1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Battery driver for CPCAP PMIC
4  *
5  * Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
6  *
7  * Some parts of the code based on earlier Motorola mapphone Linux kernel
8  * drivers:
9  *
10  * Copyright (C) 2009-2010 Motorola, Inc.
11  */
12 
13 #include <linux/delay.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/platform_device.h>
20 #include <linux/power_supply.h>
21 #include <linux/reboot.h>
22 #include <linux/regmap.h>
23 #include <linux/nvmem-consumer.h>
24 #include <linux/moduleparam.h>
25 
26 #include <linux/iio/consumer.h>
27 #include <linux/iio/types.h>
28 #include <linux/mfd/motorola-cpcap.h>
29 
30 /*
31  * Register bit defines for CPCAP_REG_BPEOL. Some of these seem to
32  * map to MC13783UG.pdf "Table 5-19. Register 13, Power Control 0"
33  * to enable BATTDETEN, LOBAT and EOL features. We currently use
34  * LOBAT interrupts instead of EOL.
35  */
36 #define CPCAP_REG_BPEOL_BIT_EOL9	BIT(9)	/* Set for EOL irq */
37 #define CPCAP_REG_BPEOL_BIT_EOL8	BIT(8)	/* Set for EOL irq */
38 #define CPCAP_REG_BPEOL_BIT_UNKNOWN7	BIT(7)
39 #define CPCAP_REG_BPEOL_BIT_UNKNOWN6	BIT(6)
40 #define CPCAP_REG_BPEOL_BIT_UNKNOWN5	BIT(5)
41 #define CPCAP_REG_BPEOL_BIT_EOL_MULTI	BIT(4)	/* Set for multiple EOL irqs */
42 #define CPCAP_REG_BPEOL_BIT_UNKNOWN3	BIT(3)
43 #define CPCAP_REG_BPEOL_BIT_UNKNOWN2	BIT(2)
44 #define CPCAP_REG_BPEOL_BIT_BATTDETEN	BIT(1)	/* Enable battery detect */
45 #define CPCAP_REG_BPEOL_BIT_EOLSEL	BIT(0)	/* BPDET = 0, EOL = 1 */
46 
47 /*
48  * Register bit defines for CPCAP_REG_CCC1. These seem similar to the twl6030
49  * coulomb counter registers rather than the mc13892 registers. Both twl6030
50  * and mc13892 set bits 2 and 1 to reset and clear registers. But mc13892
51  * sets bit 0 to start the coulomb counter while twl6030 sets bit 0 to stop
52  * the coulomb counter like cpcap does. So for now, we use the twl6030 style
53  * naming for the registers.
54  */
55 #define CPCAP_REG_CCC1_ACTIVE_MODE1	BIT(4)	/* Update rate */
56 #define CPCAP_REG_CCC1_ACTIVE_MODE0	BIT(3)	/* Update rate */
57 #define CPCAP_REG_CCC1_AUTOCLEAR	BIT(2)	/* Resets sample registers */
58 #define CPCAP_REG_CCC1_CAL_EN		BIT(1)	/* Clears after write in 1s */
59 #define CPCAP_REG_CCC1_PAUSE		BIT(0)	/* Stop counters, allow write */
60 #define CPCAP_REG_CCC1_RESET_MASK	(CPCAP_REG_CCC1_AUTOCLEAR | \
61 					 CPCAP_REG_CCC1_CAL_EN)
62 
63 #define CPCAP_REG_CCCC2_RATE1		BIT(5)
64 #define CPCAP_REG_CCCC2_RATE0		BIT(4)
65 #define CPCAP_REG_CCCC2_ENABLE		BIT(3)
66 
67 #define CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS	250
68 
69 #define CPCAP_BATTERY_EB41_HW4X_ID 0x9E
70 #define CPCAP_BATTERY_BW8X_ID 0x98
71 
72 enum {
73 	CPCAP_BATTERY_IIO_BATTDET,
74 	CPCAP_BATTERY_IIO_VOLTAGE,
75 	CPCAP_BATTERY_IIO_CHRG_CURRENT,
76 	CPCAP_BATTERY_IIO_BATT_CURRENT,
77 	CPCAP_BATTERY_IIO_NR,
78 };
79 
80 enum cpcap_battery_irq_action {
81 	CPCAP_BATTERY_IRQ_ACTION_NONE,
82 	CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE,
83 	CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW,
84 	CPCAP_BATTERY_IRQ_ACTION_POWEROFF,
85 };
86 
87 struct cpcap_interrupt_desc {
88 	const char *name;
89 	struct list_head node;
90 	int irq;
91 	enum cpcap_battery_irq_action action;
92 };
93 
94 struct cpcap_battery_config {
95 	int cd_factor;
96 	struct power_supply_info info;
97 	struct power_supply_battery_info bat;
98 };
99 
100 struct cpcap_coulomb_counter_data {
101 	s32 sample;		/* 24 or 32 bits */
102 	s32 accumulator;
103 	s16 offset;		/* 9 bits */
104 	s16 integrator;		/* 13 or 16 bits */
105 };
106 
107 enum cpcap_battery_state {
108 	CPCAP_BATTERY_STATE_PREVIOUS,
109 	CPCAP_BATTERY_STATE_LATEST,
110 	CPCAP_BATTERY_STATE_EMPTY,
111 	CPCAP_BATTERY_STATE_FULL,
112 	CPCAP_BATTERY_STATE_NR,
113 };
114 
115 struct cpcap_battery_state_data {
116 	int voltage;
117 	int current_ua;
118 	int counter_uah;
119 	int temperature;
120 	ktime_t time;
121 	struct cpcap_coulomb_counter_data cc;
122 };
123 
124 struct cpcap_battery_ddata {
125 	struct device *dev;
126 	struct regmap *reg;
127 	struct list_head irq_list;
128 	struct iio_channel *channels[CPCAP_BATTERY_IIO_NR];
129 	struct power_supply *psy;
130 	struct cpcap_battery_config config;
131 	struct cpcap_battery_state_data state[CPCAP_BATTERY_STATE_NR];
132 	u32 cc_lsb;		/* μAms per LSB */
133 	atomic_t active;
134 	int charge_full;
135 	int status;
136 	u16 vendor;
137 	bool check_nvmem;
138 	unsigned int is_full:1;
139 };
140 
141 #define CPCAP_NO_BATTERY	-400
142 
143 static bool ignore_temperature_probe;
144 module_param(ignore_temperature_probe, bool, 0660);
145 
146 static struct cpcap_battery_state_data *
147 cpcap_battery_get_state(struct cpcap_battery_ddata *ddata,
148 			enum cpcap_battery_state state)
149 {
150 	if (state >= CPCAP_BATTERY_STATE_NR)
151 		return NULL;
152 
153 	return &ddata->state[state];
154 }
155 
156 static struct cpcap_battery_state_data *
157 cpcap_battery_latest(struct cpcap_battery_ddata *ddata)
158 {
159 	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_LATEST);
160 }
161 
162 static struct cpcap_battery_state_data *
163 cpcap_battery_previous(struct cpcap_battery_ddata *ddata)
164 {
165 	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_PREVIOUS);
166 }
167 
168 static struct cpcap_battery_state_data *
169 cpcap_battery_get_empty(struct cpcap_battery_ddata *ddata)
170 {
171 	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_EMPTY);
172 }
173 
174 static struct cpcap_battery_state_data *
175 cpcap_battery_get_full(struct cpcap_battery_ddata *ddata)
176 {
177 	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_FULL);
178 }
179 
180 static int cpcap_charger_battery_temperature(struct cpcap_battery_ddata *ddata,
181 					     int *value)
182 {
183 	struct iio_channel *channel;
184 	int error;
185 
186 	channel = ddata->channels[CPCAP_BATTERY_IIO_BATTDET];
187 	error = iio_read_channel_processed(channel, value);
188 	if (error < 0) {
189 		if (!ignore_temperature_probe)
190 			dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
191 		*value = CPCAP_NO_BATTERY;
192 
193 		return error;
194 	}
195 
196 	*value /= 100;
197 
198 	return 0;
199 }
200 
201 static int cpcap_battery_get_voltage(struct cpcap_battery_ddata *ddata)
202 {
203 	struct iio_channel *channel;
204 	int error, value = 0;
205 
206 	channel = ddata->channels[CPCAP_BATTERY_IIO_VOLTAGE];
207 	error = iio_read_channel_processed(channel, &value);
208 	if (error < 0) {
209 		dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
210 
211 		return 0;
212 	}
213 
214 	return value * 1000;
215 }
216 
217 static int cpcap_battery_get_current(struct cpcap_battery_ddata *ddata)
218 {
219 	struct iio_channel *channel;
220 	int error, value = 0;
221 
222 	channel = ddata->channels[CPCAP_BATTERY_IIO_BATT_CURRENT];
223 	error = iio_read_channel_processed(channel, &value);
224 	if (error < 0) {
225 		dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
226 
227 		return 0;
228 	}
229 
230 	return value * 1000;
231 }
232 
233 /**
234  * cpcap_battery_cc_raw_div - calculate and divide coulomb counter μAms values
235  * @ddata: device driver data
236  * @sample: coulomb counter sample value
237  * @accumulator: coulomb counter integrator value
238  * @offset: coulomb counter offset value
239  * @divider: conversion divider
240  *
241  * Note that cc_lsb and cc_dur values are from Motorola Linux kernel
242  * function data_get_avg_curr_ua() and seem to be based on measured test
243  * results. It also has the following comment:
244  *
245  * Adjustment factors are applied here as a temp solution per the test
246  * results. Need to work out a formal solution for this adjustment.
247  *
248  * A coulomb counter for similar hardware seems to be documented in
249  * "TWL6030 Gas Gauging Basics (Rev. A)" swca095a.pdf in chapter
250  * "10 Calculating Accumulated Current". We however follow what the
251  * Motorola mapphone Linux kernel is doing as there may be either a
252  * TI or ST coulomb counter in the PMIC.
253  */
254 static int cpcap_battery_cc_raw_div(struct cpcap_battery_ddata *ddata,
255 				    s32 sample, s32 accumulator,
256 				    s16 offset, u32 divider)
257 {
258 	s64 acc;
259 
260 	if (!divider)
261 		return 0;
262 
263 	acc = accumulator;
264 	acc -= (s64)sample * offset;
265 	acc *= ddata->cc_lsb;
266 	acc *= -1;
267 	acc = div_s64(acc, divider);
268 
269 	return acc;
270 }
271 
272 /* 3600000μAms = 1μAh */
273 static int cpcap_battery_cc_to_uah(struct cpcap_battery_ddata *ddata,
274 				   s32 sample, s32 accumulator,
275 				   s16 offset)
276 {
277 	return cpcap_battery_cc_raw_div(ddata, sample,
278 					accumulator, offset,
279 					3600000);
280 }
281 
282 static int cpcap_battery_cc_to_ua(struct cpcap_battery_ddata *ddata,
283 				  s32 sample, s32 accumulator,
284 				  s16 offset)
285 {
286 	return cpcap_battery_cc_raw_div(ddata, sample,
287 					accumulator, offset,
288 					sample *
289 					CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS);
290 }
291 
292 /**
293  * cpcap_battery_read_accumulated - reads cpcap coulomb counter
294  * @ddata: device driver data
295  * @ccd: coulomb counter values
296  *
297  * Based on Motorola mapphone kernel function data_read_regs().
298  * Looking at the registers, the coulomb counter seems similar to
299  * the coulomb counter in TWL6030. See "TWL6030 Gas Gauging Basics
300  * (Rev. A) swca095a.pdf for "10 Calculating Accumulated Current".
301  *
302  * Note that swca095a.pdf instructs to stop the coulomb counter
303  * before reading to avoid values changing. Motorola mapphone
304  * Linux kernel does not do it, so let's assume they've verified
305  * the data produced is correct.
306  */
307 static int
308 cpcap_battery_read_accumulated(struct cpcap_battery_ddata *ddata,
309 			       struct cpcap_coulomb_counter_data *ccd)
310 {
311 	u16 buf[7];	/* CPCAP_REG_CCS1 to CCI */
312 	int error;
313 
314 	ccd->sample = 0;
315 	ccd->accumulator = 0;
316 	ccd->offset = 0;
317 	ccd->integrator = 0;
318 
319 	/* Read coulomb counter register range */
320 	error = regmap_bulk_read(ddata->reg, CPCAP_REG_CCS1,
321 				 buf, ARRAY_SIZE(buf));
322 	if (error)
323 		return 0;
324 
325 	/* Sample value CPCAP_REG_CCS1 & 2 */
326 	ccd->sample = (buf[1] & 0x0fff) << 16;
327 	ccd->sample |= buf[0];
328 	if (ddata->vendor == CPCAP_VENDOR_TI)
329 		ccd->sample = sign_extend32(24, ccd->sample);
330 
331 	/* Accumulator value CPCAP_REG_CCA1 & 2 */
332 	ccd->accumulator = ((s16)buf[3]) << 16;
333 	ccd->accumulator |= buf[2];
334 
335 	/*
336 	 * Coulomb counter calibration offset is CPCAP_REG_CCM,
337 	 * REG_CCO seems unused
338 	 */
339 	ccd->offset = buf[4];
340 	ccd->offset = sign_extend32(ccd->offset, 9);
341 
342 	/* Integrator register CPCAP_REG_CCI */
343 	if (ddata->vendor == CPCAP_VENDOR_TI)
344 		ccd->integrator = sign_extend32(buf[6], 13);
345 	else
346 		ccd->integrator = (s16)buf[6];
347 
348 	return cpcap_battery_cc_to_uah(ddata,
349 				       ccd->sample,
350 				       ccd->accumulator,
351 				       ccd->offset);
352 }
353 
354 
355 /*
356  * Based on the values from Motorola mapphone Linux kernel for the
357  * stock Droid 4 battery eb41. In the Motorola mapphone Linux
358  * kernel tree the value for pm_cd_factor is passed to the kernel
359  * via device tree. If it turns out to be something device specific
360  * we can consider that too later. These values are also fine for
361  * Bionic's hw4x.
362  *
363  * And looking at the battery full and shutdown values for the stock
364  * kernel on droid 4, full is 4351000 and software initiates shutdown
365  * at 3078000. The device will die around 2743000.
366  */
367 static const struct cpcap_battery_config cpcap_battery_eb41_data = {
368 	.cd_factor = 0x3cc,
369 	.info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
370 	.info.voltage_max_design = 4351000,
371 	.info.voltage_min_design = 3100000,
372 	.info.charge_full_design = 1740000,
373 	.bat.constant_charge_voltage_max_uv = 4200000,
374 };
375 
376 /* Values for the extended Droid Bionic battery bw8x. */
377 static const struct cpcap_battery_config cpcap_battery_bw8x_data = {
378 	.cd_factor = 0x3cc,
379 	.info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
380 	.info.voltage_max_design = 4200000,
381 	.info.voltage_min_design = 3200000,
382 	.info.charge_full_design = 2760000,
383 	.bat.constant_charge_voltage_max_uv = 4200000,
384 };
385 
386 /*
387  * Safe values for any lipo battery likely to fit into a mapphone
388  * battery bay.
389  */
390 static const struct cpcap_battery_config cpcap_battery_unkown_data = {
391 	.cd_factor = 0x3cc,
392 	.info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
393 	.info.voltage_max_design = 4200000,
394 	.info.voltage_min_design = 3200000,
395 	.info.charge_full_design = 3000000,
396 	.bat.constant_charge_voltage_max_uv = 4200000,
397 };
398 
399 static int cpcap_battery_match_nvmem(struct device *dev, const void *data)
400 {
401 	if (strcmp(dev_name(dev), "89-500029ba0f73") == 0)
402 		return 1;
403 	else
404 		return 0;
405 }
406 
407 static void cpcap_battery_detect_battery_type(struct cpcap_battery_ddata *ddata)
408 {
409 	struct nvmem_device *nvmem;
410 	u8 battery_id = 0;
411 
412 	ddata->check_nvmem = false;
413 
414 	nvmem = nvmem_device_find(NULL, &cpcap_battery_match_nvmem);
415 	if (IS_ERR_OR_NULL(nvmem)) {
416 		ddata->check_nvmem = true;
417 		dev_info_once(ddata->dev, "Can not find battery nvmem device. Assuming generic lipo battery\n");
418 	} else if (nvmem_device_read(nvmem, 2, 1, &battery_id) < 0) {
419 		battery_id = 0;
420 		ddata->check_nvmem = true;
421 		dev_warn(ddata->dev, "Can not read battery nvmem device. Assuming generic lipo battery\n");
422 	}
423 
424 	switch (battery_id) {
425 	case CPCAP_BATTERY_EB41_HW4X_ID:
426 		ddata->config = cpcap_battery_eb41_data;
427 		break;
428 	case CPCAP_BATTERY_BW8X_ID:
429 		ddata->config = cpcap_battery_bw8x_data;
430 		break;
431 	default:
432 		ddata->config = cpcap_battery_unkown_data;
433 	}
434 }
435 
436 /**
437  * cpcap_battery_cc_get_avg_current - read cpcap coulumb counter
438  * @ddata: cpcap battery driver device data
439  */
440 static int cpcap_battery_cc_get_avg_current(struct cpcap_battery_ddata *ddata)
441 {
442 	int value, acc, error;
443 	s32 sample;
444 	s16 offset;
445 
446 	/* Coulomb counter integrator */
447 	error = regmap_read(ddata->reg, CPCAP_REG_CCI, &value);
448 	if (error)
449 		return error;
450 
451 	if (ddata->vendor == CPCAP_VENDOR_TI) {
452 		acc = sign_extend32(value, 13);
453 		sample = 1;
454 	} else {
455 		acc = (s16)value;
456 		sample = 4;
457 	}
458 
459 	/* Coulomb counter calibration offset  */
460 	error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
461 	if (error)
462 		return error;
463 
464 	offset = sign_extend32(value, 9);
465 
466 	return cpcap_battery_cc_to_ua(ddata, sample, acc, offset);
467 }
468 
469 static int cpcap_battery_get_charger_status(struct cpcap_battery_ddata *ddata,
470 					    int *val)
471 {
472 	union power_supply_propval prop;
473 	struct power_supply *charger;
474 	int error;
475 
476 	charger = power_supply_get_by_name("usb");
477 	if (!charger)
478 		return -ENODEV;
479 
480 	error = power_supply_get_property(charger, POWER_SUPPLY_PROP_STATUS,
481 					  &prop);
482 	if (error)
483 		*val = POWER_SUPPLY_STATUS_UNKNOWN;
484 	else
485 		*val = prop.intval;
486 
487 	power_supply_put(charger);
488 
489 	return error;
490 }
491 
492 static bool cpcap_battery_full(struct cpcap_battery_ddata *ddata)
493 {
494 	struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
495 	unsigned int vfull;
496 	int error, val;
497 
498 	error = cpcap_battery_get_charger_status(ddata, &val);
499 	if (!error) {
500 		switch (val) {
501 		case POWER_SUPPLY_STATUS_DISCHARGING:
502 			dev_dbg(ddata->dev, "charger disconnected\n");
503 			ddata->is_full = 0;
504 			break;
505 		case POWER_SUPPLY_STATUS_FULL:
506 			dev_dbg(ddata->dev, "charger full status\n");
507 			ddata->is_full = 1;
508 			break;
509 		default:
510 			break;
511 		}
512 	}
513 
514 	/*
515 	 * The full battery voltage here can be inaccurate, it's used just to
516 	 * filter out any trickle charging events. We clear the is_full status
517 	 * on charger disconnect above anyways.
518 	 */
519 	vfull = ddata->config.bat.constant_charge_voltage_max_uv - 120000;
520 
521 	if (ddata->is_full && state->voltage < vfull)
522 		ddata->is_full = 0;
523 
524 	return ddata->is_full;
525 }
526 
527 static bool cpcap_battery_low(struct cpcap_battery_ddata *ddata)
528 {
529 	struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
530 	static bool is_low;
531 
532 	if (state->current_ua > 0 && (state->voltage <= 3350000 || is_low))
533 		is_low = true;
534 	else
535 		is_low = false;
536 
537 	return is_low;
538 }
539 
540 static int cpcap_battery_update_status(struct cpcap_battery_ddata *ddata)
541 {
542 	struct cpcap_battery_state_data state, *latest, *previous,
543 					*empty, *full;
544 	ktime_t now;
545 	int error;
546 
547 	memset(&state, 0, sizeof(state));
548 	now = ktime_get();
549 
550 	latest = cpcap_battery_latest(ddata);
551 	if (latest) {
552 		s64 delta_ms = ktime_to_ms(ktime_sub(now, latest->time));
553 
554 		if (delta_ms < CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS)
555 			return delta_ms;
556 	}
557 
558 	state.time = now;
559 	state.voltage = cpcap_battery_get_voltage(ddata);
560 	state.current_ua = cpcap_battery_get_current(ddata);
561 	state.counter_uah = cpcap_battery_read_accumulated(ddata, &state.cc);
562 
563 	error = cpcap_charger_battery_temperature(ddata,
564 						  &state.temperature);
565 	if (error)
566 		return error;
567 
568 	previous = cpcap_battery_previous(ddata);
569 	memcpy(previous, latest, sizeof(*previous));
570 	memcpy(latest, &state, sizeof(*latest));
571 
572 	if (cpcap_battery_full(ddata)) {
573 		full = cpcap_battery_get_full(ddata);
574 		memcpy(full, latest, sizeof(*full));
575 
576 		empty = cpcap_battery_get_empty(ddata);
577 		if (empty->voltage && empty->voltage != -1) {
578 			empty->voltage = -1;
579 			ddata->charge_full =
580 				empty->counter_uah - full->counter_uah;
581 		} else if (ddata->charge_full) {
582 			empty->voltage = -1;
583 			empty->counter_uah =
584 				full->counter_uah + ddata->charge_full;
585 		}
586 	} else if (cpcap_battery_low(ddata)) {
587 		empty = cpcap_battery_get_empty(ddata);
588 		memcpy(empty, latest, sizeof(*empty));
589 
590 		full = cpcap_battery_get_full(ddata);
591 		if (full->voltage) {
592 			full->voltage = 0;
593 			ddata->charge_full =
594 				empty->counter_uah - full->counter_uah;
595 		}
596 	}
597 
598 	return 0;
599 }
600 
601 /*
602  * Update battery status when cpcap-charger calls power_supply_changed().
603  * This allows us to detect battery full condition before the charger
604  * disconnects.
605  */
606 static void cpcap_battery_external_power_changed(struct power_supply *psy)
607 {
608 	union power_supply_propval prop;
609 
610 	power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS, &prop);
611 }
612 
613 static enum power_supply_property cpcap_battery_props[] = {
614 	POWER_SUPPLY_PROP_STATUS,
615 	POWER_SUPPLY_PROP_PRESENT,
616 	POWER_SUPPLY_PROP_TECHNOLOGY,
617 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
618 	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
619 	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
620 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
621 	POWER_SUPPLY_PROP_CURRENT_AVG,
622 	POWER_SUPPLY_PROP_CURRENT_NOW,
623 	POWER_SUPPLY_PROP_CHARGE_FULL,
624 	POWER_SUPPLY_PROP_CHARGE_NOW,
625 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
626 	POWER_SUPPLY_PROP_CHARGE_COUNTER,
627 	POWER_SUPPLY_PROP_POWER_NOW,
628 	POWER_SUPPLY_PROP_POWER_AVG,
629 	POWER_SUPPLY_PROP_CAPACITY,
630 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
631 	POWER_SUPPLY_PROP_SCOPE,
632 	POWER_SUPPLY_PROP_TEMP,
633 };
634 
635 static int cpcap_battery_get_property(struct power_supply *psy,
636 				      enum power_supply_property psp,
637 				      union power_supply_propval *val)
638 {
639 	struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
640 	struct cpcap_battery_state_data *latest, *previous, *empty;
641 	u32 sample;
642 	s32 accumulator;
643 	int cached;
644 	s64 tmp;
645 
646 	cached = cpcap_battery_update_status(ddata);
647 	if (cached < 0)
648 		return cached;
649 
650 	latest = cpcap_battery_latest(ddata);
651 	previous = cpcap_battery_previous(ddata);
652 
653 	if (ddata->check_nvmem)
654 		cpcap_battery_detect_battery_type(ddata);
655 
656 	switch (psp) {
657 	case POWER_SUPPLY_PROP_PRESENT:
658 		if (latest->temperature > CPCAP_NO_BATTERY || ignore_temperature_probe)
659 			val->intval = 1;
660 		else
661 			val->intval = 0;
662 		break;
663 	case POWER_SUPPLY_PROP_STATUS:
664 		if (cpcap_battery_full(ddata)) {
665 			val->intval = POWER_SUPPLY_STATUS_FULL;
666 			break;
667 		}
668 		if (cpcap_battery_cc_get_avg_current(ddata) < 0)
669 			val->intval = POWER_SUPPLY_STATUS_CHARGING;
670 		else
671 			val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
672 		break;
673 	case POWER_SUPPLY_PROP_TECHNOLOGY:
674 		val->intval = ddata->config.info.technology;
675 		break;
676 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
677 		val->intval = cpcap_battery_get_voltage(ddata);
678 		break;
679 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
680 		val->intval = ddata->config.info.voltage_max_design;
681 		break;
682 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
683 		val->intval = ddata->config.info.voltage_min_design;
684 		break;
685 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
686 		val->intval = ddata->config.bat.constant_charge_voltage_max_uv;
687 		break;
688 	case POWER_SUPPLY_PROP_CURRENT_AVG:
689 		sample = latest->cc.sample - previous->cc.sample;
690 		if (!sample) {
691 			val->intval = cpcap_battery_cc_get_avg_current(ddata);
692 			break;
693 		}
694 		accumulator = latest->cc.accumulator - previous->cc.accumulator;
695 		val->intval = cpcap_battery_cc_to_ua(ddata, sample,
696 						     accumulator,
697 						     latest->cc.offset);
698 		break;
699 	case POWER_SUPPLY_PROP_CURRENT_NOW:
700 		val->intval = latest->current_ua;
701 		break;
702 	case POWER_SUPPLY_PROP_CHARGE_COUNTER:
703 		val->intval = latest->counter_uah;
704 		break;
705 	case POWER_SUPPLY_PROP_POWER_NOW:
706 		tmp = (latest->voltage / 10000) * latest->current_ua;
707 		val->intval = div64_s64(tmp, 100);
708 		break;
709 	case POWER_SUPPLY_PROP_POWER_AVG:
710 		sample = latest->cc.sample - previous->cc.sample;
711 		if (!sample) {
712 			tmp = cpcap_battery_cc_get_avg_current(ddata);
713 			tmp *= (latest->voltage / 10000);
714 			val->intval = div64_s64(tmp, 100);
715 			break;
716 		}
717 		accumulator = latest->cc.accumulator - previous->cc.accumulator;
718 		tmp = cpcap_battery_cc_to_ua(ddata, sample, accumulator,
719 					     latest->cc.offset);
720 		tmp *= ((latest->voltage + previous->voltage) / 20000);
721 		val->intval = div64_s64(tmp, 100);
722 		break;
723 	case POWER_SUPPLY_PROP_CAPACITY:
724 		empty = cpcap_battery_get_empty(ddata);
725 		if (!empty->voltage || !ddata->charge_full)
726 			return -ENODATA;
727 		/* (ddata->charge_full / 200) is needed for rounding */
728 		val->intval = empty->counter_uah - latest->counter_uah +
729 			ddata->charge_full / 200;
730 		val->intval = clamp(val->intval, 0, ddata->charge_full);
731 		val->intval = val->intval * 100 / ddata->charge_full;
732 		break;
733 	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
734 		if (cpcap_battery_full(ddata))
735 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
736 		else if (latest->voltage >= 3750000)
737 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
738 		else if (latest->voltage >= 3300000)
739 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
740 		else if (latest->voltage > 3100000)
741 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
742 		else if (latest->voltage <= 3100000)
743 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
744 		else
745 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
746 		break;
747 	case POWER_SUPPLY_PROP_CHARGE_NOW:
748 		empty = cpcap_battery_get_empty(ddata);
749 		if (!empty->voltage)
750 			return -ENODATA;
751 		val->intval = empty->counter_uah - latest->counter_uah;
752 		if (val->intval < 0) {
753 			/* Assume invalid config if CHARGE_NOW is -20% */
754 			if (ddata->charge_full && abs(val->intval) > ddata->charge_full/5) {
755 				empty->voltage = 0;
756 				ddata->charge_full = 0;
757 				return -ENODATA;
758 			}
759 			val->intval = 0;
760 		} else if (ddata->charge_full && ddata->charge_full < val->intval) {
761 			/* Assume invalid config if CHARGE_NOW exceeds CHARGE_FULL by 20% */
762 			if (val->intval > (6*ddata->charge_full)/5) {
763 				empty->voltage = 0;
764 				ddata->charge_full = 0;
765 				return -ENODATA;
766 			}
767 			val->intval = ddata->charge_full;
768 		}
769 		break;
770 	case POWER_SUPPLY_PROP_CHARGE_FULL:
771 		if (!ddata->charge_full)
772 			return -ENODATA;
773 		val->intval = ddata->charge_full;
774 		break;
775 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
776 		val->intval = ddata->config.info.charge_full_design;
777 		break;
778 	case POWER_SUPPLY_PROP_SCOPE:
779 		val->intval = POWER_SUPPLY_SCOPE_SYSTEM;
780 		break;
781 	case POWER_SUPPLY_PROP_TEMP:
782 		if (ignore_temperature_probe)
783 			return -ENODATA;
784 		val->intval = latest->temperature;
785 		break;
786 	default:
787 		return -EINVAL;
788 	}
789 
790 	return 0;
791 }
792 
793 static int cpcap_battery_update_charger(struct cpcap_battery_ddata *ddata,
794 					int const_charge_voltage)
795 {
796 	union power_supply_propval prop;
797 	union power_supply_propval val;
798 	struct power_supply *charger;
799 	int error;
800 
801 	charger = power_supply_get_by_name("usb");
802 	if (!charger)
803 		return -ENODEV;
804 
805 	error = power_supply_get_property(charger,
806 				POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
807 				&prop);
808 	if (error)
809 		goto out_put;
810 
811 	/* Allow charger const voltage lower than battery const voltage */
812 	if (const_charge_voltage > prop.intval)
813 		goto out_put;
814 
815 	val.intval = const_charge_voltage;
816 
817 	error = power_supply_set_property(charger,
818 			POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
819 			&val);
820 out_put:
821 	power_supply_put(charger);
822 
823 	return error;
824 }
825 
826 static int cpcap_battery_set_property(struct power_supply *psy,
827 				      enum power_supply_property psp,
828 				      const union power_supply_propval *val)
829 {
830 	struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
831 
832 	switch (psp) {
833 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
834 		if (val->intval < ddata->config.info.voltage_min_design)
835 			return -EINVAL;
836 		if (val->intval > ddata->config.info.voltage_max_design)
837 			return -EINVAL;
838 
839 		ddata->config.bat.constant_charge_voltage_max_uv = val->intval;
840 
841 		return cpcap_battery_update_charger(ddata, val->intval);
842 	case POWER_SUPPLY_PROP_CHARGE_FULL:
843 		if (val->intval < 0)
844 			return -EINVAL;
845 		if (val->intval > (6*ddata->config.info.charge_full_design)/5)
846 			return -EINVAL;
847 
848 		ddata->charge_full = val->intval;
849 
850 		return 0;
851 	default:
852 		return -EINVAL;
853 	}
854 
855 	return 0;
856 }
857 
858 static int cpcap_battery_property_is_writeable(struct power_supply *psy,
859 					       enum power_supply_property psp)
860 {
861 	switch (psp) {
862 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
863 	case POWER_SUPPLY_PROP_CHARGE_FULL:
864 		return 1;
865 	default:
866 		return 0;
867 	}
868 }
869 
870 static irqreturn_t cpcap_battery_irq_thread(int irq, void *data)
871 {
872 	struct cpcap_battery_ddata *ddata = data;
873 	struct cpcap_battery_state_data *latest;
874 	struct cpcap_interrupt_desc *d;
875 
876 	if (!atomic_read(&ddata->active))
877 		return IRQ_NONE;
878 
879 	list_for_each_entry(d, &ddata->irq_list, node) {
880 		if (irq == d->irq)
881 			break;
882 	}
883 
884 	if (list_entry_is_head(d, &ddata->irq_list, node))
885 		return IRQ_NONE;
886 
887 	latest = cpcap_battery_latest(ddata);
888 
889 	switch (d->action) {
890 	case CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE:
891 		dev_info(ddata->dev, "Coulomb counter calibration done\n");
892 		break;
893 	case CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW:
894 		if (latest->current_ua >= 0)
895 			dev_warn(ddata->dev, "Battery low at %imV!\n",
896 				latest->voltage / 1000);
897 		break;
898 	case CPCAP_BATTERY_IRQ_ACTION_POWEROFF:
899 		if (latest->current_ua >= 0 && latest->voltage <= 3200000) {
900 			dev_emerg(ddata->dev,
901 				  "Battery empty at %imV, powering off\n",
902 				  latest->voltage / 1000);
903 			orderly_poweroff(true);
904 		}
905 		break;
906 	default:
907 		break;
908 	}
909 
910 	power_supply_changed(ddata->psy);
911 
912 	return IRQ_HANDLED;
913 }
914 
915 static int cpcap_battery_init_irq(struct platform_device *pdev,
916 				  struct cpcap_battery_ddata *ddata,
917 				  const char *name)
918 {
919 	struct cpcap_interrupt_desc *d;
920 	int irq, error;
921 
922 	irq = platform_get_irq_byname(pdev, name);
923 	if (irq < 0)
924 		return irq;
925 
926 	error = devm_request_threaded_irq(ddata->dev, irq, NULL,
927 					  cpcap_battery_irq_thread,
928 					  IRQF_SHARED | IRQF_ONESHOT,
929 					  name, ddata);
930 	if (error) {
931 		dev_err(ddata->dev, "could not get irq %s: %i\n",
932 			name, error);
933 
934 		return error;
935 	}
936 
937 	d = devm_kzalloc(ddata->dev, sizeof(*d), GFP_KERNEL);
938 	if (!d)
939 		return -ENOMEM;
940 
941 	d->name = name;
942 	d->irq = irq;
943 
944 	if (!strncmp(name, "cccal", 5))
945 		d->action = CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE;
946 	else if (!strncmp(name, "lowbph", 6))
947 		d->action = CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW;
948 	else if (!strncmp(name, "lowbpl", 6))
949 		d->action = CPCAP_BATTERY_IRQ_ACTION_POWEROFF;
950 
951 	list_add(&d->node, &ddata->irq_list);
952 
953 	return 0;
954 }
955 
956 static int cpcap_battery_init_interrupts(struct platform_device *pdev,
957 					 struct cpcap_battery_ddata *ddata)
958 {
959 	static const char * const cpcap_battery_irqs[] = {
960 		"eol", "lowbph", "lowbpl",
961 		"chrgcurr1", "battdetb"
962 	};
963 	int i, error;
964 
965 	for (i = 0; i < ARRAY_SIZE(cpcap_battery_irqs); i++) {
966 		error = cpcap_battery_init_irq(pdev, ddata,
967 					       cpcap_battery_irqs[i]);
968 		if (error)
969 			return error;
970 	}
971 
972 	/* Enable calibration interrupt if already available in dts */
973 	cpcap_battery_init_irq(pdev, ddata, "cccal");
974 
975 	/* Enable low battery interrupts for 3.3V high and 3.1V low */
976 	error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
977 				   0xffff,
978 				   CPCAP_REG_BPEOL_BIT_BATTDETEN);
979 	if (error)
980 		return error;
981 
982 	return 0;
983 }
984 
985 static int cpcap_battery_init_iio(struct cpcap_battery_ddata *ddata)
986 {
987 	const char * const names[CPCAP_BATTERY_IIO_NR] = {
988 		"battdetb", "battp", "chg_isense", "batti",
989 	};
990 	int error, i;
991 
992 	for (i = 0; i < CPCAP_BATTERY_IIO_NR; i++) {
993 		ddata->channels[i] = devm_iio_channel_get(ddata->dev,
994 							  names[i]);
995 		if (IS_ERR(ddata->channels[i])) {
996 			error = PTR_ERR(ddata->channels[i]);
997 			goto out_err;
998 		}
999 
1000 		if (!ddata->channels[i]->indio_dev) {
1001 			error = -ENXIO;
1002 			goto out_err;
1003 		}
1004 	}
1005 
1006 	return 0;
1007 
1008 out_err:
1009 	return dev_err_probe(ddata->dev, error,
1010 			     "could not initialize VBUS or ID IIO\n");
1011 }
1012 
1013 /* Calibrate coulomb counter */
1014 static int cpcap_battery_calibrate(struct cpcap_battery_ddata *ddata)
1015 {
1016 	int error, ccc1, value;
1017 	unsigned long timeout;
1018 
1019 	error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &ccc1);
1020 	if (error)
1021 		return error;
1022 
1023 	timeout = jiffies + msecs_to_jiffies(6000);
1024 
1025 	/* Start calibration */
1026 	error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
1027 				   0xffff,
1028 				   CPCAP_REG_CCC1_CAL_EN);
1029 	if (error)
1030 		goto restore;
1031 
1032 	while (time_before(jiffies, timeout)) {
1033 		error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &value);
1034 		if (error)
1035 			goto restore;
1036 
1037 		if (!(value & CPCAP_REG_CCC1_CAL_EN))
1038 			break;
1039 
1040 		error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
1041 		if (error)
1042 			goto restore;
1043 
1044 		msleep(300);
1045 	}
1046 
1047 	/* Read calibration offset from CCM */
1048 	error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
1049 	if (error)
1050 		goto restore;
1051 
1052 	dev_info(ddata->dev, "calibration done: 0x%04x\n", value);
1053 
1054 restore:
1055 	if (error)
1056 		dev_err(ddata->dev, "%s: error %i\n", __func__, error);
1057 
1058 	error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
1059 				   0xffff, ccc1);
1060 	if (error)
1061 		dev_err(ddata->dev, "%s: restore error %i\n",
1062 			__func__, error);
1063 
1064 	return error;
1065 }
1066 
1067 #ifdef CONFIG_OF
1068 static const struct of_device_id cpcap_battery_id_table[] = {
1069 	{
1070 		.compatible = "motorola,cpcap-battery",
1071 	},
1072 	{},
1073 };
1074 MODULE_DEVICE_TABLE(of, cpcap_battery_id_table);
1075 #endif
1076 
1077 static const struct power_supply_desc cpcap_charger_battery_desc = {
1078 	.name		= "battery",
1079 	.type		= POWER_SUPPLY_TYPE_BATTERY,
1080 	.properties	= cpcap_battery_props,
1081 	.num_properties	= ARRAY_SIZE(cpcap_battery_props),
1082 	.get_property	= cpcap_battery_get_property,
1083 	.set_property	= cpcap_battery_set_property,
1084 	.property_is_writeable = cpcap_battery_property_is_writeable,
1085 	.external_power_changed = cpcap_battery_external_power_changed,
1086 };
1087 
1088 static int cpcap_battery_probe(struct platform_device *pdev)
1089 {
1090 	struct cpcap_battery_ddata *ddata;
1091 	struct power_supply_config psy_cfg = {};
1092 	int error;
1093 
1094 	ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL);
1095 	if (!ddata)
1096 		return -ENOMEM;
1097 
1098 	cpcap_battery_detect_battery_type(ddata);
1099 
1100 	INIT_LIST_HEAD(&ddata->irq_list);
1101 	ddata->dev = &pdev->dev;
1102 
1103 	ddata->reg = dev_get_regmap(ddata->dev->parent, NULL);
1104 	if (!ddata->reg)
1105 		return -ENODEV;
1106 
1107 	error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
1108 	if (error)
1109 		return error;
1110 
1111 	switch (ddata->vendor) {
1112 	case CPCAP_VENDOR_ST:
1113 		ddata->cc_lsb = 95374;	/* μAms per LSB */
1114 		break;
1115 	case CPCAP_VENDOR_TI:
1116 		ddata->cc_lsb = 91501;	/* μAms per LSB */
1117 		break;
1118 	default:
1119 		return -EINVAL;
1120 	}
1121 	ddata->cc_lsb = (ddata->cc_lsb * ddata->config.cd_factor) / 1000;
1122 
1123 	platform_set_drvdata(pdev, ddata);
1124 
1125 	error = cpcap_battery_init_interrupts(pdev, ddata);
1126 	if (error)
1127 		return error;
1128 
1129 	error = cpcap_battery_init_iio(ddata);
1130 	if (error)
1131 		return error;
1132 
1133 	psy_cfg.of_node = pdev->dev.of_node;
1134 	psy_cfg.drv_data = ddata;
1135 
1136 	ddata->psy = devm_power_supply_register(ddata->dev,
1137 						&cpcap_charger_battery_desc,
1138 						&psy_cfg);
1139 	error = PTR_ERR_OR_ZERO(ddata->psy);
1140 	if (error) {
1141 		dev_err(ddata->dev, "failed to register power supply\n");
1142 		return error;
1143 	}
1144 
1145 	atomic_set(&ddata->active, 1);
1146 
1147 	error = cpcap_battery_calibrate(ddata);
1148 	if (error)
1149 		return error;
1150 
1151 	return 0;
1152 }
1153 
1154 static int cpcap_battery_remove(struct platform_device *pdev)
1155 {
1156 	struct cpcap_battery_ddata *ddata = platform_get_drvdata(pdev);
1157 	int error;
1158 
1159 	atomic_set(&ddata->active, 0);
1160 	error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
1161 				   0xffff, 0);
1162 	if (error)
1163 		dev_err(&pdev->dev, "could not disable: %i\n", error);
1164 
1165 	return 0;
1166 }
1167 
1168 static struct platform_driver cpcap_battery_driver = {
1169 	.driver	= {
1170 		.name		= "cpcap_battery",
1171 		.of_match_table = of_match_ptr(cpcap_battery_id_table),
1172 	},
1173 	.probe	= cpcap_battery_probe,
1174 	.remove = cpcap_battery_remove,
1175 };
1176 module_platform_driver(cpcap_battery_driver);
1177 
1178 MODULE_LICENSE("GPL v2");
1179 MODULE_AUTHOR("Tony Lindgren <tony@atomide.com>");
1180 MODULE_DESCRIPTION("CPCAP PMIC Battery Driver");
1181