data = cfg->drv_data;
1379 		psy->of_node =
1380 			cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1381 		psy->supplied_to = cfg->supplied_to;
1382 		psy->num_supplicants = cfg->num_supplicants;
1383 	}
1384 
1385 	rc = dev_set_name(dev, "%s", desc->name);
1386 	if (rc)
1387 		goto dev_set_name_failed;
1388 
1389 	INIT_WORK(&psy->changed_work, power_supply_changed_work);
1390 	INIT_DELAYED_WORK(&psy->deferred_register_work,
1391 			  power_supply_deferred_register_work);
1392 
1393 	rc = power_supply_check_supplies(psy);
1394 	if (rc) {
1395 		dev_dbg(dev, "Not all required supplies found, defer probe\n");
1396 		goto check_supplies_failed;
1397 	}
1398 
1399 	/*
1400 	 * Expose constant battery info, if it is available. While there are
1401 	 * some chargers accessing constant battery data, we only want to
1402 	 * expose battery data to userspace for battery devices.
1403 	 */
1404 	if (desc->type == POWER_SUPPLY_TYPE_BATTERY) {
1405 		rc = power_supply_get_battery_info(psy, &psy->battery_info);
1406 		if (rc && rc != -ENODEV && rc != -ENOENT)
1407 			goto check_supplies_failed;
1408 	}
1409 
1410 	spin_lock_init(&psy->changed_lock);
1411 	rc = device_add(dev);
1412 	if (rc)
1413 		goto device_add_failed;
1414 
1415 	rc = device_init_wakeup(dev, ws);
1416 	if (rc)
1417 		goto wakeup_init_failed;
1418 
1419 	rc = psy_register_thermal(psy);
1420 	if (rc)
1421 		goto register_thermal_failed;
1422 
1423 	rc = power_supply_create_triggers(psy);
1424 	if (rc)
1425 		goto create_triggers_failed;
1426 
1427 	rc = power_supply_add_hwmon_sysfs(psy);
1428 	if (rc)
1429 		goto add_hwmon_sysfs_failed;
1430 
1431 	/*
1432 	 * Update use_cnt after any uevents (most notably from device_add()).
1433 	 * We are here still during driver's probe but
1434 	 * the power_supply_uevent() calls back driver's get_property
1435 	 * method so:
1436 	 * 1. Driver did not assigned the returned struct power_supply,
1437 	 * 2. Driver could not finish initialization (anything in its probe
1438 	 *    after calling power_supply_register()).
1439 	 */
1440 	atomic_inc(&psy->use_cnt);
1441 	psy->initialized = true;
1442 
1443 	queue_delayed_work(system_power_efficient_wq,
1444 			   &psy->deferred_register_work,
1445 			   POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1446 
1447 	return psy;
1448 
1449 add_hwmon_sysfs_failed:
1450 	power_supply_remove_triggers(psy);
1451 create_triggers_failed:
1452 	psy_unregister_thermal(psy);
1453 register_thermal_failed:
1454 wakeup_init_failed:
1455 	device_del(dev);
1456 device_add_failed:
1457 check_supplies_failed:
1458 dev_set_name_failed:
1459 	put_device(dev);
1460 	return ERR_PTR(rc);
1461 }
1462 
1463 /**
1464  * power_supply_register() - Register new power supply
1465  * @parent:	Device to be a parent of power supply's device, usually
1466  *		the device which probe function calls this
1467  * @desc:	Description of power supply, must be valid through whole
1468  *		lifetime of this power supply
1469  * @cfg:	Run-time specific configuration accessed during registering,
1470  *		may be NULL
1471  *
1472  * Return: A pointer to newly allocated power_supply on success
1473  * or ERR_PTR otherwise.
1474  * Use power_supply_unregister() on returned power_supply pointer to release
1475  * resources.
1476  */
1477 struct power_supply *__must_check power_supply_register(struct device *parent,
1478 		const struct power_supply_desc *desc,
1479 		const struct power_supply_config *cfg)
1480 {
1481 	return __power_supply_register(parent, desc, cfg, true);
1482 }
1483 EXPORT_SYMBOL_GPL(power_supply_register);
1484 
1485 /**
1486  * power_supply_register_no_ws() - Register new non-waking-source power supply
1487  * @parent:	Device to be a parent of power supply's device, usually
1488  *		the device which probe function calls this
1489  * @desc:	Description of power supply, must be valid through whole
1490  *		lifetime of this power supply
1491  * @cfg:	Run-time specific configuration accessed during registering,
1492  *		may be NULL
1493  *
1494  * Return: A pointer to newly allocated power_supply on success
1495  * or ERR_PTR otherwise.
1496  * Use power_supply_unregister() on returned power_supply pointer to release
1497  * resources.
1498  */
1499 struct power_supply *__must_check
1500 power_supply_register_no_ws(struct device *parent,
1501 		const struct power_supply_desc *desc,
1502 		const struct power_supply_config *cfg)
1503 {
1504 	return __power_supply_register(parent, desc, cfg, false);
1505 }
1506 EXPORT_SYMBOL_GPL(power_supply_register_no_ws);
1507 
1508 static void devm_power_supply_release(struct device *dev, void *res)
1509 {
1510 	struct power_supply **psy = res;
1511 
1512 	power_supply_unregister(*psy);
1513 }
1514 
1515 /**
1516  * devm_power_supply_register() - Register managed power supply
1517  * @parent:	Device to be a parent of power supply's device, usually
1518  *		the device which probe function calls this
1519  * @desc:	Description of power supply, must be valid through whole
1520  *		lifetime of this power supply
1521  * @cfg:	Run-time specific configuration accessed during registering,
1522  *		may be NULL
1523  *
1524  * Return: A pointer to newly allocated power_supply on success
1525  * or ERR_PTR otherwise.
1526  * The returned power_supply pointer will be automatically unregistered
1527  * on driver detach.
1528  */
1529 struct power_supply *__must_check
1530 devm_power_supply_register(struct device *parent,
1531 		const struct power_supply_desc *desc,
1532 		const struct power_supply_config *cfg)
1533 {
1534 	struct power_supply **ptr, *psy;
1535 
1536 	ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1537 
1538 	if (!ptr)
1539 		return ERR_PTR(-ENOMEM);
1540 	psy = __power_supply_register(parent, desc, cfg, true);
1541 	if (IS_ERR(psy)) {
1542 		devres_free(ptr);
1543 	} else {
1544 		*ptr = psy;
1545 		devres_add(parent, ptr);
1546 	}
1547 	return psy;
1548 }
1549 EXPORT_SYMBOL_GPL(devm_power_supply_register);
1550 
1551 /**
1552  * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply
1553  * @parent:	Device to be a parent of power supply's device, usually
1554  *		the device which probe function calls this
1555  * @desc:	Description of power supply, must be valid through whole
1556  *		lifetime of this power supply
1557  * @cfg:	Run-time specific configuration accessed during registering,
1558  *		may be NULL
1559  *
1560  * Return: A pointer to newly allocated power_supply on success
1561  * or ERR_PTR otherwise.
1562  * The returned power_supply pointer will be automatically unregistered
1563  * on driver detach.
1564  */
1565 struct power_supply *__must_check
1566 devm_power_supply_register_no_ws(struct device *parent,
1567 		const struct power_supply_desc *desc,
1568 		const struct power_supply_config *cfg)
1569 {
1570 	struct power_supply **ptr, *psy;
1571 
1572 	ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1573 
1574 	if (!ptr)
1575 		return ERR_PTR(-ENOMEM);
1576 	psy = __power_supply_register(parent, desc, cfg, false);
1577 	if (IS_ERR(psy)) {
1578 		devres_free(ptr);
1579 	} else {
1580 		*ptr = psy;
1581 		devres_add(parent, ptr);
1582 	}
1583 	return psy;
1584 }
1585 EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws);
1586 
1587 /**
1588  * power_supply_unregister() - Remove this power supply from system
1589  * @psy:	Pointer to power supply to unregister
1590  *
1591  * Remove this power supply from the system. The resources of power supply
1592  * will be freed here or on last power_supply_put() call.
1593  */
1594 void power_supply_unregister(struct power_supply *psy)
1595 {
1596 	WARN_ON(atomic_dec_return(&psy->use_cnt));
1597 	psy->removing = true;
1598 	cancel_work_sync(&psy->changed_work);
1599 	cancel_delayed_work_sync(&psy->deferred_register_work);
1600 	sysfs_remove_link(&psy->dev.kobj, "powers");
1601 	power_supply_remove_hwmon_sysfs(psy);
1602 	power_supply_remove_triggers(psy);
1603 	psy_unregister_thermal(psy);
1604 	device_init_wakeup(&psy->dev, false);
1605 	device_unregister(&psy->dev);
1606 }
1607 EXPORT_SYMBOL_GPL(power_supply_unregister);
1608 
1609 void *power_supply_get_drvdata(struct power_supply *psy)
1610 {
1611 	return psy->drv_data;
1612 }
1613 EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1614 
1615 static int __init power_supply_class_init(void)
1616 {
1617 	power_supply_class = class_create("power_supply");
1618 
1619 	if (IS_ERR(power_supply_class))
1620 		return PTR_ERR(power_supply_class);
1621 
1622 	power_supply_class->dev_uevent = power_supply_uevent;
1623 	power_supply_init_attrs(&power_supply_dev_type);
1624 
1625 	return 0;
1626 }
1627 
1628 static void __exit power_supply_class_exit(void)
1629 {
1630 	class_destroy(power_supply_class);
1631 }
1632 
1633 subsys_initcall(power_supply_class_init);
1634 module_exit(power_supply_class_exit);
1635 
1636 MODULE_DESCRIPTION("Universal power supply monitor class");
1637 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>, "
1638 	      "Szabolcs Gyurko, "
1639 	      "Anton Vorontsov <cbou@mail.ru>");
1640