xref: /openbmc/linux/drivers/power/supply/cpcap-battery.c (revision c64d01b3ceba873aa8e8605598cec4a6bc6d1601)
1 /*
2  * Battery driver for CPCAP PMIC
3  *
4  * Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
5  *
6  * Some parts of the code based on earlier Motorola mapphone Linux kernel
7  * drivers:
8  *
9  * Copyright (C) 2009-2010 Motorola, Inc.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14 
15  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
16  * kind, whether express or implied; without even the implied warranty
17  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  */
20 
21 #include <linux/delay.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/power_supply.h>
29 #include <linux/reboot.h>
30 #include <linux/regmap.h>
31 #include <linux/moduleparam.h>
32 
33 #include <linux/iio/consumer.h>
34 #include <linux/iio/types.h>
35 #include <linux/mfd/motorola-cpcap.h>
36 
37 /*
38  * Register bit defines for CPCAP_REG_BPEOL. Some of these seem to
39  * map to MC13783UG.pdf "Table 5-19. Register 13, Power Control 0"
40  * to enable BATTDETEN, LOBAT and EOL features. We currently use
41  * LOBAT interrupts instead of EOL.
42  */
43 #define CPCAP_REG_BPEOL_BIT_EOL9	BIT(9)	/* Set for EOL irq */
44 #define CPCAP_REG_BPEOL_BIT_EOL8	BIT(8)	/* Set for EOL irq */
45 #define CPCAP_REG_BPEOL_BIT_UNKNOWN7	BIT(7)
46 #define CPCAP_REG_BPEOL_BIT_UNKNOWN6	BIT(6)
47 #define CPCAP_REG_BPEOL_BIT_UNKNOWN5	BIT(5)
48 #define CPCAP_REG_BPEOL_BIT_EOL_MULTI	BIT(4)	/* Set for multiple EOL irqs */
49 #define CPCAP_REG_BPEOL_BIT_UNKNOWN3	BIT(3)
50 #define CPCAP_REG_BPEOL_BIT_UNKNOWN2	BIT(2)
51 #define CPCAP_REG_BPEOL_BIT_BATTDETEN	BIT(1)	/* Enable battery detect */
52 #define CPCAP_REG_BPEOL_BIT_EOLSEL	BIT(0)	/* BPDET = 0, EOL = 1 */
53 
54 /*
55  * Register bit defines for CPCAP_REG_CCC1. These seem similar to the twl6030
56  * coulomb counter registers rather than the mc13892 registers. Both twl6030
57  * and mc13892 set bits 2 and 1 to reset and clear registers. But mc13892
58  * sets bit 0 to start the coulomb counter while twl6030 sets bit 0 to stop
59  * the coulomb counter like cpcap does. So for now, we use the twl6030 style
60  * naming for the registers.
61  */
62 #define CPCAP_REG_CCC1_ACTIVE_MODE1	BIT(4)	/* Update rate */
63 #define CPCAP_REG_CCC1_ACTIVE_MODE0	BIT(3)	/* Update rate */
64 #define CPCAP_REG_CCC1_AUTOCLEAR	BIT(2)	/* Resets sample registers */
65 #define CPCAP_REG_CCC1_CAL_EN		BIT(1)	/* Clears after write in 1s */
66 #define CPCAP_REG_CCC1_PAUSE		BIT(0)	/* Stop counters, allow write */
67 #define CPCAP_REG_CCC1_RESET_MASK	(CPCAP_REG_CCC1_AUTOCLEAR | \
68 					 CPCAP_REG_CCC1_CAL_EN)
69 
70 #define CPCAP_REG_CCCC2_RATE1		BIT(5)
71 #define CPCAP_REG_CCCC2_RATE0		BIT(4)
72 #define CPCAP_REG_CCCC2_ENABLE		BIT(3)
73 
74 #define CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS	250
75 
76 enum {
77 	CPCAP_BATTERY_IIO_BATTDET,
78 	CPCAP_BATTERY_IIO_VOLTAGE,
79 	CPCAP_BATTERY_IIO_CHRG_CURRENT,
80 	CPCAP_BATTERY_IIO_BATT_CURRENT,
81 	CPCAP_BATTERY_IIO_NR,
82 };
83 
84 enum cpcap_battery_irq_action {
85 	CPCAP_BATTERY_IRQ_ACTION_NONE,
86 	CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE,
87 	CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW,
88 	CPCAP_BATTERY_IRQ_ACTION_POWEROFF,
89 };
90 
91 struct cpcap_interrupt_desc {
92 	const char *name;
93 	struct list_head node;
94 	int irq;
95 	enum cpcap_battery_irq_action action;
96 };
97 
98 struct cpcap_battery_config {
99 	int cd_factor;
100 	struct power_supply_info info;
101 	struct power_supply_battery_info bat;
102 };
103 
104 struct cpcap_coulomb_counter_data {
105 	s32 sample;		/* 24 or 32 bits */
106 	s32 accumulator;
107 	s16 offset;		/* 9 bits */
108 	s16 integrator;		/* 13 or 16 bits */
109 };
110 
111 enum cpcap_battery_state {
112 	CPCAP_BATTERY_STATE_PREVIOUS,
113 	CPCAP_BATTERY_STATE_LATEST,
114 	CPCAP_BATTERY_STATE_EMPTY,
115 	CPCAP_BATTERY_STATE_FULL,
116 	CPCAP_BATTERY_STATE_NR,
117 };
118 
119 struct cpcap_battery_state_data {
120 	int voltage;
121 	int current_ua;
122 	int counter_uah;
123 	int temperature;
124 	ktime_t time;
125 	struct cpcap_coulomb_counter_data cc;
126 };
127 
128 struct cpcap_battery_ddata {
129 	struct device *dev;
130 	struct regmap *reg;
131 	struct list_head irq_list;
132 	struct iio_channel *channels[CPCAP_BATTERY_IIO_NR];
133 	struct power_supply *psy;
134 	struct cpcap_battery_config config;
135 	struct cpcap_battery_state_data state[CPCAP_BATTERY_STATE_NR];
136 	u32 cc_lsb;		/* μAms per LSB */
137 	atomic_t active;
138 	int charge_full;
139 	int status;
140 	u16 vendor;
141 	unsigned int is_full:1;
142 };
143 
144 #define CPCAP_NO_BATTERY	-400
145 
146 static bool ignore_temperature_probe;
147 module_param(ignore_temperature_probe, bool, 0660);
148 
149 static struct cpcap_battery_state_data *
150 cpcap_battery_get_state(struct cpcap_battery_ddata *ddata,
151 			enum cpcap_battery_state state)
152 {
153 	if (state >= CPCAP_BATTERY_STATE_NR)
154 		return NULL;
155 
156 	return &ddata->state[state];
157 }
158 
159 static struct cpcap_battery_state_data *
160 cpcap_battery_latest(struct cpcap_battery_ddata *ddata)
161 {
162 	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_LATEST);
163 }
164 
165 static struct cpcap_battery_state_data *
166 cpcap_battery_previous(struct cpcap_battery_ddata *ddata)
167 {
168 	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_PREVIOUS);
169 }
170 
171 static struct cpcap_battery_state_data *
172 cpcap_battery_get_empty(struct cpcap_battery_ddata *ddata)
173 {
174 	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_EMPTY);
175 }
176 
177 static struct cpcap_battery_state_data *
178 cpcap_battery_get_full(struct cpcap_battery_ddata *ddata)
179 {
180 	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_FULL);
181 }
182 
183 static int cpcap_charger_battery_temperature(struct cpcap_battery_ddata *ddata,
184 					     int *value)
185 {
186 	struct iio_channel *channel;
187 	int error;
188 
189 	channel = ddata->channels[CPCAP_BATTERY_IIO_BATTDET];
190 	error = iio_read_channel_processed(channel, value);
191 	if (error < 0) {
192 		if (!ignore_temperature_probe)
193 			dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
194 		*value = CPCAP_NO_BATTERY;
195 
196 		return error;
197 	}
198 
199 	*value /= 100;
200 
201 	return 0;
202 }
203 
204 static int cpcap_battery_get_voltage(struct cpcap_battery_ddata *ddata)
205 {
206 	struct iio_channel *channel;
207 	int error, value = 0;
208 
209 	channel = ddata->channels[CPCAP_BATTERY_IIO_VOLTAGE];
210 	error = iio_read_channel_processed(channel, &value);
211 	if (error < 0) {
212 		dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
213 
214 		return 0;
215 	}
216 
217 	return value * 1000;
218 }
219 
220 static int cpcap_battery_get_current(struct cpcap_battery_ddata *ddata)
221 {
222 	struct iio_channel *channel;
223 	int error, value = 0;
224 
225 	channel = ddata->channels[CPCAP_BATTERY_IIO_BATT_CURRENT];
226 	error = iio_read_channel_processed(channel, &value);
227 	if (error < 0) {
228 		dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
229 
230 		return 0;
231 	}
232 
233 	return value * 1000;
234 }
235 
236 /**
237  * cpcap_battery_cc_raw_div - calculate and divide coulomb counter μAms values
238  * @ddata: device driver data
239  * @sample: coulomb counter sample value
240  * @accumulator: coulomb counter integrator value
241  * @offset: coulomb counter offset value
242  * @divider: conversion divider
243  *
244  * Note that cc_lsb and cc_dur values are from Motorola Linux kernel
245  * function data_get_avg_curr_ua() and seem to be based on measured test
246  * results. It also has the following comment:
247  *
248  * Adjustment factors are applied here as a temp solution per the test
249  * results. Need to work out a formal solution for this adjustment.
250  *
251  * A coulomb counter for similar hardware seems to be documented in
252  * "TWL6030 Gas Gauging Basics (Rev. A)" swca095a.pdf in chapter
253  * "10 Calculating Accumulated Current". We however follow what the
254  * Motorola mapphone Linux kernel is doing as there may be either a
255  * TI or ST coulomb counter in the PMIC.
256  */
257 static int cpcap_battery_cc_raw_div(struct cpcap_battery_ddata *ddata,
258 				    s32 sample, s32 accumulator,
259 				    s16 offset, u32 divider)
260 {
261 	s64 acc;
262 
263 	if (!divider)
264 		return 0;
265 
266 	acc = accumulator;
267 	acc -= (s64)sample * offset;
268 	acc *= ddata->cc_lsb;
269 	acc *= -1;
270 	acc = div_s64(acc, divider);
271 
272 	return acc;
273 }
274 
275 /* 3600000μAms = 1μAh */
276 static int cpcap_battery_cc_to_uah(struct cpcap_battery_ddata *ddata,
277 				   s32 sample, s32 accumulator,
278 				   s16 offset)
279 {
280 	return cpcap_battery_cc_raw_div(ddata, sample,
281 					accumulator, offset,
282 					3600000);
283 }
284 
285 static int cpcap_battery_cc_to_ua(struct cpcap_battery_ddata *ddata,
286 				  s32 sample, s32 accumulator,
287 				  s16 offset)
288 {
289 	return cpcap_battery_cc_raw_div(ddata, sample,
290 					accumulator, offset,
291 					sample *
292 					CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS);
293 }
294 
295 /**
296  * cpcap_battery_read_accumulated - reads cpcap coulomb counter
297  * @ddata: device driver data
298  * @ccd: coulomb counter values
299  *
300  * Based on Motorola mapphone kernel function data_read_regs().
301  * Looking at the registers, the coulomb counter seems similar to
302  * the coulomb counter in TWL6030. See "TWL6030 Gas Gauging Basics
303  * (Rev. A) swca095a.pdf for "10 Calculating Accumulated Current".
304  *
305  * Note that swca095a.pdf instructs to stop the coulomb counter
306  * before reading to avoid values changing. Motorola mapphone
307  * Linux kernel does not do it, so let's assume they've verified
308  * the data produced is correct.
309  */
310 static int
311 cpcap_battery_read_accumulated(struct cpcap_battery_ddata *ddata,
312 			       struct cpcap_coulomb_counter_data *ccd)
313 {
314 	u16 buf[7];	/* CPCAP_REG_CCS1 to CCI */
315 	int error;
316 
317 	ccd->sample = 0;
318 	ccd->accumulator = 0;
319 	ccd->offset = 0;
320 	ccd->integrator = 0;
321 
322 	/* Read coulomb counter register range */
323 	error = regmap_bulk_read(ddata->reg, CPCAP_REG_CCS1,
324 				 buf, ARRAY_SIZE(buf));
325 	if (error)
326 		return 0;
327 
328 	/* Sample value CPCAP_REG_CCS1 & 2 */
329 	ccd->sample = (buf[1] & 0x0fff) << 16;
330 	ccd->sample |= buf[0];
331 	if (ddata->vendor == CPCAP_VENDOR_TI)
332 		ccd->sample = sign_extend32(24, ccd->sample);
333 
334 	/* Accumulator value CPCAP_REG_CCA1 & 2 */
335 	ccd->accumulator = ((s16)buf[3]) << 16;
336 	ccd->accumulator |= buf[2];
337 
338 	/*
339 	 * Coulomb counter calibration offset is CPCAP_REG_CCM,
340 	 * REG_CCO seems unused
341 	 */
342 	ccd->offset = buf[4];
343 	ccd->offset = sign_extend32(ccd->offset, 9);
344 
345 	/* Integrator register CPCAP_REG_CCI */
346 	if (ddata->vendor == CPCAP_VENDOR_TI)
347 		ccd->integrator = sign_extend32(buf[6], 13);
348 	else
349 		ccd->integrator = (s16)buf[6];
350 
351 	return cpcap_battery_cc_to_uah(ddata,
352 				       ccd->sample,
353 				       ccd->accumulator,
354 				       ccd->offset);
355 }
356 
357 /**
358  * cpcap_battery_cc_get_avg_current - read cpcap coulumb counter
359  * @ddata: cpcap battery driver device data
360  */
361 static int cpcap_battery_cc_get_avg_current(struct cpcap_battery_ddata *ddata)
362 {
363 	int value, acc, error;
364 	s32 sample;
365 	s16 offset;
366 
367 	/* Coulomb counter integrator */
368 	error = regmap_read(ddata->reg, CPCAP_REG_CCI, &value);
369 	if (error)
370 		return error;
371 
372 	if (ddata->vendor == CPCAP_VENDOR_TI) {
373 		acc = sign_extend32(value, 13);
374 		sample = 1;
375 	} else {
376 		acc = (s16)value;
377 		sample = 4;
378 	}
379 
380 	/* Coulomb counter calibration offset  */
381 	error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
382 	if (error)
383 		return error;
384 
385 	offset = sign_extend32(value, 9);
386 
387 	return cpcap_battery_cc_to_ua(ddata, sample, acc, offset);
388 }
389 
390 static int cpcap_battery_get_charger_status(struct cpcap_battery_ddata *ddata,
391 					    int *val)
392 {
393 	union power_supply_propval prop;
394 	struct power_supply *charger;
395 	int error;
396 
397 	charger = power_supply_get_by_name("usb");
398 	if (!charger)
399 		return -ENODEV;
400 
401 	error = power_supply_get_property(charger, POWER_SUPPLY_PROP_STATUS,
402 					  &prop);
403 	if (error)
404 		*val = POWER_SUPPLY_STATUS_UNKNOWN;
405 	else
406 		*val = prop.intval;
407 
408 	power_supply_put(charger);
409 
410 	return error;
411 }
412 
413 static bool cpcap_battery_full(struct cpcap_battery_ddata *ddata)
414 {
415 	struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
416 	unsigned int vfull;
417 	int error, val;
418 
419 	error = cpcap_battery_get_charger_status(ddata, &val);
420 	if (!error) {
421 		switch (val) {
422 		case POWER_SUPPLY_STATUS_DISCHARGING:
423 			dev_dbg(ddata->dev, "charger disconnected\n");
424 			ddata->is_full = 0;
425 			break;
426 		case POWER_SUPPLY_STATUS_FULL:
427 			dev_dbg(ddata->dev, "charger full status\n");
428 			ddata->is_full = 1;
429 			break;
430 		default:
431 			break;
432 		}
433 	}
434 
435 	/*
436 	 * The full battery voltage here can be inaccurate, it's used just to
437 	 * filter out any trickle charging events. We clear the is_full status
438 	 * on charger disconnect above anyways.
439 	 */
440 	vfull = ddata->config.bat.constant_charge_voltage_max_uv - 120000;
441 
442 	if (ddata->is_full && state->voltage < vfull)
443 		ddata->is_full = 0;
444 
445 	return ddata->is_full;
446 }
447 
448 static bool cpcap_battery_low(struct cpcap_battery_ddata *ddata)
449 {
450 	struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
451 	static bool is_low;
452 
453 	if (state->current_ua > 0 && (state->voltage <= 3350000 || is_low))
454 		is_low = true;
455 	else
456 		is_low = false;
457 
458 	return is_low;
459 }
460 
461 static int cpcap_battery_update_status(struct cpcap_battery_ddata *ddata)
462 {
463 	struct cpcap_battery_state_data state, *latest, *previous,
464 					*empty, *full;
465 	ktime_t now;
466 	int error;
467 
468 	memset(&state, 0, sizeof(state));
469 	now = ktime_get();
470 
471 	latest = cpcap_battery_latest(ddata);
472 	if (latest) {
473 		s64 delta_ms = ktime_to_ms(ktime_sub(now, latest->time));
474 
475 		if (delta_ms < CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS)
476 			return delta_ms;
477 	}
478 
479 	state.time = now;
480 	state.voltage = cpcap_battery_get_voltage(ddata);
481 	state.current_ua = cpcap_battery_get_current(ddata);
482 	state.counter_uah = cpcap_battery_read_accumulated(ddata, &state.cc);
483 
484 	error = cpcap_charger_battery_temperature(ddata,
485 						  &state.temperature);
486 	if (error)
487 		return error;
488 
489 	previous = cpcap_battery_previous(ddata);
490 	memcpy(previous, latest, sizeof(*previous));
491 	memcpy(latest, &state, sizeof(*latest));
492 
493 	if (cpcap_battery_full(ddata)) {
494 		full = cpcap_battery_get_full(ddata);
495 		memcpy(full, latest, sizeof(*full));
496 
497 		empty = cpcap_battery_get_empty(ddata);
498 		if (empty->voltage && empty->voltage != -1) {
499 			empty->voltage = -1;
500 			ddata->charge_full =
501 				empty->counter_uah - full->counter_uah;
502 		} else if (ddata->charge_full) {
503 			empty->voltage = -1;
504 			empty->counter_uah =
505 				full->counter_uah + ddata->charge_full;
506 		}
507 	} else if (cpcap_battery_low(ddata)) {
508 		empty = cpcap_battery_get_empty(ddata);
509 		memcpy(empty, latest, sizeof(*empty));
510 
511 		full = cpcap_battery_get_full(ddata);
512 		if (full->voltage) {
513 			full->voltage = 0;
514 			ddata->charge_full =
515 				empty->counter_uah - full->counter_uah;
516 		}
517 	}
518 
519 	return 0;
520 }
521 
522 /*
523  * Update battery status when cpcap-charger calls power_supply_changed().
524  * This allows us to detect battery full condition before the charger
525  * disconnects.
526  */
527 static void cpcap_battery_external_power_changed(struct power_supply *psy)
528 {
529 	union power_supply_propval prop;
530 
531 	power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS, &prop);
532 }
533 
534 static enum power_supply_property cpcap_battery_props[] = {
535 	POWER_SUPPLY_PROP_STATUS,
536 	POWER_SUPPLY_PROP_PRESENT,
537 	POWER_SUPPLY_PROP_TECHNOLOGY,
538 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
539 	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
540 	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
541 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
542 	POWER_SUPPLY_PROP_CURRENT_AVG,
543 	POWER_SUPPLY_PROP_CURRENT_NOW,
544 	POWER_SUPPLY_PROP_CHARGE_FULL,
545 	POWER_SUPPLY_PROP_CHARGE_NOW,
546 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
547 	POWER_SUPPLY_PROP_CHARGE_COUNTER,
548 	POWER_SUPPLY_PROP_POWER_NOW,
549 	POWER_SUPPLY_PROP_POWER_AVG,
550 	POWER_SUPPLY_PROP_CAPACITY,
551 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
552 	POWER_SUPPLY_PROP_SCOPE,
553 	POWER_SUPPLY_PROP_TEMP,
554 };
555 
556 static int cpcap_battery_get_property(struct power_supply *psy,
557 				      enum power_supply_property psp,
558 				      union power_supply_propval *val)
559 {
560 	struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
561 	struct cpcap_battery_state_data *latest, *previous, *empty;
562 	u32 sample;
563 	s32 accumulator;
564 	int cached;
565 	s64 tmp;
566 
567 	cached = cpcap_battery_update_status(ddata);
568 	if (cached < 0)
569 		return cached;
570 
571 	latest = cpcap_battery_latest(ddata);
572 	previous = cpcap_battery_previous(ddata);
573 
574 	switch (psp) {
575 	case POWER_SUPPLY_PROP_PRESENT:
576 		if (latest->temperature > CPCAP_NO_BATTERY || ignore_temperature_probe)
577 			val->intval = 1;
578 		else
579 			val->intval = 0;
580 		break;
581 	case POWER_SUPPLY_PROP_STATUS:
582 		if (cpcap_battery_full(ddata)) {
583 			val->intval = POWER_SUPPLY_STATUS_FULL;
584 			break;
585 		}
586 		if (cpcap_battery_cc_get_avg_current(ddata) < 0)
587 			val->intval = POWER_SUPPLY_STATUS_CHARGING;
588 		else
589 			val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
590 		break;
591 	case POWER_SUPPLY_PROP_TECHNOLOGY:
592 		val->intval = ddata->config.info.technology;
593 		break;
594 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
595 		val->intval = cpcap_battery_get_voltage(ddata);
596 		break;
597 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
598 		val->intval = ddata->config.info.voltage_max_design;
599 		break;
600 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
601 		val->intval = ddata->config.info.voltage_min_design;
602 		break;
603 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
604 		val->intval = ddata->config.bat.constant_charge_voltage_max_uv;
605 		break;
606 	case POWER_SUPPLY_PROP_CURRENT_AVG:
607 		sample = latest->cc.sample - previous->cc.sample;
608 		if (!sample) {
609 			val->intval = cpcap_battery_cc_get_avg_current(ddata);
610 			break;
611 		}
612 		accumulator = latest->cc.accumulator - previous->cc.accumulator;
613 		val->intval = cpcap_battery_cc_to_ua(ddata, sample,
614 						     accumulator,
615 						     latest->cc.offset);
616 		break;
617 	case POWER_SUPPLY_PROP_CURRENT_NOW:
618 		val->intval = latest->current_ua;
619 		break;
620 	case POWER_SUPPLY_PROP_CHARGE_COUNTER:
621 		val->intval = latest->counter_uah;
622 		break;
623 	case POWER_SUPPLY_PROP_POWER_NOW:
624 		tmp = (latest->voltage / 10000) * latest->current_ua;
625 		val->intval = div64_s64(tmp, 100);
626 		break;
627 	case POWER_SUPPLY_PROP_POWER_AVG:
628 		sample = latest->cc.sample - previous->cc.sample;
629 		if (!sample) {
630 			tmp = cpcap_battery_cc_get_avg_current(ddata);
631 			tmp *= (latest->voltage / 10000);
632 			val->intval = div64_s64(tmp, 100);
633 			break;
634 		}
635 		accumulator = latest->cc.accumulator - previous->cc.accumulator;
636 		tmp = cpcap_battery_cc_to_ua(ddata, sample, accumulator,
637 					     latest->cc.offset);
638 		tmp *= ((latest->voltage + previous->voltage) / 20000);
639 		val->intval = div64_s64(tmp, 100);
640 		break;
641 	case POWER_SUPPLY_PROP_CAPACITY:
642 		empty = cpcap_battery_get_empty(ddata);
643 		if (!empty->voltage || !ddata->charge_full)
644 			return -ENODATA;
645 		/* (ddata->charge_full / 200) is needed for rounding */
646 		val->intval = empty->counter_uah - latest->counter_uah +
647 			ddata->charge_full / 200;
648 		val->intval = clamp(val->intval, 0, ddata->charge_full);
649 		val->intval = val->intval * 100 / ddata->charge_full;
650 		break;
651 	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
652 		if (cpcap_battery_full(ddata))
653 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
654 		else if (latest->voltage >= 3750000)
655 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
656 		else if (latest->voltage >= 3300000)
657 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
658 		else if (latest->voltage > 3100000)
659 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
660 		else if (latest->voltage <= 3100000)
661 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
662 		else
663 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
664 		break;
665 	case POWER_SUPPLY_PROP_CHARGE_NOW:
666 		empty = cpcap_battery_get_empty(ddata);
667 		if (!empty->voltage)
668 			return -ENODATA;
669 		val->intval = empty->counter_uah - latest->counter_uah;
670 		if (val->intval < 0) {
671 			/* Assume invalid config if CHARGE_NOW is -20% */
672 			if (ddata->charge_full && abs(val->intval) > ddata->charge_full/5) {
673 				empty->voltage = 0;
674 				ddata->charge_full = 0;
675 				return -ENODATA;
676 			}
677 			val->intval = 0;
678 		} else if (ddata->charge_full && ddata->charge_full < val->intval) {
679 			/* Assume invalid config if CHARGE_NOW exceeds CHARGE_FULL by 20% */
680 			if (val->intval > (6*ddata->charge_full)/5) {
681 				empty->voltage = 0;
682 				ddata->charge_full = 0;
683 				return -ENODATA;
684 			}
685 			val->intval = ddata->charge_full;
686 		}
687 		break;
688 	case POWER_SUPPLY_PROP_CHARGE_FULL:
689 		if (!ddata->charge_full)
690 			return -ENODATA;
691 		val->intval = ddata->charge_full;
692 		break;
693 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
694 		val->intval = ddata->config.info.charge_full_design;
695 		break;
696 	case POWER_SUPPLY_PROP_SCOPE:
697 		val->intval = POWER_SUPPLY_SCOPE_SYSTEM;
698 		break;
699 	case POWER_SUPPLY_PROP_TEMP:
700 		if (ignore_temperature_probe)
701 			return -ENODATA;
702 		val->intval = latest->temperature;
703 		break;
704 	default:
705 		return -EINVAL;
706 	}
707 
708 	return 0;
709 }
710 
711 static int cpcap_battery_update_charger(struct cpcap_battery_ddata *ddata,
712 					int const_charge_voltage)
713 {
714 	union power_supply_propval prop;
715 	union power_supply_propval val;
716 	struct power_supply *charger;
717 	int error;
718 
719 	charger = power_supply_get_by_name("usb");
720 	if (!charger)
721 		return -ENODEV;
722 
723 	error = power_supply_get_property(charger,
724 				POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
725 				&prop);
726 	if (error)
727 		goto out_put;
728 
729 	/* Allow charger const voltage lower than battery const voltage */
730 	if (const_charge_voltage > prop.intval)
731 		goto out_put;
732 
733 	val.intval = const_charge_voltage;
734 
735 	error = power_supply_set_property(charger,
736 			POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
737 			&val);
738 out_put:
739 	power_supply_put(charger);
740 
741 	return error;
742 }
743 
744 static int cpcap_battery_set_property(struct power_supply *psy,
745 				      enum power_supply_property psp,
746 				      const union power_supply_propval *val)
747 {
748 	struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
749 
750 	switch (psp) {
751 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
752 		if (val->intval < ddata->config.info.voltage_min_design)
753 			return -EINVAL;
754 		if (val->intval > ddata->config.info.voltage_max_design)
755 			return -EINVAL;
756 
757 		ddata->config.bat.constant_charge_voltage_max_uv = val->intval;
758 
759 		return cpcap_battery_update_charger(ddata, val->intval);
760 	case POWER_SUPPLY_PROP_CHARGE_FULL:
761 		if (val->intval < 0)
762 			return -EINVAL;
763 		if (val->intval > (6*ddata->config.info.charge_full_design)/5)
764 			return -EINVAL;
765 
766 		ddata->charge_full = val->intval;
767 
768 		return 0;
769 	default:
770 		return -EINVAL;
771 	}
772 
773 	return 0;
774 }
775 
776 static int cpcap_battery_property_is_writeable(struct power_supply *psy,
777 					       enum power_supply_property psp)
778 {
779 	switch (psp) {
780 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
781 	case POWER_SUPPLY_PROP_CHARGE_FULL:
782 		return 1;
783 	default:
784 		return 0;
785 	}
786 }
787 
788 static irqreturn_t cpcap_battery_irq_thread(int irq, void *data)
789 {
790 	struct cpcap_battery_ddata *ddata = data;
791 	struct cpcap_battery_state_data *latest;
792 	struct cpcap_interrupt_desc *d;
793 
794 	if (!atomic_read(&ddata->active))
795 		return IRQ_NONE;
796 
797 	list_for_each_entry(d, &ddata->irq_list, node) {
798 		if (irq == d->irq)
799 			break;
800 	}
801 
802 	if (list_entry_is_head(d, &ddata->irq_list, node))
803 		return IRQ_NONE;
804 
805 	latest = cpcap_battery_latest(ddata);
806 
807 	switch (d->action) {
808 	case CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE:
809 		dev_info(ddata->dev, "Coulomb counter calibration done\n");
810 		break;
811 	case CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW:
812 		if (latest->current_ua >= 0)
813 			dev_warn(ddata->dev, "Battery low at %imV!\n",
814 				latest->voltage / 1000);
815 		break;
816 	case CPCAP_BATTERY_IRQ_ACTION_POWEROFF:
817 		if (latest->current_ua >= 0 && latest->voltage <= 3200000) {
818 			dev_emerg(ddata->dev,
819 				  "Battery empty at %imV, powering off\n",
820 				  latest->voltage / 1000);
821 			orderly_poweroff(true);
822 		}
823 		break;
824 	default:
825 		break;
826 	}
827 
828 	power_supply_changed(ddata->psy);
829 
830 	return IRQ_HANDLED;
831 }
832 
833 static int cpcap_battery_init_irq(struct platform_device *pdev,
834 				  struct cpcap_battery_ddata *ddata,
835 				  const char *name)
836 {
837 	struct cpcap_interrupt_desc *d;
838 	int irq, error;
839 
840 	irq = platform_get_irq_byname(pdev, name);
841 	if (irq < 0)
842 		return irq;
843 
844 	error = devm_request_threaded_irq(ddata->dev, irq, NULL,
845 					  cpcap_battery_irq_thread,
846 					  IRQF_SHARED | IRQF_ONESHOT,
847 					  name, ddata);
848 	if (error) {
849 		dev_err(ddata->dev, "could not get irq %s: %i\n",
850 			name, error);
851 
852 		return error;
853 	}
854 
855 	d = devm_kzalloc(ddata->dev, sizeof(*d), GFP_KERNEL);
856 	if (!d)
857 		return -ENOMEM;
858 
859 	d->name = name;
860 	d->irq = irq;
861 
862 	if (!strncmp(name, "cccal", 5))
863 		d->action = CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE;
864 	else if (!strncmp(name, "lowbph", 6))
865 		d->action = CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW;
866 	else if (!strncmp(name, "lowbpl", 6))
867 		d->action = CPCAP_BATTERY_IRQ_ACTION_POWEROFF;
868 
869 	list_add(&d->node, &ddata->irq_list);
870 
871 	return 0;
872 }
873 
874 static int cpcap_battery_init_interrupts(struct platform_device *pdev,
875 					 struct cpcap_battery_ddata *ddata)
876 {
877 	static const char * const cpcap_battery_irqs[] = {
878 		"eol", "lowbph", "lowbpl",
879 		"chrgcurr1", "battdetb"
880 	};
881 	int i, error;
882 
883 	for (i = 0; i < ARRAY_SIZE(cpcap_battery_irqs); i++) {
884 		error = cpcap_battery_init_irq(pdev, ddata,
885 					       cpcap_battery_irqs[i]);
886 		if (error)
887 			return error;
888 	}
889 
890 	/* Enable calibration interrupt if already available in dts */
891 	cpcap_battery_init_irq(pdev, ddata, "cccal");
892 
893 	/* Enable low battery interrupts for 3.3V high and 3.1V low */
894 	error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
895 				   0xffff,
896 				   CPCAP_REG_BPEOL_BIT_BATTDETEN);
897 	if (error)
898 		return error;
899 
900 	return 0;
901 }
902 
903 static int cpcap_battery_init_iio(struct cpcap_battery_ddata *ddata)
904 {
905 	const char * const names[CPCAP_BATTERY_IIO_NR] = {
906 		"battdetb", "battp", "chg_isense", "batti",
907 	};
908 	int error, i;
909 
910 	for (i = 0; i < CPCAP_BATTERY_IIO_NR; i++) {
911 		ddata->channels[i] = devm_iio_channel_get(ddata->dev,
912 							  names[i]);
913 		if (IS_ERR(ddata->channels[i])) {
914 			error = PTR_ERR(ddata->channels[i]);
915 			goto out_err;
916 		}
917 
918 		if (!ddata->channels[i]->indio_dev) {
919 			error = -ENXIO;
920 			goto out_err;
921 		}
922 	}
923 
924 	return 0;
925 
926 out_err:
927 	return dev_err_probe(ddata->dev, error,
928 			     "could not initialize VBUS or ID IIO\n");
929 }
930 
931 /* Calibrate coulomb counter */
932 static int cpcap_battery_calibrate(struct cpcap_battery_ddata *ddata)
933 {
934 	int error, ccc1, value;
935 	unsigned long timeout;
936 
937 	error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &ccc1);
938 	if (error)
939 		return error;
940 
941 	timeout = jiffies + msecs_to_jiffies(6000);
942 
943 	/* Start calibration */
944 	error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
945 				   0xffff,
946 				   CPCAP_REG_CCC1_CAL_EN);
947 	if (error)
948 		goto restore;
949 
950 	while (time_before(jiffies, timeout)) {
951 		error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &value);
952 		if (error)
953 			goto restore;
954 
955 		if (!(value & CPCAP_REG_CCC1_CAL_EN))
956 			break;
957 
958 		error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
959 		if (error)
960 			goto restore;
961 
962 		msleep(300);
963 	}
964 
965 	/* Read calibration offset from CCM */
966 	error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
967 	if (error)
968 		goto restore;
969 
970 	dev_info(ddata->dev, "calibration done: 0x%04x\n", value);
971 
972 restore:
973 	if (error)
974 		dev_err(ddata->dev, "%s: error %i\n", __func__, error);
975 
976 	error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
977 				   0xffff, ccc1);
978 	if (error)
979 		dev_err(ddata->dev, "%s: restore error %i\n",
980 			__func__, error);
981 
982 	return error;
983 }
984 
985 /*
986  * Based on the values from Motorola mapphone Linux kernel. In the
987  * the Motorola mapphone Linux kernel tree the value for pm_cd_factor
988  * is passed to the kernel via device tree. If it turns out to be
989  * something device specific we can consider that too later.
990  *
991  * And looking at the battery full and shutdown values for the stock
992  * kernel on droid 4, full is 4351000 and software initiates shutdown
993  * at 3078000. The device will die around 2743000.
994  */
995 static const struct cpcap_battery_config cpcap_battery_default_data = {
996 	.cd_factor = 0x3cc,
997 	.info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
998 	.info.voltage_max_design = 4351000,
999 	.info.voltage_min_design = 3100000,
1000 	.info.charge_full_design = 1740000,
1001 	.bat.constant_charge_voltage_max_uv = 4200000,
1002 };
1003 
1004 #ifdef CONFIG_OF
1005 static const struct of_device_id cpcap_battery_id_table[] = {
1006 	{
1007 		.compatible = "motorola,cpcap-battery",
1008 		.data = &cpcap_battery_default_data,
1009 	},
1010 	{},
1011 };
1012 MODULE_DEVICE_TABLE(of, cpcap_battery_id_table);
1013 #endif
1014 
1015 static const struct power_supply_desc cpcap_charger_battery_desc = {
1016 	.name		= "battery",
1017 	.type		= POWER_SUPPLY_TYPE_BATTERY,
1018 	.properties	= cpcap_battery_props,
1019 	.num_properties	= ARRAY_SIZE(cpcap_battery_props),
1020 	.get_property	= cpcap_battery_get_property,
1021 	.set_property	= cpcap_battery_set_property,
1022 	.property_is_writeable = cpcap_battery_property_is_writeable,
1023 	.external_power_changed = cpcap_battery_external_power_changed,
1024 };
1025 
1026 static int cpcap_battery_probe(struct platform_device *pdev)
1027 {
1028 	struct cpcap_battery_ddata *ddata;
1029 	struct power_supply_config psy_cfg = {};
1030 	int error;
1031 	const struct cpcap_battery_config *cfg;
1032 
1033 	cfg = device_get_match_data(&pdev->dev);
1034 	if (!cfg)
1035 		return -ENODEV;
1036 
1037 	ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL);
1038 	if (!ddata)
1039 		return -ENOMEM;
1040 
1041 	INIT_LIST_HEAD(&ddata->irq_list);
1042 	ddata->dev = &pdev->dev;
1043 	memcpy(&ddata->config, cfg, sizeof(ddata->config));
1044 
1045 	ddata->reg = dev_get_regmap(ddata->dev->parent, NULL);
1046 	if (!ddata->reg)
1047 		return -ENODEV;
1048 
1049 	error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
1050 	if (error)
1051 		return error;
1052 
1053 	switch (ddata->vendor) {
1054 	case CPCAP_VENDOR_ST:
1055 		ddata->cc_lsb = 95374;	/* μAms per LSB */
1056 		break;
1057 	case CPCAP_VENDOR_TI:
1058 		ddata->cc_lsb = 91501;	/* μAms per LSB */
1059 		break;
1060 	default:
1061 		return -EINVAL;
1062 	}
1063 	ddata->cc_lsb = (ddata->cc_lsb * ddata->config.cd_factor) / 1000;
1064 
1065 	platform_set_drvdata(pdev, ddata);
1066 
1067 	error = cpcap_battery_init_interrupts(pdev, ddata);
1068 	if (error)
1069 		return error;
1070 
1071 	error = cpcap_battery_init_iio(ddata);
1072 	if (error)
1073 		return error;
1074 
1075 	psy_cfg.of_node = pdev->dev.of_node;
1076 	psy_cfg.drv_data = ddata;
1077 
1078 	ddata->psy = devm_power_supply_register(ddata->dev,
1079 						&cpcap_charger_battery_desc,
1080 						&psy_cfg);
1081 	error = PTR_ERR_OR_ZERO(ddata->psy);
1082 	if (error) {
1083 		dev_err(ddata->dev, "failed to register power supply\n");
1084 		return error;
1085 	}
1086 
1087 	atomic_set(&ddata->active, 1);
1088 
1089 	error = cpcap_battery_calibrate(ddata);
1090 	if (error)
1091 		return error;
1092 
1093 	return 0;
1094 }
1095 
1096 static int cpcap_battery_remove(struct platform_device *pdev)
1097 {
1098 	struct cpcap_battery_ddata *ddata = platform_get_drvdata(pdev);
1099 	int error;
1100 
1101 	atomic_set(&ddata->active, 0);
1102 	error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
1103 				   0xffff, 0);
1104 	if (error)
1105 		dev_err(&pdev->dev, "could not disable: %i\n", error);
1106 
1107 	return 0;
1108 }
1109 
1110 static struct platform_driver cpcap_battery_driver = {
1111 	.driver	= {
1112 		.name		= "cpcap_battery",
1113 		.of_match_table = of_match_ptr(cpcap_battery_id_table),
1114 	},
1115 	.probe	= cpcap_battery_probe,
1116 	.remove = cpcap_battery_remove,
1117 };
1118 module_platform_driver(cpcap_battery_driver);
1119 
1120 MODULE_LICENSE("GPL v2");
1121 MODULE_AUTHOR("Tony Lindgren <tony@atomide.com>");
1122 MODULE_DESCRIPTION("CPCAP PMIC Battery Driver");
1123