1 /* 2 * BQ27xxx battery driver 3 * 4 * Copyright (C) 2008 Rodolfo Giometti <giometti@linux.it> 5 * Copyright (C) 2008 Eurotech S.p.A. <info@eurotech.it> 6 * Copyright (C) 2010-2011 Lars-Peter Clausen <lars@metafoo.de> 7 * Copyright (C) 2011 Pali Rohár <pali.rohar@gmail.com> 8 * Copyright (C) 2017 Liam Breck <kernel@networkimprov.net> 9 * 10 * Based on a previous work by Copyright (C) 2008 Texas Instruments, Inc. 11 * 12 * This package is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 * 16 * THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 18 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. 19 * 20 * Datasheets: 21 * http://www.ti.com/product/bq27000 22 * http://www.ti.com/product/bq27200 23 * http://www.ti.com/product/bq27010 24 * http://www.ti.com/product/bq27210 25 * http://www.ti.com/product/bq27500 26 * http://www.ti.com/product/bq27510-g1 27 * http://www.ti.com/product/bq27510-g2 28 * http://www.ti.com/product/bq27510-g3 29 * http://www.ti.com/product/bq27520-g1 30 * http://www.ti.com/product/bq27520-g2 31 * http://www.ti.com/product/bq27520-g3 32 * http://www.ti.com/product/bq27520-g4 33 * http://www.ti.com/product/bq27530-g1 34 * http://www.ti.com/product/bq27531-g1 35 * http://www.ti.com/product/bq27541-g1 36 * http://www.ti.com/product/bq27542-g1 37 * http://www.ti.com/product/bq27546-g1 38 * http://www.ti.com/product/bq27742-g1 39 * http://www.ti.com/product/bq27545-g1 40 * http://www.ti.com/product/bq27421-g1 41 * http://www.ti.com/product/bq27425-g1 42 * http://www.ti.com/product/bq27426 43 * http://www.ti.com/product/bq27411-g1 44 * http://www.ti.com/product/bq27441-g1 45 * http://www.ti.com/product/bq27621-g1 46 */ 47 48 #include <linux/device.h> 49 #include <linux/module.h> 50 #include <linux/mutex.h> 51 #include <linux/param.h> 52 #include <linux/jiffies.h> 53 #include <linux/workqueue.h> 54 #include <linux/delay.h> 55 #include <linux/platform_device.h> 56 #include <linux/power_supply.h> 57 #include <linux/slab.h> 58 #include <linux/of.h> 59 60 #include <linux/power/bq27xxx_battery.h> 61 62 #define BQ27XXX_MANUFACTURER "Texas Instruments" 63 64 /* BQ27XXX Flags */ 65 #define BQ27XXX_FLAG_DSC BIT(0) 66 #define BQ27XXX_FLAG_SOCF BIT(1) /* State-of-Charge threshold final */ 67 #define BQ27XXX_FLAG_SOC1 BIT(2) /* State-of-Charge threshold 1 */ 68 #define BQ27XXX_FLAG_CFGUP BIT(4) 69 #define BQ27XXX_FLAG_FC BIT(9) 70 #define BQ27XXX_FLAG_OTD BIT(14) 71 #define BQ27XXX_FLAG_OTC BIT(15) 72 #define BQ27XXX_FLAG_UT BIT(14) 73 #define BQ27XXX_FLAG_OT BIT(15) 74 75 /* BQ27000 has different layout for Flags register */ 76 #define BQ27000_FLAG_EDVF BIT(0) /* Final End-of-Discharge-Voltage flag */ 77 #define BQ27000_FLAG_EDV1 BIT(1) /* First End-of-Discharge-Voltage flag */ 78 #define BQ27000_FLAG_CI BIT(4) /* Capacity Inaccurate flag */ 79 #define BQ27000_FLAG_FC BIT(5) 80 #define BQ27000_FLAG_CHGS BIT(7) /* Charge state flag */ 81 82 /* control register params */ 83 #define BQ27XXX_SEALED 0x20 84 #define BQ27XXX_SET_CFGUPDATE 0x13 85 #define BQ27XXX_SOFT_RESET 0x42 86 #define BQ27XXX_RESET 0x41 87 88 #define BQ27XXX_RS (20) /* Resistor sense mOhm */ 89 #define BQ27XXX_POWER_CONSTANT (29200) /* 29.2 µV^2 * 1000 */ 90 #define BQ27XXX_CURRENT_CONSTANT (3570) /* 3.57 µV * 1000 */ 91 92 #define INVALID_REG_ADDR 0xff 93 94 /* 95 * bq27xxx_reg_index - Register names 96 * 97 * These are indexes into a device's register mapping array. 98 */ 99 100 enum bq27xxx_reg_index { 101 BQ27XXX_REG_CTRL = 0, /* Control */ 102 BQ27XXX_REG_TEMP, /* Temperature */ 103 BQ27XXX_REG_INT_TEMP, /* Internal Temperature */ 104 BQ27XXX_REG_VOLT, /* Voltage */ 105 BQ27XXX_REG_AI, /* Average Current */ 106 BQ27XXX_REG_FLAGS, /* Flags */ 107 BQ27XXX_REG_TTE, /* Time-to-Empty */ 108 BQ27XXX_REG_TTF, /* Time-to-Full */ 109 BQ27XXX_REG_TTES, /* Time-to-Empty Standby */ 110 BQ27XXX_REG_TTECP, /* Time-to-Empty at Constant Power */ 111 BQ27XXX_REG_NAC, /* Nominal Available Capacity */ 112 BQ27XXX_REG_FCC, /* Full Charge Capacity */ 113 BQ27XXX_REG_CYCT, /* Cycle Count */ 114 BQ27XXX_REG_AE, /* Available Energy */ 115 BQ27XXX_REG_SOC, /* State-of-Charge */ 116 BQ27XXX_REG_DCAP, /* Design Capacity */ 117 BQ27XXX_REG_AP, /* Average Power */ 118 BQ27XXX_DM_CTRL, /* Block Data Control */ 119 BQ27XXX_DM_CLASS, /* Data Class */ 120 BQ27XXX_DM_BLOCK, /* Data Block */ 121 BQ27XXX_DM_DATA, /* Block Data */ 122 BQ27XXX_DM_CKSUM, /* Block Data Checksum */ 123 BQ27XXX_REG_MAX, /* sentinel */ 124 }; 125 126 #define BQ27XXX_DM_REG_ROWS \ 127 [BQ27XXX_DM_CTRL] = 0x61, \ 128 [BQ27XXX_DM_CLASS] = 0x3e, \ 129 [BQ27XXX_DM_BLOCK] = 0x3f, \ 130 [BQ27XXX_DM_DATA] = 0x40, \ 131 [BQ27XXX_DM_CKSUM] = 0x60 132 133 /* Register mappings */ 134 static u8 135 bq27000_regs[BQ27XXX_REG_MAX] = { 136 [BQ27XXX_REG_CTRL] = 0x00, 137 [BQ27XXX_REG_TEMP] = 0x06, 138 [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR, 139 [BQ27XXX_REG_VOLT] = 0x08, 140 [BQ27XXX_REG_AI] = 0x14, 141 [BQ27XXX_REG_FLAGS] = 0x0a, 142 [BQ27XXX_REG_TTE] = 0x16, 143 [BQ27XXX_REG_TTF] = 0x18, 144 [BQ27XXX_REG_TTES] = 0x1c, 145 [BQ27XXX_REG_TTECP] = 0x26, 146 [BQ27XXX_REG_NAC] = 0x0c, 147 [BQ27XXX_REG_FCC] = 0x12, 148 [BQ27XXX_REG_CYCT] = 0x2a, 149 [BQ27XXX_REG_AE] = 0x22, 150 [BQ27XXX_REG_SOC] = 0x0b, 151 [BQ27XXX_REG_DCAP] = 0x76, 152 [BQ27XXX_REG_AP] = 0x24, 153 [BQ27XXX_DM_CTRL] = INVALID_REG_ADDR, 154 [BQ27XXX_DM_CLASS] = INVALID_REG_ADDR, 155 [BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR, 156 [BQ27XXX_DM_DATA] = INVALID_REG_ADDR, 157 [BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR, 158 }, 159 bq27010_regs[BQ27XXX_REG_MAX] = { 160 [BQ27XXX_REG_CTRL] = 0x00, 161 [BQ27XXX_REG_TEMP] = 0x06, 162 [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR, 163 [BQ27XXX_REG_VOLT] = 0x08, 164 [BQ27XXX_REG_AI] = 0x14, 165 [BQ27XXX_REG_FLAGS] = 0x0a, 166 [BQ27XXX_REG_TTE] = 0x16, 167 [BQ27XXX_REG_TTF] = 0x18, 168 [BQ27XXX_REG_TTES] = 0x1c, 169 [BQ27XXX_REG_TTECP] = 0x26, 170 [BQ27XXX_REG_NAC] = 0x0c, 171 [BQ27XXX_REG_FCC] = 0x12, 172 [BQ27XXX_REG_CYCT] = 0x2a, 173 [BQ27XXX_REG_AE] = INVALID_REG_ADDR, 174 [BQ27XXX_REG_SOC] = 0x0b, 175 [BQ27XXX_REG_DCAP] = 0x76, 176 [BQ27XXX_REG_AP] = INVALID_REG_ADDR, 177 [BQ27XXX_DM_CTRL] = INVALID_REG_ADDR, 178 [BQ27XXX_DM_CLASS] = INVALID_REG_ADDR, 179 [BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR, 180 [BQ27XXX_DM_DATA] = INVALID_REG_ADDR, 181 [BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR, 182 }, 183 bq2750x_regs[BQ27XXX_REG_MAX] = { 184 [BQ27XXX_REG_CTRL] = 0x00, 185 [BQ27XXX_REG_TEMP] = 0x06, 186 [BQ27XXX_REG_INT_TEMP] = 0x28, 187 [BQ27XXX_REG_VOLT] = 0x08, 188 [BQ27XXX_REG_AI] = 0x14, 189 [BQ27XXX_REG_FLAGS] = 0x0a, 190 [BQ27XXX_REG_TTE] = 0x16, 191 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, 192 [BQ27XXX_REG_TTES] = 0x1a, 193 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, 194 [BQ27XXX_REG_NAC] = 0x0c, 195 [BQ27XXX_REG_FCC] = 0x12, 196 [BQ27XXX_REG_CYCT] = 0x2a, 197 [BQ27XXX_REG_AE] = INVALID_REG_ADDR, 198 [BQ27XXX_REG_SOC] = 0x2c, 199 [BQ27XXX_REG_DCAP] = 0x3c, 200 [BQ27XXX_REG_AP] = INVALID_REG_ADDR, 201 BQ27XXX_DM_REG_ROWS, 202 }, 203 #define bq2751x_regs bq27510g3_regs 204 #define bq2752x_regs bq27510g3_regs 205 bq27500_regs[BQ27XXX_REG_MAX] = { 206 [BQ27XXX_REG_CTRL] = 0x00, 207 [BQ27XXX_REG_TEMP] = 0x06, 208 [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR, 209 [BQ27XXX_REG_VOLT] = 0x08, 210 [BQ27XXX_REG_AI] = 0x14, 211 [BQ27XXX_REG_FLAGS] = 0x0a, 212 [BQ27XXX_REG_TTE] = 0x16, 213 [BQ27XXX_REG_TTF] = 0x18, 214 [BQ27XXX_REG_TTES] = 0x1c, 215 [BQ27XXX_REG_TTECP] = 0x26, 216 [BQ27XXX_REG_NAC] = 0x0c, 217 [BQ27XXX_REG_FCC] = 0x12, 218 [BQ27XXX_REG_CYCT] = 0x2a, 219 [BQ27XXX_REG_AE] = 0x22, 220 [BQ27XXX_REG_SOC] = 0x2c, 221 [BQ27XXX_REG_DCAP] = 0x3c, 222 [BQ27XXX_REG_AP] = 0x24, 223 BQ27XXX_DM_REG_ROWS, 224 }, 225 #define bq27510g1_regs bq27500_regs 226 #define bq27510g2_regs bq27500_regs 227 bq27510g3_regs[BQ27XXX_REG_MAX] = { 228 [BQ27XXX_REG_CTRL] = 0x00, 229 [BQ27XXX_REG_TEMP] = 0x06, 230 [BQ27XXX_REG_INT_TEMP] = 0x28, 231 [BQ27XXX_REG_VOLT] = 0x08, 232 [BQ27XXX_REG_AI] = 0x14, 233 [BQ27XXX_REG_FLAGS] = 0x0a, 234 [BQ27XXX_REG_TTE] = 0x16, 235 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, 236 [BQ27XXX_REG_TTES] = 0x1a, 237 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, 238 [BQ27XXX_REG_NAC] = 0x0c, 239 [BQ27XXX_REG_FCC] = 0x12, 240 [BQ27XXX_REG_CYCT] = 0x1e, 241 [BQ27XXX_REG_AE] = INVALID_REG_ADDR, 242 [BQ27XXX_REG_SOC] = 0x20, 243 [BQ27XXX_REG_DCAP] = 0x2e, 244 [BQ27XXX_REG_AP] = INVALID_REG_ADDR, 245 BQ27XXX_DM_REG_ROWS, 246 }, 247 bq27520g1_regs[BQ27XXX_REG_MAX] = { 248 [BQ27XXX_REG_CTRL] = 0x00, 249 [BQ27XXX_REG_TEMP] = 0x06, 250 [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR, 251 [BQ27XXX_REG_VOLT] = 0x08, 252 [BQ27XXX_REG_AI] = 0x14, 253 [BQ27XXX_REG_FLAGS] = 0x0a, 254 [BQ27XXX_REG_TTE] = 0x16, 255 [BQ27XXX_REG_TTF] = 0x18, 256 [BQ27XXX_REG_TTES] = 0x1c, 257 [BQ27XXX_REG_TTECP] = 0x26, 258 [BQ27XXX_REG_NAC] = 0x0c, 259 [BQ27XXX_REG_FCC] = 0x12, 260 [BQ27XXX_REG_CYCT] = INVALID_REG_ADDR, 261 [BQ27XXX_REG_AE] = 0x22, 262 [BQ27XXX_REG_SOC] = 0x2c, 263 [BQ27XXX_REG_DCAP] = 0x3c, 264 [BQ27XXX_REG_AP] = 0x24, 265 BQ27XXX_DM_REG_ROWS, 266 }, 267 bq27520g2_regs[BQ27XXX_REG_MAX] = { 268 [BQ27XXX_REG_CTRL] = 0x00, 269 [BQ27XXX_REG_TEMP] = 0x06, 270 [BQ27XXX_REG_INT_TEMP] = 0x36, 271 [BQ27XXX_REG_VOLT] = 0x08, 272 [BQ27XXX_REG_AI] = 0x14, 273 [BQ27XXX_REG_FLAGS] = 0x0a, 274 [BQ27XXX_REG_TTE] = 0x16, 275 [BQ27XXX_REG_TTF] = 0x18, 276 [BQ27XXX_REG_TTES] = 0x1c, 277 [BQ27XXX_REG_TTECP] = 0x26, 278 [BQ27XXX_REG_NAC] = 0x0c, 279 [BQ27XXX_REG_FCC] = 0x12, 280 [BQ27XXX_REG_CYCT] = 0x2a, 281 [BQ27XXX_REG_AE] = 0x22, 282 [BQ27XXX_REG_SOC] = 0x2c, 283 [BQ27XXX_REG_DCAP] = 0x3c, 284 [BQ27XXX_REG_AP] = 0x24, 285 BQ27XXX_DM_REG_ROWS, 286 }, 287 bq27520g3_regs[BQ27XXX_REG_MAX] = { 288 [BQ27XXX_REG_CTRL] = 0x00, 289 [BQ27XXX_REG_TEMP] = 0x06, 290 [BQ27XXX_REG_INT_TEMP] = 0x36, 291 [BQ27XXX_REG_VOLT] = 0x08, 292 [BQ27XXX_REG_AI] = 0x14, 293 [BQ27XXX_REG_FLAGS] = 0x0a, 294 [BQ27XXX_REG_TTE] = 0x16, 295 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, 296 [BQ27XXX_REG_TTES] = 0x1c, 297 [BQ27XXX_REG_TTECP] = 0x26, 298 [BQ27XXX_REG_NAC] = 0x0c, 299 [BQ27XXX_REG_FCC] = 0x12, 300 [BQ27XXX_REG_CYCT] = 0x2a, 301 [BQ27XXX_REG_AE] = 0x22, 302 [BQ27XXX_REG_SOC] = 0x2c, 303 [BQ27XXX_REG_DCAP] = 0x3c, 304 [BQ27XXX_REG_AP] = 0x24, 305 BQ27XXX_DM_REG_ROWS, 306 }, 307 bq27520g4_regs[BQ27XXX_REG_MAX] = { 308 [BQ27XXX_REG_CTRL] = 0x00, 309 [BQ27XXX_REG_TEMP] = 0x06, 310 [BQ27XXX_REG_INT_TEMP] = 0x28, 311 [BQ27XXX_REG_VOLT] = 0x08, 312 [BQ27XXX_REG_AI] = 0x14, 313 [BQ27XXX_REG_FLAGS] = 0x0a, 314 [BQ27XXX_REG_TTE] = 0x16, 315 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, 316 [BQ27XXX_REG_TTES] = 0x1c, 317 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, 318 [BQ27XXX_REG_NAC] = 0x0c, 319 [BQ27XXX_REG_FCC] = 0x12, 320 [BQ27XXX_REG_CYCT] = 0x1e, 321 [BQ27XXX_REG_AE] = INVALID_REG_ADDR, 322 [BQ27XXX_REG_SOC] = 0x20, 323 [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR, 324 [BQ27XXX_REG_AP] = INVALID_REG_ADDR, 325 BQ27XXX_DM_REG_ROWS, 326 }, 327 bq27521_regs[BQ27XXX_REG_MAX] = { 328 [BQ27XXX_REG_CTRL] = 0x02, 329 [BQ27XXX_REG_TEMP] = 0x0a, 330 [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR, 331 [BQ27XXX_REG_VOLT] = 0x0c, 332 [BQ27XXX_REG_AI] = 0x0e, 333 [BQ27XXX_REG_FLAGS] = 0x08, 334 [BQ27XXX_REG_TTE] = INVALID_REG_ADDR, 335 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, 336 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR, 337 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, 338 [BQ27XXX_REG_NAC] = INVALID_REG_ADDR, 339 [BQ27XXX_REG_FCC] = INVALID_REG_ADDR, 340 [BQ27XXX_REG_CYCT] = INVALID_REG_ADDR, 341 [BQ27XXX_REG_AE] = INVALID_REG_ADDR, 342 [BQ27XXX_REG_SOC] = INVALID_REG_ADDR, 343 [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR, 344 [BQ27XXX_REG_AP] = INVALID_REG_ADDR, 345 [BQ27XXX_DM_CTRL] = INVALID_REG_ADDR, 346 [BQ27XXX_DM_CLASS] = INVALID_REG_ADDR, 347 [BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR, 348 [BQ27XXX_DM_DATA] = INVALID_REG_ADDR, 349 [BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR, 350 }, 351 bq27530_regs[BQ27XXX_REG_MAX] = { 352 [BQ27XXX_REG_CTRL] = 0x00, 353 [BQ27XXX_REG_TEMP] = 0x06, 354 [BQ27XXX_REG_INT_TEMP] = 0x32, 355 [BQ27XXX_REG_VOLT] = 0x08, 356 [BQ27XXX_REG_AI] = 0x14, 357 [BQ27XXX_REG_FLAGS] = 0x0a, 358 [BQ27XXX_REG_TTE] = 0x16, 359 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, 360 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR, 361 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, 362 [BQ27XXX_REG_NAC] = 0x0c, 363 [BQ27XXX_REG_FCC] = 0x12, 364 [BQ27XXX_REG_CYCT] = 0x2a, 365 [BQ27XXX_REG_AE] = INVALID_REG_ADDR, 366 [BQ27XXX_REG_SOC] = 0x2c, 367 [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR, 368 [BQ27XXX_REG_AP] = 0x24, 369 BQ27XXX_DM_REG_ROWS, 370 }, 371 #define bq27531_regs bq27530_regs 372 bq27541_regs[BQ27XXX_REG_MAX] = { 373 [BQ27XXX_REG_CTRL] = 0x00, 374 [BQ27XXX_REG_TEMP] = 0x06, 375 [BQ27XXX_REG_INT_TEMP] = 0x28, 376 [BQ27XXX_REG_VOLT] = 0x08, 377 [BQ27XXX_REG_AI] = 0x14, 378 [BQ27XXX_REG_FLAGS] = 0x0a, 379 [BQ27XXX_REG_TTE] = 0x16, 380 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, 381 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR, 382 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, 383 [BQ27XXX_REG_NAC] = 0x0c, 384 [BQ27XXX_REG_FCC] = 0x12, 385 [BQ27XXX_REG_CYCT] = 0x2a, 386 [BQ27XXX_REG_AE] = INVALID_REG_ADDR, 387 [BQ27XXX_REG_SOC] = 0x2c, 388 [BQ27XXX_REG_DCAP] = 0x3c, 389 [BQ27XXX_REG_AP] = 0x24, 390 BQ27XXX_DM_REG_ROWS, 391 }, 392 #define bq27542_regs bq27541_regs 393 #define bq27546_regs bq27541_regs 394 #define bq27742_regs bq27541_regs 395 bq27545_regs[BQ27XXX_REG_MAX] = { 396 [BQ27XXX_REG_CTRL] = 0x00, 397 [BQ27XXX_REG_TEMP] = 0x06, 398 [BQ27XXX_REG_INT_TEMP] = 0x28, 399 [BQ27XXX_REG_VOLT] = 0x08, 400 [BQ27XXX_REG_AI] = 0x14, 401 [BQ27XXX_REG_FLAGS] = 0x0a, 402 [BQ27XXX_REG_TTE] = 0x16, 403 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, 404 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR, 405 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, 406 [BQ27XXX_REG_NAC] = 0x0c, 407 [BQ27XXX_REG_FCC] = 0x12, 408 [BQ27XXX_REG_CYCT] = 0x2a, 409 [BQ27XXX_REG_AE] = INVALID_REG_ADDR, 410 [BQ27XXX_REG_SOC] = 0x2c, 411 [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR, 412 [BQ27XXX_REG_AP] = 0x24, 413 BQ27XXX_DM_REG_ROWS, 414 }, 415 bq27421_regs[BQ27XXX_REG_MAX] = { 416 [BQ27XXX_REG_CTRL] = 0x00, 417 [BQ27XXX_REG_TEMP] = 0x02, 418 [BQ27XXX_REG_INT_TEMP] = 0x1e, 419 [BQ27XXX_REG_VOLT] = 0x04, 420 [BQ27XXX_REG_AI] = 0x10, 421 [BQ27XXX_REG_FLAGS] = 0x06, 422 [BQ27XXX_REG_TTE] = INVALID_REG_ADDR, 423 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, 424 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR, 425 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, 426 [BQ27XXX_REG_NAC] = 0x08, 427 [BQ27XXX_REG_FCC] = 0x0e, 428 [BQ27XXX_REG_CYCT] = INVALID_REG_ADDR, 429 [BQ27XXX_REG_AE] = INVALID_REG_ADDR, 430 [BQ27XXX_REG_SOC] = 0x1c, 431 [BQ27XXX_REG_DCAP] = 0x3c, 432 [BQ27XXX_REG_AP] = 0x18, 433 BQ27XXX_DM_REG_ROWS, 434 }; 435 #define bq27411_regs bq27421_regs 436 #define bq27425_regs bq27421_regs 437 #define bq27426_regs bq27421_regs 438 #define bq27441_regs bq27421_regs 439 #define bq27621_regs bq27421_regs 440 441 static enum power_supply_property bq27000_props[] = { 442 POWER_SUPPLY_PROP_STATUS, 443 POWER_SUPPLY_PROP_PRESENT, 444 POWER_SUPPLY_PROP_VOLTAGE_NOW, 445 POWER_SUPPLY_PROP_CURRENT_NOW, 446 POWER_SUPPLY_PROP_CAPACITY, 447 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 448 POWER_SUPPLY_PROP_TEMP, 449 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 450 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 451 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, 452 POWER_SUPPLY_PROP_TECHNOLOGY, 453 POWER_SUPPLY_PROP_CHARGE_FULL, 454 POWER_SUPPLY_PROP_CHARGE_NOW, 455 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 456 POWER_SUPPLY_PROP_CYCLE_COUNT, 457 POWER_SUPPLY_PROP_ENERGY_NOW, 458 POWER_SUPPLY_PROP_POWER_AVG, 459 POWER_SUPPLY_PROP_HEALTH, 460 POWER_SUPPLY_PROP_MANUFACTURER, 461 }; 462 463 static enum power_supply_property bq27010_props[] = { 464 POWER_SUPPLY_PROP_STATUS, 465 POWER_SUPPLY_PROP_PRESENT, 466 POWER_SUPPLY_PROP_VOLTAGE_NOW, 467 POWER_SUPPLY_PROP_CURRENT_NOW, 468 POWER_SUPPLY_PROP_CAPACITY, 469 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 470 POWER_SUPPLY_PROP_TEMP, 471 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 472 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 473 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, 474 POWER_SUPPLY_PROP_TECHNOLOGY, 475 POWER_SUPPLY_PROP_CHARGE_FULL, 476 POWER_SUPPLY_PROP_CHARGE_NOW, 477 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 478 POWER_SUPPLY_PROP_CYCLE_COUNT, 479 POWER_SUPPLY_PROP_HEALTH, 480 POWER_SUPPLY_PROP_MANUFACTURER, 481 }; 482 483 #define bq2750x_props bq27510g3_props 484 #define bq2751x_props bq27510g3_props 485 #define bq2752x_props bq27510g3_props 486 487 static enum power_supply_property bq27500_props[] = { 488 POWER_SUPPLY_PROP_STATUS, 489 POWER_SUPPLY_PROP_PRESENT, 490 POWER_SUPPLY_PROP_VOLTAGE_NOW, 491 POWER_SUPPLY_PROP_CURRENT_NOW, 492 POWER_SUPPLY_PROP_CAPACITY, 493 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 494 POWER_SUPPLY_PROP_TEMP, 495 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 496 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, 497 POWER_SUPPLY_PROP_TECHNOLOGY, 498 POWER_SUPPLY_PROP_CHARGE_FULL, 499 POWER_SUPPLY_PROP_CHARGE_NOW, 500 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 501 POWER_SUPPLY_PROP_CYCLE_COUNT, 502 POWER_SUPPLY_PROP_ENERGY_NOW, 503 POWER_SUPPLY_PROP_POWER_AVG, 504 POWER_SUPPLY_PROP_HEALTH, 505 POWER_SUPPLY_PROP_MANUFACTURER, 506 }; 507 #define bq27510g1_props bq27500_props 508 #define bq27510g2_props bq27500_props 509 510 static enum power_supply_property bq27510g3_props[] = { 511 POWER_SUPPLY_PROP_STATUS, 512 POWER_SUPPLY_PROP_PRESENT, 513 POWER_SUPPLY_PROP_VOLTAGE_NOW, 514 POWER_SUPPLY_PROP_CURRENT_NOW, 515 POWER_SUPPLY_PROP_CAPACITY, 516 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 517 POWER_SUPPLY_PROP_TEMP, 518 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 519 POWER_SUPPLY_PROP_TECHNOLOGY, 520 POWER_SUPPLY_PROP_CHARGE_FULL, 521 POWER_SUPPLY_PROP_CHARGE_NOW, 522 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 523 POWER_SUPPLY_PROP_CYCLE_COUNT, 524 POWER_SUPPLY_PROP_HEALTH, 525 POWER_SUPPLY_PROP_MANUFACTURER, 526 }; 527 528 static enum power_supply_property bq27520g1_props[] = { 529 POWER_SUPPLY_PROP_STATUS, 530 POWER_SUPPLY_PROP_PRESENT, 531 POWER_SUPPLY_PROP_VOLTAGE_NOW, 532 POWER_SUPPLY_PROP_CURRENT_NOW, 533 POWER_SUPPLY_PROP_CAPACITY, 534 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 535 POWER_SUPPLY_PROP_TEMP, 536 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 537 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, 538 POWER_SUPPLY_PROP_TECHNOLOGY, 539 POWER_SUPPLY_PROP_CHARGE_FULL, 540 POWER_SUPPLY_PROP_CHARGE_NOW, 541 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 542 POWER_SUPPLY_PROP_ENERGY_NOW, 543 POWER_SUPPLY_PROP_POWER_AVG, 544 POWER_SUPPLY_PROP_HEALTH, 545 POWER_SUPPLY_PROP_MANUFACTURER, 546 }; 547 548 #define bq27520g2_props bq27500_props 549 550 static enum power_supply_property bq27520g3_props[] = { 551 POWER_SUPPLY_PROP_STATUS, 552 POWER_SUPPLY_PROP_PRESENT, 553 POWER_SUPPLY_PROP_VOLTAGE_NOW, 554 POWER_SUPPLY_PROP_CURRENT_NOW, 555 POWER_SUPPLY_PROP_CAPACITY, 556 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 557 POWER_SUPPLY_PROP_TEMP, 558 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 559 POWER_SUPPLY_PROP_TECHNOLOGY, 560 POWER_SUPPLY_PROP_CHARGE_FULL, 561 POWER_SUPPLY_PROP_CHARGE_NOW, 562 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 563 POWER_SUPPLY_PROP_CYCLE_COUNT, 564 POWER_SUPPLY_PROP_ENERGY_NOW, 565 POWER_SUPPLY_PROP_POWER_AVG, 566 POWER_SUPPLY_PROP_HEALTH, 567 POWER_SUPPLY_PROP_MANUFACTURER, 568 }; 569 570 static enum power_supply_property bq27520g4_props[] = { 571 POWER_SUPPLY_PROP_STATUS, 572 POWER_SUPPLY_PROP_PRESENT, 573 POWER_SUPPLY_PROP_VOLTAGE_NOW, 574 POWER_SUPPLY_PROP_CURRENT_NOW, 575 POWER_SUPPLY_PROP_CAPACITY, 576 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 577 POWER_SUPPLY_PROP_TEMP, 578 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 579 POWER_SUPPLY_PROP_TECHNOLOGY, 580 POWER_SUPPLY_PROP_CHARGE_FULL, 581 POWER_SUPPLY_PROP_CHARGE_NOW, 582 POWER_SUPPLY_PROP_CYCLE_COUNT, 583 POWER_SUPPLY_PROP_HEALTH, 584 POWER_SUPPLY_PROP_MANUFACTURER, 585 }; 586 587 static enum power_supply_property bq27521_props[] = { 588 POWER_SUPPLY_PROP_STATUS, 589 POWER_SUPPLY_PROP_PRESENT, 590 POWER_SUPPLY_PROP_VOLTAGE_NOW, 591 POWER_SUPPLY_PROP_CURRENT_NOW, 592 POWER_SUPPLY_PROP_TEMP, 593 POWER_SUPPLY_PROP_TECHNOLOGY, 594 }; 595 596 static enum power_supply_property bq27530_props[] = { 597 POWER_SUPPLY_PROP_STATUS, 598 POWER_SUPPLY_PROP_PRESENT, 599 POWER_SUPPLY_PROP_VOLTAGE_NOW, 600 POWER_SUPPLY_PROP_CURRENT_NOW, 601 POWER_SUPPLY_PROP_CAPACITY, 602 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 603 POWER_SUPPLY_PROP_TEMP, 604 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 605 POWER_SUPPLY_PROP_TECHNOLOGY, 606 POWER_SUPPLY_PROP_CHARGE_FULL, 607 POWER_SUPPLY_PROP_CHARGE_NOW, 608 POWER_SUPPLY_PROP_POWER_AVG, 609 POWER_SUPPLY_PROP_HEALTH, 610 POWER_SUPPLY_PROP_CYCLE_COUNT, 611 POWER_SUPPLY_PROP_MANUFACTURER, 612 }; 613 #define bq27531_props bq27530_props 614 615 static enum power_supply_property bq27541_props[] = { 616 POWER_SUPPLY_PROP_STATUS, 617 POWER_SUPPLY_PROP_PRESENT, 618 POWER_SUPPLY_PROP_VOLTAGE_NOW, 619 POWER_SUPPLY_PROP_CURRENT_NOW, 620 POWER_SUPPLY_PROP_CAPACITY, 621 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 622 POWER_SUPPLY_PROP_TEMP, 623 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 624 POWER_SUPPLY_PROP_TECHNOLOGY, 625 POWER_SUPPLY_PROP_CHARGE_FULL, 626 POWER_SUPPLY_PROP_CHARGE_NOW, 627 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 628 POWER_SUPPLY_PROP_CYCLE_COUNT, 629 POWER_SUPPLY_PROP_POWER_AVG, 630 POWER_SUPPLY_PROP_HEALTH, 631 POWER_SUPPLY_PROP_MANUFACTURER, 632 }; 633 #define bq27542_props bq27541_props 634 #define bq27546_props bq27541_props 635 #define bq27742_props bq27541_props 636 637 static enum power_supply_property bq27545_props[] = { 638 POWER_SUPPLY_PROP_STATUS, 639 POWER_SUPPLY_PROP_PRESENT, 640 POWER_SUPPLY_PROP_VOLTAGE_NOW, 641 POWER_SUPPLY_PROP_CURRENT_NOW, 642 POWER_SUPPLY_PROP_CAPACITY, 643 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 644 POWER_SUPPLY_PROP_TEMP, 645 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 646 POWER_SUPPLY_PROP_TECHNOLOGY, 647 POWER_SUPPLY_PROP_CHARGE_FULL, 648 POWER_SUPPLY_PROP_CHARGE_NOW, 649 POWER_SUPPLY_PROP_HEALTH, 650 POWER_SUPPLY_PROP_CYCLE_COUNT, 651 POWER_SUPPLY_PROP_POWER_AVG, 652 POWER_SUPPLY_PROP_MANUFACTURER, 653 }; 654 655 static enum power_supply_property bq27421_props[] = { 656 POWER_SUPPLY_PROP_STATUS, 657 POWER_SUPPLY_PROP_PRESENT, 658 POWER_SUPPLY_PROP_VOLTAGE_NOW, 659 POWER_SUPPLY_PROP_CURRENT_NOW, 660 POWER_SUPPLY_PROP_CAPACITY, 661 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 662 POWER_SUPPLY_PROP_TEMP, 663 POWER_SUPPLY_PROP_TECHNOLOGY, 664 POWER_SUPPLY_PROP_CHARGE_FULL, 665 POWER_SUPPLY_PROP_CHARGE_NOW, 666 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 667 POWER_SUPPLY_PROP_MANUFACTURER, 668 }; 669 #define bq27411_props bq27421_props 670 #define bq27425_props bq27421_props 671 #define bq27426_props bq27421_props 672 #define bq27441_props bq27421_props 673 #define bq27621_props bq27421_props 674 675 struct bq27xxx_dm_reg { 676 u8 subclass_id; 677 u8 offset; 678 u8 bytes; 679 u16 min, max; 680 }; 681 682 enum bq27xxx_dm_reg_id { 683 BQ27XXX_DM_DESIGN_CAPACITY = 0, 684 BQ27XXX_DM_DESIGN_ENERGY, 685 BQ27XXX_DM_TERMINATE_VOLTAGE, 686 }; 687 688 #define bq27000_dm_regs 0 689 #define bq27010_dm_regs 0 690 #define bq2750x_dm_regs 0 691 #define bq2751x_dm_regs 0 692 #define bq2752x_dm_regs 0 693 694 #if 0 /* not yet tested */ 695 static struct bq27xxx_dm_reg bq27500_dm_regs[] = { 696 [BQ27XXX_DM_DESIGN_CAPACITY] = { 48, 10, 2, 0, 65535 }, 697 [BQ27XXX_DM_DESIGN_ENERGY] = { }, /* missing on chip */ 698 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 48, 2, 1000, 32767 }, 699 }; 700 #else 701 #define bq27500_dm_regs 0 702 #endif 703 704 /* todo create data memory definitions from datasheets and test on chips */ 705 #define bq27510g1_dm_regs 0 706 #define bq27510g2_dm_regs 0 707 #define bq27510g3_dm_regs 0 708 #define bq27520g1_dm_regs 0 709 #define bq27520g2_dm_regs 0 710 #define bq27520g3_dm_regs 0 711 #define bq27520g4_dm_regs 0 712 #define bq27521_dm_regs 0 713 #define bq27530_dm_regs 0 714 #define bq27531_dm_regs 0 715 #define bq27541_dm_regs 0 716 #define bq27542_dm_regs 0 717 #define bq27546_dm_regs 0 718 #define bq27742_dm_regs 0 719 720 #if 0 /* not yet tested */ 721 static struct bq27xxx_dm_reg bq27545_dm_regs[] = { 722 [BQ27XXX_DM_DESIGN_CAPACITY] = { 48, 23, 2, 0, 32767 }, 723 [BQ27XXX_DM_DESIGN_ENERGY] = { 48, 25, 2, 0, 32767 }, 724 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 67, 2, 2800, 3700 }, 725 }; 726 #else 727 #define bq27545_dm_regs 0 728 #endif 729 730 static struct bq27xxx_dm_reg bq27411_dm_regs[] = { 731 [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 10, 2, 0, 32767 }, 732 [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 12, 2, 0, 32767 }, 733 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2800, 3700 }, 734 }; 735 736 static struct bq27xxx_dm_reg bq27421_dm_regs[] = { 737 [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 10, 2, 0, 8000 }, 738 [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 12, 2, 0, 32767 }, 739 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2500, 3700 }, 740 }; 741 742 static struct bq27xxx_dm_reg bq27425_dm_regs[] = { 743 [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 12, 2, 0, 32767 }, 744 [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 14, 2, 0, 32767 }, 745 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 18, 2, 2800, 3700 }, 746 }; 747 748 static struct bq27xxx_dm_reg bq27426_dm_regs[] = { 749 [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 6, 2, 0, 8000 }, 750 [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 8, 2, 0, 32767 }, 751 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 10, 2, 2500, 3700 }, 752 }; 753 754 #if 0 /* not yet tested */ 755 #define bq27441_dm_regs bq27421_dm_regs 756 #else 757 #define bq27441_dm_regs 0 758 #endif 759 760 #if 0 /* not yet tested */ 761 static struct bq27xxx_dm_reg bq27621_dm_regs[] = { 762 [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 3, 2, 0, 8000 }, 763 [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 5, 2, 0, 32767 }, 764 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 9, 2, 2500, 3700 }, 765 }; 766 #else 767 #define bq27621_dm_regs 0 768 #endif 769 770 #define BQ27XXX_O_ZERO 0x00000001 771 #define BQ27XXX_O_OTDC 0x00000002 /* has OTC/OTD overtemperature flags */ 772 #define BQ27XXX_O_UTOT 0x00000004 /* has OT overtemperature flag */ 773 #define BQ27XXX_O_CFGUP 0x00000008 774 #define BQ27XXX_O_RAM 0x00000010 775 776 #define BQ27XXX_DATA(ref, key, opt) { \ 777 .opts = (opt), \ 778 .unseal_key = key, \ 779 .regs = ref##_regs, \ 780 .dm_regs = ref##_dm_regs, \ 781 .props = ref##_props, \ 782 .props_size = ARRAY_SIZE(ref##_props) } 783 784 static struct { 785 u32 opts; 786 u32 unseal_key; 787 u8 *regs; 788 struct bq27xxx_dm_reg *dm_regs; 789 enum power_supply_property *props; 790 size_t props_size; 791 } bq27xxx_chip_data[] = { 792 [BQ27000] = BQ27XXX_DATA(bq27000, 0 , BQ27XXX_O_ZERO), 793 [BQ27010] = BQ27XXX_DATA(bq27010, 0 , BQ27XXX_O_ZERO), 794 [BQ2750X] = BQ27XXX_DATA(bq2750x, 0 , BQ27XXX_O_OTDC), 795 [BQ2751X] = BQ27XXX_DATA(bq2751x, 0 , BQ27XXX_O_OTDC), 796 [BQ2752X] = BQ27XXX_DATA(bq2752x, 0 , BQ27XXX_O_OTDC), 797 [BQ27500] = BQ27XXX_DATA(bq27500, 0x04143672, BQ27XXX_O_OTDC), 798 [BQ27510G1] = BQ27XXX_DATA(bq27510g1, 0 , BQ27XXX_O_OTDC), 799 [BQ27510G2] = BQ27XXX_DATA(bq27510g2, 0 , BQ27XXX_O_OTDC), 800 [BQ27510G3] = BQ27XXX_DATA(bq27510g3, 0 , BQ27XXX_O_OTDC), 801 [BQ27520G1] = BQ27XXX_DATA(bq27520g1, 0 , BQ27XXX_O_OTDC), 802 [BQ27520G2] = BQ27XXX_DATA(bq27520g2, 0 , BQ27XXX_O_OTDC), 803 [BQ27520G3] = BQ27XXX_DATA(bq27520g3, 0 , BQ27XXX_O_OTDC), 804 [BQ27520G4] = BQ27XXX_DATA(bq27520g4, 0 , BQ27XXX_O_OTDC), 805 [BQ27521] = BQ27XXX_DATA(bq27521, 0 , 0), 806 [BQ27530] = BQ27XXX_DATA(bq27530, 0 , BQ27XXX_O_UTOT), 807 [BQ27531] = BQ27XXX_DATA(bq27531, 0 , BQ27XXX_O_UTOT), 808 [BQ27541] = BQ27XXX_DATA(bq27541, 0 , BQ27XXX_O_OTDC), 809 [BQ27542] = BQ27XXX_DATA(bq27542, 0 , BQ27XXX_O_OTDC), 810 [BQ27546] = BQ27XXX_DATA(bq27546, 0 , BQ27XXX_O_OTDC), 811 [BQ27742] = BQ27XXX_DATA(bq27742, 0 , BQ27XXX_O_OTDC), 812 [BQ27545] = BQ27XXX_DATA(bq27545, 0x04143672, BQ27XXX_O_OTDC), 813 [BQ27411] = BQ27XXX_DATA(bq27411, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM), 814 [BQ27421] = BQ27XXX_DATA(bq27421, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM), 815 [BQ27425] = BQ27XXX_DATA(bq27425, 0x04143672, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP), 816 [BQ27426] = BQ27XXX_DATA(bq27426, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM), 817 [BQ27441] = BQ27XXX_DATA(bq27441, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM), 818 [BQ27621] = BQ27XXX_DATA(bq27621, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM), 819 }; 820 821 static DEFINE_MUTEX(bq27xxx_list_lock); 822 static LIST_HEAD(bq27xxx_battery_devices); 823 824 #define BQ27XXX_MSLEEP(i) usleep_range((i)*1000, (i)*1000+500) 825 826 #define BQ27XXX_DM_SZ 32 827 828 /** 829 * struct bq27xxx_dm_buf - chip data memory buffer 830 * @class: data memory subclass_id 831 * @block: data memory block number 832 * @data: data from/for the block 833 * @has_data: true if data has been filled by read 834 * @dirty: true if data has changed since last read/write 835 * 836 * Encapsulates info required to manage chip data memory blocks. 837 */ 838 struct bq27xxx_dm_buf { 839 u8 class; 840 u8 block; 841 u8 data[BQ27XXX_DM_SZ]; 842 bool has_data, dirty; 843 }; 844 845 #define BQ27XXX_DM_BUF(di, i) { \ 846 .class = (di)->dm_regs[i].subclass_id, \ 847 .block = (di)->dm_regs[i].offset / BQ27XXX_DM_SZ, \ 848 } 849 850 static inline u16 *bq27xxx_dm_reg_ptr(struct bq27xxx_dm_buf *buf, 851 struct bq27xxx_dm_reg *reg) 852 { 853 if (buf->class == reg->subclass_id && 854 buf->block == reg->offset / BQ27XXX_DM_SZ) 855 return (u16 *) (buf->data + reg->offset % BQ27XXX_DM_SZ); 856 857 return NULL; 858 } 859 860 static const char * const bq27xxx_dm_reg_name[] = { 861 [BQ27XXX_DM_DESIGN_CAPACITY] = "design-capacity", 862 [BQ27XXX_DM_DESIGN_ENERGY] = "design-energy", 863 [BQ27XXX_DM_TERMINATE_VOLTAGE] = "terminate-voltage", 864 }; 865 866 867 static bool bq27xxx_dt_to_nvm = true; 868 module_param_named(dt_monitored_battery_updates_nvm, bq27xxx_dt_to_nvm, bool, 0444); 869 MODULE_PARM_DESC(dt_monitored_battery_updates_nvm, 870 "Devicetree monitored-battery config updates data memory on NVM/flash chips.\n" 871 "Users must set this =0 when installing a different type of battery!\n" 872 "Default is =1." 873 #ifndef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM 874 "\nSetting this affects future kernel updates, not the current configuration." 875 #endif 876 ); 877 878 static int poll_interval_param_set(const char *val, const struct kernel_param *kp) 879 { 880 struct bq27xxx_device_info *di; 881 unsigned int prev_val = *(unsigned int *) kp->arg; 882 int ret; 883 884 ret = param_set_uint(val, kp); 885 if (ret < 0 || prev_val == *(unsigned int *) kp->arg) 886 return ret; 887 888 mutex_lock(&bq27xxx_list_lock); 889 list_for_each_entry(di, &bq27xxx_battery_devices, list) { 890 cancel_delayed_work_sync(&di->work); 891 schedule_delayed_work(&di->work, 0); 892 } 893 mutex_unlock(&bq27xxx_list_lock); 894 895 return ret; 896 } 897 898 static const struct kernel_param_ops param_ops_poll_interval = { 899 .get = param_get_uint, 900 .set = poll_interval_param_set, 901 }; 902 903 static unsigned int poll_interval = 360; 904 module_param_cb(poll_interval, ¶m_ops_poll_interval, &poll_interval, 0644); 905 MODULE_PARM_DESC(poll_interval, 906 "battery poll interval in seconds - 0 disables polling"); 907 908 /* 909 * Common code for BQ27xxx devices 910 */ 911 912 static inline int bq27xxx_read(struct bq27xxx_device_info *di, int reg_index, 913 bool single) 914 { 915 int ret; 916 917 if (!di || di->regs[reg_index] == INVALID_REG_ADDR) 918 return -EINVAL; 919 920 ret = di->bus.read(di, di->regs[reg_index], single); 921 if (ret < 0) 922 dev_dbg(di->dev, "failed to read register 0x%02x (index %d)\n", 923 di->regs[reg_index], reg_index); 924 925 return ret; 926 } 927 928 static inline int bq27xxx_write(struct bq27xxx_device_info *di, int reg_index, 929 u16 value, bool single) 930 { 931 int ret; 932 933 if (!di || di->regs[reg_index] == INVALID_REG_ADDR) 934 return -EINVAL; 935 936 if (!di->bus.write) 937 return -EPERM; 938 939 ret = di->bus.write(di, di->regs[reg_index], value, single); 940 if (ret < 0) 941 dev_dbg(di->dev, "failed to write register 0x%02x (index %d)\n", 942 di->regs[reg_index], reg_index); 943 944 return ret; 945 } 946 947 static inline int bq27xxx_read_block(struct bq27xxx_device_info *di, int reg_index, 948 u8 *data, int len) 949 { 950 int ret; 951 952 if (!di || di->regs[reg_index] == INVALID_REG_ADDR) 953 return -EINVAL; 954 955 if (!di->bus.read_bulk) 956 return -EPERM; 957 958 ret = di->bus.read_bulk(di, di->regs[reg_index], data, len); 959 if (ret < 0) 960 dev_dbg(di->dev, "failed to read_bulk register 0x%02x (index %d)\n", 961 di->regs[reg_index], reg_index); 962 963 return ret; 964 } 965 966 static inline int bq27xxx_write_block(struct bq27xxx_device_info *di, int reg_index, 967 u8 *data, int len) 968 { 969 int ret; 970 971 if (!di || di->regs[reg_index] == INVALID_REG_ADDR) 972 return -EINVAL; 973 974 if (!di->bus.write_bulk) 975 return -EPERM; 976 977 ret = di->bus.write_bulk(di, di->regs[reg_index], data, len); 978 if (ret < 0) 979 dev_dbg(di->dev, "failed to write_bulk register 0x%02x (index %d)\n", 980 di->regs[reg_index], reg_index); 981 982 return ret; 983 } 984 985 static int bq27xxx_battery_seal(struct bq27xxx_device_info *di) 986 { 987 int ret; 988 989 ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_SEALED, false); 990 if (ret < 0) { 991 dev_err(di->dev, "bus error on seal: %d\n", ret); 992 return ret; 993 } 994 995 return 0; 996 } 997 998 static int bq27xxx_battery_unseal(struct bq27xxx_device_info *di) 999 { 1000 int ret; 1001 1002 if (di->unseal_key == 0) { 1003 dev_err(di->dev, "unseal failed due to missing key\n"); 1004 return -EINVAL; 1005 } 1006 1007 ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)(di->unseal_key >> 16), false); 1008 if (ret < 0) 1009 goto out; 1010 1011 ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)di->unseal_key, false); 1012 if (ret < 0) 1013 goto out; 1014 1015 return 0; 1016 1017 out: 1018 dev_err(di->dev, "bus error on unseal: %d\n", ret); 1019 return ret; 1020 } 1021 1022 static u8 bq27xxx_battery_checksum_dm_block(struct bq27xxx_dm_buf *buf) 1023 { 1024 u16 sum = 0; 1025 int i; 1026 1027 for (i = 0; i < BQ27XXX_DM_SZ; i++) 1028 sum += buf->data[i]; 1029 sum &= 0xff; 1030 1031 return 0xff - sum; 1032 } 1033 1034 static int bq27xxx_battery_read_dm_block(struct bq27xxx_device_info *di, 1035 struct bq27xxx_dm_buf *buf) 1036 { 1037 int ret; 1038 1039 buf->has_data = false; 1040 1041 ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true); 1042 if (ret < 0) 1043 goto out; 1044 1045 ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true); 1046 if (ret < 0) 1047 goto out; 1048 1049 BQ27XXX_MSLEEP(1); 1050 1051 ret = bq27xxx_read_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ); 1052 if (ret < 0) 1053 goto out; 1054 1055 ret = bq27xxx_read(di, BQ27XXX_DM_CKSUM, true); 1056 if (ret < 0) 1057 goto out; 1058 1059 if ((u8)ret != bq27xxx_battery_checksum_dm_block(buf)) { 1060 ret = -EINVAL; 1061 goto out; 1062 } 1063 1064 buf->has_data = true; 1065 buf->dirty = false; 1066 1067 return 0; 1068 1069 out: 1070 dev_err(di->dev, "bus error reading chip memory: %d\n", ret); 1071 return ret; 1072 } 1073 1074 static void bq27xxx_battery_update_dm_block(struct bq27xxx_device_info *di, 1075 struct bq27xxx_dm_buf *buf, 1076 enum bq27xxx_dm_reg_id reg_id, 1077 unsigned int val) 1078 { 1079 struct bq27xxx_dm_reg *reg = &di->dm_regs[reg_id]; 1080 const char *str = bq27xxx_dm_reg_name[reg_id]; 1081 u16 *prev = bq27xxx_dm_reg_ptr(buf, reg); 1082 1083 if (prev == NULL) { 1084 dev_warn(di->dev, "buffer does not match %s dm spec\n", str); 1085 return; 1086 } 1087 1088 if (reg->bytes != 2) { 1089 dev_warn(di->dev, "%s dm spec has unsupported byte size\n", str); 1090 return; 1091 } 1092 1093 if (!buf->has_data) 1094 return; 1095 1096 if (be16_to_cpup(prev) == val) { 1097 dev_info(di->dev, "%s has %u\n", str, val); 1098 return; 1099 } 1100 1101 #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM 1102 if (!(di->opts & BQ27XXX_O_RAM) && !bq27xxx_dt_to_nvm) { 1103 #else 1104 if (!(di->opts & BQ27XXX_O_RAM)) { 1105 #endif 1106 /* devicetree and NVM differ; defer to NVM */ 1107 dev_warn(di->dev, "%s has %u; update to %u disallowed " 1108 #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM 1109 "by dt_monitored_battery_updates_nvm=0" 1110 #else 1111 "for flash/NVM data memory" 1112 #endif 1113 "\n", str, be16_to_cpup(prev), val); 1114 return; 1115 } 1116 1117 dev_info(di->dev, "update %s to %u\n", str, val); 1118 1119 *prev = cpu_to_be16(val); 1120 buf->dirty = true; 1121 } 1122 1123 static int bq27xxx_battery_cfgupdate_priv(struct bq27xxx_device_info *di, bool active) 1124 { 1125 const int limit = 100; 1126 u16 cmd = active ? BQ27XXX_SET_CFGUPDATE : BQ27XXX_SOFT_RESET; 1127 int ret, try = limit; 1128 1129 ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, cmd, false); 1130 if (ret < 0) 1131 return ret; 1132 1133 do { 1134 BQ27XXX_MSLEEP(25); 1135 ret = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false); 1136 if (ret < 0) 1137 return ret; 1138 } while (!!(ret & BQ27XXX_FLAG_CFGUP) != active && --try); 1139 1140 if (!try && di->chip != BQ27425) { // 425 has a bug 1141 dev_err(di->dev, "timed out waiting for cfgupdate flag %d\n", active); 1142 return -EINVAL; 1143 } 1144 1145 if (limit - try > 3) 1146 dev_warn(di->dev, "cfgupdate %d, retries %d\n", active, limit - try); 1147 1148 return 0; 1149 } 1150 1151 static inline int bq27xxx_battery_set_cfgupdate(struct bq27xxx_device_info *di) 1152 { 1153 int ret = bq27xxx_battery_cfgupdate_priv(di, true); 1154 if (ret < 0 && ret != -EINVAL) 1155 dev_err(di->dev, "bus error on set_cfgupdate: %d\n", ret); 1156 1157 return ret; 1158 } 1159 1160 static inline int bq27xxx_battery_soft_reset(struct bq27xxx_device_info *di) 1161 { 1162 int ret = bq27xxx_battery_cfgupdate_priv(di, false); 1163 if (ret < 0 && ret != -EINVAL) 1164 dev_err(di->dev, "bus error on soft_reset: %d\n", ret); 1165 1166 return ret; 1167 } 1168 1169 static int bq27xxx_battery_write_dm_block(struct bq27xxx_device_info *di, 1170 struct bq27xxx_dm_buf *buf) 1171 { 1172 bool cfgup = di->opts & BQ27XXX_O_CFGUP; 1173 int ret; 1174 1175 if (!buf->dirty) 1176 return 0; 1177 1178 if (cfgup) { 1179 ret = bq27xxx_battery_set_cfgupdate(di); 1180 if (ret < 0) 1181 return ret; 1182 } 1183 1184 ret = bq27xxx_write(di, BQ27XXX_DM_CTRL, 0, true); 1185 if (ret < 0) 1186 goto out; 1187 1188 ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true); 1189 if (ret < 0) 1190 goto out; 1191 1192 ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true); 1193 if (ret < 0) 1194 goto out; 1195 1196 BQ27XXX_MSLEEP(1); 1197 1198 ret = bq27xxx_write_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ); 1199 if (ret < 0) 1200 goto out; 1201 1202 ret = bq27xxx_write(di, BQ27XXX_DM_CKSUM, 1203 bq27xxx_battery_checksum_dm_block(buf), true); 1204 if (ret < 0) 1205 goto out; 1206 1207 /* DO NOT read BQ27XXX_DM_CKSUM here to verify it! That may cause NVM 1208 * corruption on the '425 chip (and perhaps others), which can damage 1209 * the chip. 1210 */ 1211 1212 if (cfgup) { 1213 BQ27XXX_MSLEEP(1); 1214 ret = bq27xxx_battery_soft_reset(di); 1215 if (ret < 0) 1216 return ret; 1217 } else { 1218 BQ27XXX_MSLEEP(100); /* flash DM updates in <100ms */ 1219 } 1220 1221 buf->dirty = false; 1222 1223 return 0; 1224 1225 out: 1226 if (cfgup) 1227 bq27xxx_battery_soft_reset(di); 1228 1229 dev_err(di->dev, "bus error writing chip memory: %d\n", ret); 1230 return ret; 1231 } 1232 1233 static void bq27xxx_battery_set_config(struct bq27xxx_device_info *di, 1234 struct power_supply_battery_info *info) 1235 { 1236 struct bq27xxx_dm_buf bd = BQ27XXX_DM_BUF(di, BQ27XXX_DM_DESIGN_CAPACITY); 1237 struct bq27xxx_dm_buf bt = BQ27XXX_DM_BUF(di, BQ27XXX_DM_TERMINATE_VOLTAGE); 1238 bool updated; 1239 1240 if (bq27xxx_battery_unseal(di) < 0) 1241 return; 1242 1243 if (info->charge_full_design_uah != -EINVAL && 1244 info->energy_full_design_uwh != -EINVAL) { 1245 bq27xxx_battery_read_dm_block(di, &bd); 1246 /* assume design energy & capacity are in same block */ 1247 bq27xxx_battery_update_dm_block(di, &bd, 1248 BQ27XXX_DM_DESIGN_CAPACITY, 1249 info->charge_full_design_uah / 1000); 1250 bq27xxx_battery_update_dm_block(di, &bd, 1251 BQ27XXX_DM_DESIGN_ENERGY, 1252 info->energy_full_design_uwh / 1000); 1253 } 1254 1255 if (info->voltage_min_design_uv != -EINVAL) { 1256 bool same = bd.class == bt.class && bd.block == bt.block; 1257 if (!same) 1258 bq27xxx_battery_read_dm_block(di, &bt); 1259 bq27xxx_battery_update_dm_block(di, same ? &bd : &bt, 1260 BQ27XXX_DM_TERMINATE_VOLTAGE, 1261 info->voltage_min_design_uv / 1000); 1262 } 1263 1264 updated = bd.dirty || bt.dirty; 1265 1266 bq27xxx_battery_write_dm_block(di, &bd); 1267 bq27xxx_battery_write_dm_block(di, &bt); 1268 1269 bq27xxx_battery_seal(di); 1270 1271 if (updated && !(di->opts & BQ27XXX_O_CFGUP)) { 1272 bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_RESET, false); 1273 BQ27XXX_MSLEEP(300); /* reset time is not documented */ 1274 } 1275 /* assume bq27xxx_battery_update() is called hereafter */ 1276 } 1277 1278 static void bq27xxx_battery_settings(struct bq27xxx_device_info *di) 1279 { 1280 struct power_supply_battery_info info = {}; 1281 unsigned int min, max; 1282 1283 if (power_supply_get_battery_info(di->bat, &info) < 0) 1284 return; 1285 1286 if (!di->dm_regs) { 1287 dev_warn(di->dev, "data memory update not supported for chip\n"); 1288 return; 1289 } 1290 1291 if (info.energy_full_design_uwh != info.charge_full_design_uah) { 1292 if (info.energy_full_design_uwh == -EINVAL) 1293 dev_warn(di->dev, "missing battery:energy-full-design-microwatt-hours\n"); 1294 else if (info.charge_full_design_uah == -EINVAL) 1295 dev_warn(di->dev, "missing battery:charge-full-design-microamp-hours\n"); 1296 } 1297 1298 /* assume min == 0 */ 1299 max = di->dm_regs[BQ27XXX_DM_DESIGN_ENERGY].max; 1300 if (info.energy_full_design_uwh > max * 1000) { 1301 dev_err(di->dev, "invalid battery:energy-full-design-microwatt-hours %d\n", 1302 info.energy_full_design_uwh); 1303 info.energy_full_design_uwh = -EINVAL; 1304 } 1305 1306 /* assume min == 0 */ 1307 max = di->dm_regs[BQ27XXX_DM_DESIGN_CAPACITY].max; 1308 if (info.charge_full_design_uah > max * 1000) { 1309 dev_err(di->dev, "invalid battery:charge-full-design-microamp-hours %d\n", 1310 info.charge_full_design_uah); 1311 info.charge_full_design_uah = -EINVAL; 1312 } 1313 1314 min = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].min; 1315 max = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].max; 1316 if ((info.voltage_min_design_uv < min * 1000 || 1317 info.voltage_min_design_uv > max * 1000) && 1318 info.voltage_min_design_uv != -EINVAL) { 1319 dev_err(di->dev, "invalid battery:voltage-min-design-microvolt %d\n", 1320 info.voltage_min_design_uv); 1321 info.voltage_min_design_uv = -EINVAL; 1322 } 1323 1324 if ((info.energy_full_design_uwh != -EINVAL && 1325 info.charge_full_design_uah != -EINVAL) || 1326 info.voltage_min_design_uv != -EINVAL) 1327 bq27xxx_battery_set_config(di, &info); 1328 } 1329 1330 /* 1331 * Return the battery State-of-Charge 1332 * Or < 0 if something fails. 1333 */ 1334 static int bq27xxx_battery_read_soc(struct bq27xxx_device_info *di) 1335 { 1336 int soc; 1337 1338 if (di->opts & BQ27XXX_O_ZERO) 1339 soc = bq27xxx_read(di, BQ27XXX_REG_SOC, true); 1340 else 1341 soc = bq27xxx_read(di, BQ27XXX_REG_SOC, false); 1342 1343 if (soc < 0) 1344 dev_dbg(di->dev, "error reading State-of-Charge\n"); 1345 1346 return soc; 1347 } 1348 1349 /* 1350 * Return a battery charge value in µAh 1351 * Or < 0 if something fails. 1352 */ 1353 static int bq27xxx_battery_read_charge(struct bq27xxx_device_info *di, u8 reg) 1354 { 1355 int charge; 1356 1357 charge = bq27xxx_read(di, reg, false); 1358 if (charge < 0) { 1359 dev_dbg(di->dev, "error reading charge register %02x: %d\n", 1360 reg, charge); 1361 return charge; 1362 } 1363 1364 if (di->opts & BQ27XXX_O_ZERO) 1365 charge *= BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS; 1366 else 1367 charge *= 1000; 1368 1369 return charge; 1370 } 1371 1372 /* 1373 * Return the battery Nominal available capacity in µAh 1374 * Or < 0 if something fails. 1375 */ 1376 static inline int bq27xxx_battery_read_nac(struct bq27xxx_device_info *di) 1377 { 1378 int flags; 1379 1380 if (di->opts & BQ27XXX_O_ZERO) { 1381 flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, true); 1382 if (flags >= 0 && (flags & BQ27000_FLAG_CI)) 1383 return -ENODATA; 1384 } 1385 1386 return bq27xxx_battery_read_charge(di, BQ27XXX_REG_NAC); 1387 } 1388 1389 /* 1390 * Return the battery Full Charge Capacity in µAh 1391 * Or < 0 if something fails. 1392 */ 1393 static inline int bq27xxx_battery_read_fcc(struct bq27xxx_device_info *di) 1394 { 1395 return bq27xxx_battery_read_charge(di, BQ27XXX_REG_FCC); 1396 } 1397 1398 /* 1399 * Return the Design Capacity in µAh 1400 * Or < 0 if something fails. 1401 */ 1402 static int bq27xxx_battery_read_dcap(struct bq27xxx_device_info *di) 1403 { 1404 int dcap; 1405 1406 if (di->opts & BQ27XXX_O_ZERO) 1407 dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, true); 1408 else 1409 dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, false); 1410 1411 if (dcap < 0) { 1412 dev_dbg(di->dev, "error reading initial last measured discharge\n"); 1413 return dcap; 1414 } 1415 1416 if (di->opts & BQ27XXX_O_ZERO) 1417 dcap = (dcap << 8) * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS; 1418 else 1419 dcap *= 1000; 1420 1421 return dcap; 1422 } 1423 1424 /* 1425 * Return the battery Available energy in µWh 1426 * Or < 0 if something fails. 1427 */ 1428 static int bq27xxx_battery_read_energy(struct bq27xxx_device_info *di) 1429 { 1430 int ae; 1431 1432 ae = bq27xxx_read(di, BQ27XXX_REG_AE, false); 1433 if (ae < 0) { 1434 dev_dbg(di->dev, "error reading available energy\n"); 1435 return ae; 1436 } 1437 1438 if (di->opts & BQ27XXX_O_ZERO) 1439 ae *= BQ27XXX_POWER_CONSTANT / BQ27XXX_RS; 1440 else 1441 ae *= 1000; 1442 1443 return ae; 1444 } 1445 1446 /* 1447 * Return the battery temperature in tenths of degree Kelvin 1448 * Or < 0 if something fails. 1449 */ 1450 static int bq27xxx_battery_read_temperature(struct bq27xxx_device_info *di) 1451 { 1452 int temp; 1453 1454 temp = bq27xxx_read(di, BQ27XXX_REG_TEMP, false); 1455 if (temp < 0) { 1456 dev_err(di->dev, "error reading temperature\n"); 1457 return temp; 1458 } 1459 1460 if (di->opts & BQ27XXX_O_ZERO) 1461 temp = 5 * temp / 2; 1462 1463 return temp; 1464 } 1465 1466 /* 1467 * Return the battery Cycle count total 1468 * Or < 0 if something fails. 1469 */ 1470 static int bq27xxx_battery_read_cyct(struct bq27xxx_device_info *di) 1471 { 1472 int cyct; 1473 1474 cyct = bq27xxx_read(di, BQ27XXX_REG_CYCT, false); 1475 if (cyct < 0) 1476 dev_err(di->dev, "error reading cycle count total\n"); 1477 1478 return cyct; 1479 } 1480 1481 /* 1482 * Read a time register. 1483 * Return < 0 if something fails. 1484 */ 1485 static int bq27xxx_battery_read_time(struct bq27xxx_device_info *di, u8 reg) 1486 { 1487 int tval; 1488 1489 tval = bq27xxx_read(di, reg, false); 1490 if (tval < 0) { 1491 dev_dbg(di->dev, "error reading time register %02x: %d\n", 1492 reg, tval); 1493 return tval; 1494 } 1495 1496 if (tval == 65535) 1497 return -ENODATA; 1498 1499 return tval * 60; 1500 } 1501 1502 /* 1503 * Read an average power register. 1504 * Return < 0 if something fails. 1505 */ 1506 static int bq27xxx_battery_read_pwr_avg(struct bq27xxx_device_info *di) 1507 { 1508 int tval; 1509 1510 tval = bq27xxx_read(di, BQ27XXX_REG_AP, false); 1511 if (tval < 0) { 1512 dev_err(di->dev, "error reading average power register %02x: %d\n", 1513 BQ27XXX_REG_AP, tval); 1514 return tval; 1515 } 1516 1517 if (di->opts & BQ27XXX_O_ZERO) 1518 return (tval * BQ27XXX_POWER_CONSTANT) / BQ27XXX_RS; 1519 else 1520 return tval; 1521 } 1522 1523 /* 1524 * Returns true if a battery over temperature condition is detected 1525 */ 1526 static bool bq27xxx_battery_overtemp(struct bq27xxx_device_info *di, u16 flags) 1527 { 1528 if (di->opts & BQ27XXX_O_OTDC) 1529 return flags & (BQ27XXX_FLAG_OTC | BQ27XXX_FLAG_OTD); 1530 if (di->opts & BQ27XXX_O_UTOT) 1531 return flags & BQ27XXX_FLAG_OT; 1532 1533 return false; 1534 } 1535 1536 /* 1537 * Returns true if a battery under temperature condition is detected 1538 */ 1539 static bool bq27xxx_battery_undertemp(struct bq27xxx_device_info *di, u16 flags) 1540 { 1541 if (di->opts & BQ27XXX_O_UTOT) 1542 return flags & BQ27XXX_FLAG_UT; 1543 1544 return false; 1545 } 1546 1547 /* 1548 * Returns true if a low state of charge condition is detected 1549 */ 1550 static bool bq27xxx_battery_dead(struct bq27xxx_device_info *di, u16 flags) 1551 { 1552 if (di->opts & BQ27XXX_O_ZERO) 1553 return flags & (BQ27000_FLAG_EDV1 | BQ27000_FLAG_EDVF); 1554 else 1555 return flags & (BQ27XXX_FLAG_SOC1 | BQ27XXX_FLAG_SOCF); 1556 } 1557 1558 /* 1559 * Read flag register. 1560 * Return < 0 if something fails. 1561 */ 1562 static int bq27xxx_battery_read_health(struct bq27xxx_device_info *di) 1563 { 1564 int flags; 1565 bool has_singe_flag = di->opts & BQ27XXX_O_ZERO; 1566 1567 flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, has_singe_flag); 1568 if (flags < 0) { 1569 dev_err(di->dev, "error reading flag register:%d\n", flags); 1570 return flags; 1571 } 1572 1573 /* Unlikely but important to return first */ 1574 if (unlikely(bq27xxx_battery_overtemp(di, flags))) 1575 return POWER_SUPPLY_HEALTH_OVERHEAT; 1576 if (unlikely(bq27xxx_battery_undertemp(di, flags))) 1577 return POWER_SUPPLY_HEALTH_COLD; 1578 if (unlikely(bq27xxx_battery_dead(di, flags))) 1579 return POWER_SUPPLY_HEALTH_DEAD; 1580 1581 return POWER_SUPPLY_HEALTH_GOOD; 1582 } 1583 1584 void bq27xxx_battery_update(struct bq27xxx_device_info *di) 1585 { 1586 struct bq27xxx_reg_cache cache = {0, }; 1587 bool has_ci_flag = di->opts & BQ27XXX_O_ZERO; 1588 bool has_singe_flag = di->opts & BQ27XXX_O_ZERO; 1589 1590 cache.flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, has_singe_flag); 1591 if ((cache.flags & 0xff) == 0xff) 1592 cache.flags = -1; /* read error */ 1593 if (cache.flags >= 0) { 1594 cache.temperature = bq27xxx_battery_read_temperature(di); 1595 if (has_ci_flag && (cache.flags & BQ27000_FLAG_CI)) { 1596 dev_info_once(di->dev, "battery is not calibrated! ignoring capacity values\n"); 1597 cache.capacity = -ENODATA; 1598 cache.energy = -ENODATA; 1599 cache.time_to_empty = -ENODATA; 1600 cache.time_to_empty_avg = -ENODATA; 1601 cache.time_to_full = -ENODATA; 1602 cache.charge_full = -ENODATA; 1603 cache.health = -ENODATA; 1604 } else { 1605 if (di->regs[BQ27XXX_REG_TTE] != INVALID_REG_ADDR) 1606 cache.time_to_empty = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTE); 1607 if (di->regs[BQ27XXX_REG_TTECP] != INVALID_REG_ADDR) 1608 cache.time_to_empty_avg = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTECP); 1609 if (di->regs[BQ27XXX_REG_TTF] != INVALID_REG_ADDR) 1610 cache.time_to_full = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTF); 1611 cache.charge_full = bq27xxx_battery_read_fcc(di); 1612 cache.capacity = bq27xxx_battery_read_soc(di); 1613 if (di->regs[BQ27XXX_REG_AE] != INVALID_REG_ADDR) 1614 cache.energy = bq27xxx_battery_read_energy(di); 1615 cache.health = bq27xxx_battery_read_health(di); 1616 } 1617 if (di->regs[BQ27XXX_REG_CYCT] != INVALID_REG_ADDR) 1618 cache.cycle_count = bq27xxx_battery_read_cyct(di); 1619 if (di->regs[BQ27XXX_REG_AP] != INVALID_REG_ADDR) 1620 cache.power_avg = bq27xxx_battery_read_pwr_avg(di); 1621 1622 /* We only have to read charge design full once */ 1623 if (di->charge_design_full <= 0) 1624 di->charge_design_full = bq27xxx_battery_read_dcap(di); 1625 } 1626 1627 if (di->cache.capacity != cache.capacity) 1628 power_supply_changed(di->bat); 1629 1630 if (memcmp(&di->cache, &cache, sizeof(cache)) != 0) 1631 di->cache = cache; 1632 1633 di->last_update = jiffies; 1634 } 1635 EXPORT_SYMBOL_GPL(bq27xxx_battery_update); 1636 1637 static void bq27xxx_battery_poll(struct work_struct *work) 1638 { 1639 struct bq27xxx_device_info *di = 1640 container_of(work, struct bq27xxx_device_info, 1641 work.work); 1642 1643 bq27xxx_battery_update(di); 1644 1645 if (poll_interval > 0) 1646 schedule_delayed_work(&di->work, poll_interval * HZ); 1647 } 1648 1649 /* 1650 * Return the battery average current in µA 1651 * Note that current can be negative signed as well 1652 * Or 0 if something fails. 1653 */ 1654 static int bq27xxx_battery_current(struct bq27xxx_device_info *di, 1655 union power_supply_propval *val) 1656 { 1657 int curr; 1658 int flags; 1659 1660 curr = bq27xxx_read(di, BQ27XXX_REG_AI, false); 1661 if (curr < 0) { 1662 dev_err(di->dev, "error reading current\n"); 1663 return curr; 1664 } 1665 1666 if (di->opts & BQ27XXX_O_ZERO) { 1667 flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, true); 1668 if (flags & BQ27000_FLAG_CHGS) { 1669 dev_dbg(di->dev, "negative current!\n"); 1670 curr = -curr; 1671 } 1672 1673 val->intval = curr * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS; 1674 } else { 1675 /* Other gauges return signed value */ 1676 val->intval = (int)((s16)curr) * 1000; 1677 } 1678 1679 return 0; 1680 } 1681 1682 static int bq27xxx_battery_status(struct bq27xxx_device_info *di, 1683 union power_supply_propval *val) 1684 { 1685 int status; 1686 1687 if (di->opts & BQ27XXX_O_ZERO) { 1688 if (di->cache.flags & BQ27000_FLAG_FC) 1689 status = POWER_SUPPLY_STATUS_FULL; 1690 else if (di->cache.flags & BQ27000_FLAG_CHGS) 1691 status = POWER_SUPPLY_STATUS_CHARGING; 1692 else if (power_supply_am_i_supplied(di->bat) > 0) 1693 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1694 else 1695 status = POWER_SUPPLY_STATUS_DISCHARGING; 1696 } else { 1697 if (di->cache.flags & BQ27XXX_FLAG_FC) 1698 status = POWER_SUPPLY_STATUS_FULL; 1699 else if (di->cache.flags & BQ27XXX_FLAG_DSC) 1700 status = POWER_SUPPLY_STATUS_DISCHARGING; 1701 else 1702 status = POWER_SUPPLY_STATUS_CHARGING; 1703 } 1704 1705 val->intval = status; 1706 1707 return 0; 1708 } 1709 1710 static int bq27xxx_battery_capacity_level(struct bq27xxx_device_info *di, 1711 union power_supply_propval *val) 1712 { 1713 int level; 1714 1715 if (di->opts & BQ27XXX_O_ZERO) { 1716 if (di->cache.flags & BQ27000_FLAG_FC) 1717 level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1718 else if (di->cache.flags & BQ27000_FLAG_EDV1) 1719 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW; 1720 else if (di->cache.flags & BQ27000_FLAG_EDVF) 1721 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1722 else 1723 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 1724 } else { 1725 if (di->cache.flags & BQ27XXX_FLAG_FC) 1726 level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1727 else if (di->cache.flags & BQ27XXX_FLAG_SOC1) 1728 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW; 1729 else if (di->cache.flags & BQ27XXX_FLAG_SOCF) 1730 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1731 else 1732 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 1733 } 1734 1735 val->intval = level; 1736 1737 return 0; 1738 } 1739 1740 /* 1741 * Return the battery Voltage in millivolts 1742 * Or < 0 if something fails. 1743 */ 1744 static int bq27xxx_battery_voltage(struct bq27xxx_device_info *di, 1745 union power_supply_propval *val) 1746 { 1747 int volt; 1748 1749 volt = bq27xxx_read(di, BQ27XXX_REG_VOLT, false); 1750 if (volt < 0) { 1751 dev_err(di->dev, "error reading voltage\n"); 1752 return volt; 1753 } 1754 1755 val->intval = volt * 1000; 1756 1757 return 0; 1758 } 1759 1760 static int bq27xxx_simple_value(int value, 1761 union power_supply_propval *val) 1762 { 1763 if (value < 0) 1764 return value; 1765 1766 val->intval = value; 1767 1768 return 0; 1769 } 1770 1771 static int bq27xxx_battery_get_property(struct power_supply *psy, 1772 enum power_supply_property psp, 1773 union power_supply_propval *val) 1774 { 1775 int ret = 0; 1776 struct bq27xxx_device_info *di = power_supply_get_drvdata(psy); 1777 1778 mutex_lock(&di->lock); 1779 if (time_is_before_jiffies(di->last_update + 5 * HZ)) { 1780 cancel_delayed_work_sync(&di->work); 1781 bq27xxx_battery_poll(&di->work.work); 1782 } 1783 mutex_unlock(&di->lock); 1784 1785 if (psp != POWER_SUPPLY_PROP_PRESENT && di->cache.flags < 0) 1786 return -ENODEV; 1787 1788 switch (psp) { 1789 case POWER_SUPPLY_PROP_STATUS: 1790 ret = bq27xxx_battery_status(di, val); 1791 break; 1792 case POWER_SUPPLY_PROP_VOLTAGE_NOW: 1793 ret = bq27xxx_battery_voltage(di, val); 1794 break; 1795 case POWER_SUPPLY_PROP_PRESENT: 1796 val->intval = di->cache.flags < 0 ? 0 : 1; 1797 break; 1798 case POWER_SUPPLY_PROP_CURRENT_NOW: 1799 ret = bq27xxx_battery_current(di, val); 1800 break; 1801 case POWER_SUPPLY_PROP_CAPACITY: 1802 ret = bq27xxx_simple_value(di->cache.capacity, val); 1803 break; 1804 case POWER_SUPPLY_PROP_CAPACITY_LEVEL: 1805 ret = bq27xxx_battery_capacity_level(di, val); 1806 break; 1807 case POWER_SUPPLY_PROP_TEMP: 1808 ret = bq27xxx_simple_value(di->cache.temperature, val); 1809 if (ret == 0) 1810 val->intval -= 2731; /* convert decidegree k to c */ 1811 break; 1812 case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW: 1813 ret = bq27xxx_simple_value(di->cache.time_to_empty, val); 1814 break; 1815 case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG: 1816 ret = bq27xxx_simple_value(di->cache.time_to_empty_avg, val); 1817 break; 1818 case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW: 1819 ret = bq27xxx_simple_value(di->cache.time_to_full, val); 1820 break; 1821 case POWER_SUPPLY_PROP_TECHNOLOGY: 1822 val->intval = POWER_SUPPLY_TECHNOLOGY_LION; 1823 break; 1824 case POWER_SUPPLY_PROP_CHARGE_NOW: 1825 ret = bq27xxx_simple_value(bq27xxx_battery_read_nac(di), val); 1826 break; 1827 case POWER_SUPPLY_PROP_CHARGE_FULL: 1828 ret = bq27xxx_simple_value(di->cache.charge_full, val); 1829 break; 1830 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 1831 ret = bq27xxx_simple_value(di->charge_design_full, val); 1832 break; 1833 /* 1834 * TODO: Implement these to make registers set from 1835 * power_supply_battery_info visible in sysfs. 1836 */ 1837 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 1838 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 1839 return -EINVAL; 1840 case POWER_SUPPLY_PROP_CYCLE_COUNT: 1841 ret = bq27xxx_simple_value(di->cache.cycle_count, val); 1842 break; 1843 case POWER_SUPPLY_PROP_ENERGY_NOW: 1844 ret = bq27xxx_simple_value(di->cache.energy, val); 1845 break; 1846 case POWER_SUPPLY_PROP_POWER_AVG: 1847 ret = bq27xxx_simple_value(di->cache.power_avg, val); 1848 break; 1849 case POWER_SUPPLY_PROP_HEALTH: 1850 ret = bq27xxx_simple_value(di->cache.health, val); 1851 break; 1852 case POWER_SUPPLY_PROP_MANUFACTURER: 1853 val->strval = BQ27XXX_MANUFACTURER; 1854 break; 1855 default: 1856 return -EINVAL; 1857 } 1858 1859 return ret; 1860 } 1861 1862 static void bq27xxx_external_power_changed(struct power_supply *psy) 1863 { 1864 struct bq27xxx_device_info *di = power_supply_get_drvdata(psy); 1865 1866 cancel_delayed_work_sync(&di->work); 1867 schedule_delayed_work(&di->work, 0); 1868 } 1869 1870 int bq27xxx_battery_setup(struct bq27xxx_device_info *di) 1871 { 1872 struct power_supply_desc *psy_desc; 1873 struct power_supply_config psy_cfg = { 1874 .of_node = di->dev->of_node, 1875 .drv_data = di, 1876 }; 1877 1878 INIT_DELAYED_WORK(&di->work, bq27xxx_battery_poll); 1879 mutex_init(&di->lock); 1880 1881 di->regs = bq27xxx_chip_data[di->chip].regs; 1882 di->unseal_key = bq27xxx_chip_data[di->chip].unseal_key; 1883 di->dm_regs = bq27xxx_chip_data[di->chip].dm_regs; 1884 di->opts = bq27xxx_chip_data[di->chip].opts; 1885 1886 psy_desc = devm_kzalloc(di->dev, sizeof(*psy_desc), GFP_KERNEL); 1887 if (!psy_desc) 1888 return -ENOMEM; 1889 1890 psy_desc->name = di->name; 1891 psy_desc->type = POWER_SUPPLY_TYPE_BATTERY; 1892 psy_desc->properties = bq27xxx_chip_data[di->chip].props; 1893 psy_desc->num_properties = bq27xxx_chip_data[di->chip].props_size; 1894 psy_desc->get_property = bq27xxx_battery_get_property; 1895 psy_desc->external_power_changed = bq27xxx_external_power_changed; 1896 1897 di->bat = power_supply_register_no_ws(di->dev, psy_desc, &psy_cfg); 1898 if (IS_ERR(di->bat)) { 1899 dev_err(di->dev, "failed to register battery\n"); 1900 return PTR_ERR(di->bat); 1901 } 1902 1903 bq27xxx_battery_settings(di); 1904 bq27xxx_battery_update(di); 1905 1906 mutex_lock(&bq27xxx_list_lock); 1907 list_add(&di->list, &bq27xxx_battery_devices); 1908 mutex_unlock(&bq27xxx_list_lock); 1909 1910 return 0; 1911 } 1912 EXPORT_SYMBOL_GPL(bq27xxx_battery_setup); 1913 1914 void bq27xxx_battery_teardown(struct bq27xxx_device_info *di) 1915 { 1916 /* 1917 * power_supply_unregister call bq27xxx_battery_get_property which 1918 * call bq27xxx_battery_poll. 1919 * Make sure that bq27xxx_battery_poll will not call 1920 * schedule_delayed_work again after unregister (which cause OOPS). 1921 */ 1922 poll_interval = 0; 1923 1924 cancel_delayed_work_sync(&di->work); 1925 1926 power_supply_unregister(di->bat); 1927 1928 mutex_lock(&bq27xxx_list_lock); 1929 list_del(&di->list); 1930 mutex_unlock(&bq27xxx_list_lock); 1931 1932 mutex_destroy(&di->lock); 1933 } 1934 EXPORT_SYMBOL_GPL(bq27xxx_battery_teardown); 1935 1936 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>"); 1937 MODULE_DESCRIPTION("BQ27xxx battery monitor driver"); 1938 MODULE_LICENSE("GPL"); 1939