xref: /openbmc/linux/drivers/power/supply/bq27xxx_battery.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /*
2  * BQ27xxx battery driver
3  *
4  * Copyright (C) 2008 Rodolfo Giometti <giometti@linux.it>
5  * Copyright (C) 2008 Eurotech S.p.A. <info@eurotech.it>
6  * Copyright (C) 2010-2011 Lars-Peter Clausen <lars@metafoo.de>
7  * Copyright (C) 2011 Pali Rohár <pali.rohar@gmail.com>
8  * Copyright (C) 2017 Liam Breck <kernel@networkimprov.net>
9  *
10  * Based on a previous work by Copyright (C) 2008 Texas Instruments, Inc.
11  *
12  * This package is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  * THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
18  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
19  *
20  * Datasheets:
21  * http://www.ti.com/product/bq27000
22  * http://www.ti.com/product/bq27200
23  * http://www.ti.com/product/bq27010
24  * http://www.ti.com/product/bq27210
25  * http://www.ti.com/product/bq27500
26  * http://www.ti.com/product/bq27510-g1
27  * http://www.ti.com/product/bq27510-g2
28  * http://www.ti.com/product/bq27510-g3
29  * http://www.ti.com/product/bq27520-g1
30  * http://www.ti.com/product/bq27520-g2
31  * http://www.ti.com/product/bq27520-g3
32  * http://www.ti.com/product/bq27520-g4
33  * http://www.ti.com/product/bq27530-g1
34  * http://www.ti.com/product/bq27531-g1
35  * http://www.ti.com/product/bq27541-g1
36  * http://www.ti.com/product/bq27542-g1
37  * http://www.ti.com/product/bq27546-g1
38  * http://www.ti.com/product/bq27742-g1
39  * http://www.ti.com/product/bq27545-g1
40  * http://www.ti.com/product/bq27421-g1
41  * http://www.ti.com/product/bq27425-g1
42  * http://www.ti.com/product/bq27426
43  * http://www.ti.com/product/bq27411-g1
44  * http://www.ti.com/product/bq27441-g1
45  * http://www.ti.com/product/bq27621-g1
46  */
47 
48 #include <linux/device.h>
49 #include <linux/module.h>
50 #include <linux/mutex.h>
51 #include <linux/param.h>
52 #include <linux/jiffies.h>
53 #include <linux/workqueue.h>
54 #include <linux/delay.h>
55 #include <linux/platform_device.h>
56 #include <linux/power_supply.h>
57 #include <linux/slab.h>
58 #include <linux/of.h>
59 
60 #include <linux/power/bq27xxx_battery.h>
61 
62 #define BQ27XXX_MANUFACTURER	"Texas Instruments"
63 
64 /* BQ27XXX Flags */
65 #define BQ27XXX_FLAG_DSC	BIT(0)
66 #define BQ27XXX_FLAG_SOCF	BIT(1) /* State-of-Charge threshold final */
67 #define BQ27XXX_FLAG_SOC1	BIT(2) /* State-of-Charge threshold 1 */
68 #define BQ27XXX_FLAG_CFGUP	BIT(4)
69 #define BQ27XXX_FLAG_FC		BIT(9)
70 #define BQ27XXX_FLAG_OTD	BIT(14)
71 #define BQ27XXX_FLAG_OTC	BIT(15)
72 #define BQ27XXX_FLAG_UT		BIT(14)
73 #define BQ27XXX_FLAG_OT		BIT(15)
74 
75 /* BQ27000 has different layout for Flags register */
76 #define BQ27000_FLAG_EDVF	BIT(0) /* Final End-of-Discharge-Voltage flag */
77 #define BQ27000_FLAG_EDV1	BIT(1) /* First End-of-Discharge-Voltage flag */
78 #define BQ27000_FLAG_CI		BIT(4) /* Capacity Inaccurate flag */
79 #define BQ27000_FLAG_FC		BIT(5)
80 #define BQ27000_FLAG_CHGS	BIT(7) /* Charge state flag */
81 
82 /* control register params */
83 #define BQ27XXX_SEALED			0x20
84 #define BQ27XXX_SET_CFGUPDATE		0x13
85 #define BQ27XXX_SOFT_RESET		0x42
86 #define BQ27XXX_RESET			0x41
87 
88 #define BQ27XXX_RS			(20) /* Resistor sense mOhm */
89 #define BQ27XXX_POWER_CONSTANT		(29200) /* 29.2 µV^2 * 1000 */
90 #define BQ27XXX_CURRENT_CONSTANT	(3570) /* 3.57 µV * 1000 */
91 
92 #define INVALID_REG_ADDR	0xff
93 
94 /*
95  * bq27xxx_reg_index - Register names
96  *
97  * These are indexes into a device's register mapping array.
98  */
99 
100 enum bq27xxx_reg_index {
101 	BQ27XXX_REG_CTRL = 0,	/* Control */
102 	BQ27XXX_REG_TEMP,	/* Temperature */
103 	BQ27XXX_REG_INT_TEMP,	/* Internal Temperature */
104 	BQ27XXX_REG_VOLT,	/* Voltage */
105 	BQ27XXX_REG_AI,		/* Average Current */
106 	BQ27XXX_REG_FLAGS,	/* Flags */
107 	BQ27XXX_REG_TTE,	/* Time-to-Empty */
108 	BQ27XXX_REG_TTF,	/* Time-to-Full */
109 	BQ27XXX_REG_TTES,	/* Time-to-Empty Standby */
110 	BQ27XXX_REG_TTECP,	/* Time-to-Empty at Constant Power */
111 	BQ27XXX_REG_NAC,	/* Nominal Available Capacity */
112 	BQ27XXX_REG_FCC,	/* Full Charge Capacity */
113 	BQ27XXX_REG_CYCT,	/* Cycle Count */
114 	BQ27XXX_REG_AE,		/* Available Energy */
115 	BQ27XXX_REG_SOC,	/* State-of-Charge */
116 	BQ27XXX_REG_DCAP,	/* Design Capacity */
117 	BQ27XXX_REG_AP,		/* Average Power */
118 	BQ27XXX_DM_CTRL,	/* Block Data Control */
119 	BQ27XXX_DM_CLASS,	/* Data Class */
120 	BQ27XXX_DM_BLOCK,	/* Data Block */
121 	BQ27XXX_DM_DATA,	/* Block Data */
122 	BQ27XXX_DM_CKSUM,	/* Block Data Checksum */
123 	BQ27XXX_REG_MAX,	/* sentinel */
124 };
125 
126 #define BQ27XXX_DM_REG_ROWS \
127 	[BQ27XXX_DM_CTRL] = 0x61,  \
128 	[BQ27XXX_DM_CLASS] = 0x3e, \
129 	[BQ27XXX_DM_BLOCK] = 0x3f, \
130 	[BQ27XXX_DM_DATA] = 0x40,  \
131 	[BQ27XXX_DM_CKSUM] = 0x60
132 
133 /* Register mappings */
134 static u8
135 	bq27000_regs[BQ27XXX_REG_MAX] = {
136 		[BQ27XXX_REG_CTRL] = 0x00,
137 		[BQ27XXX_REG_TEMP] = 0x06,
138 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
139 		[BQ27XXX_REG_VOLT] = 0x08,
140 		[BQ27XXX_REG_AI] = 0x14,
141 		[BQ27XXX_REG_FLAGS] = 0x0a,
142 		[BQ27XXX_REG_TTE] = 0x16,
143 		[BQ27XXX_REG_TTF] = 0x18,
144 		[BQ27XXX_REG_TTES] = 0x1c,
145 		[BQ27XXX_REG_TTECP] = 0x26,
146 		[BQ27XXX_REG_NAC] = 0x0c,
147 		[BQ27XXX_REG_FCC] = 0x12,
148 		[BQ27XXX_REG_CYCT] = 0x2a,
149 		[BQ27XXX_REG_AE] = 0x22,
150 		[BQ27XXX_REG_SOC] = 0x0b,
151 		[BQ27XXX_REG_DCAP] = 0x76,
152 		[BQ27XXX_REG_AP] = 0x24,
153 		[BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
154 		[BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
155 		[BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
156 		[BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
157 		[BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
158 	},
159 	bq27010_regs[BQ27XXX_REG_MAX] = {
160 		[BQ27XXX_REG_CTRL] = 0x00,
161 		[BQ27XXX_REG_TEMP] = 0x06,
162 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
163 		[BQ27XXX_REG_VOLT] = 0x08,
164 		[BQ27XXX_REG_AI] = 0x14,
165 		[BQ27XXX_REG_FLAGS] = 0x0a,
166 		[BQ27XXX_REG_TTE] = 0x16,
167 		[BQ27XXX_REG_TTF] = 0x18,
168 		[BQ27XXX_REG_TTES] = 0x1c,
169 		[BQ27XXX_REG_TTECP] = 0x26,
170 		[BQ27XXX_REG_NAC] = 0x0c,
171 		[BQ27XXX_REG_FCC] = 0x12,
172 		[BQ27XXX_REG_CYCT] = 0x2a,
173 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
174 		[BQ27XXX_REG_SOC] = 0x0b,
175 		[BQ27XXX_REG_DCAP] = 0x76,
176 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
177 		[BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
178 		[BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
179 		[BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
180 		[BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
181 		[BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
182 	},
183 	bq2750x_regs[BQ27XXX_REG_MAX] = {
184 		[BQ27XXX_REG_CTRL] = 0x00,
185 		[BQ27XXX_REG_TEMP] = 0x06,
186 		[BQ27XXX_REG_INT_TEMP] = 0x28,
187 		[BQ27XXX_REG_VOLT] = 0x08,
188 		[BQ27XXX_REG_AI] = 0x14,
189 		[BQ27XXX_REG_FLAGS] = 0x0a,
190 		[BQ27XXX_REG_TTE] = 0x16,
191 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
192 		[BQ27XXX_REG_TTES] = 0x1a,
193 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
194 		[BQ27XXX_REG_NAC] = 0x0c,
195 		[BQ27XXX_REG_FCC] = 0x12,
196 		[BQ27XXX_REG_CYCT] = 0x2a,
197 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
198 		[BQ27XXX_REG_SOC] = 0x2c,
199 		[BQ27XXX_REG_DCAP] = 0x3c,
200 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
201 		BQ27XXX_DM_REG_ROWS,
202 	},
203 #define bq2751x_regs bq27510g3_regs
204 #define bq2752x_regs bq27510g3_regs
205 	bq27500_regs[BQ27XXX_REG_MAX] = {
206 		[BQ27XXX_REG_CTRL] = 0x00,
207 		[BQ27XXX_REG_TEMP] = 0x06,
208 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
209 		[BQ27XXX_REG_VOLT] = 0x08,
210 		[BQ27XXX_REG_AI] = 0x14,
211 		[BQ27XXX_REG_FLAGS] = 0x0a,
212 		[BQ27XXX_REG_TTE] = 0x16,
213 		[BQ27XXX_REG_TTF] = 0x18,
214 		[BQ27XXX_REG_TTES] = 0x1c,
215 		[BQ27XXX_REG_TTECP] = 0x26,
216 		[BQ27XXX_REG_NAC] = 0x0c,
217 		[BQ27XXX_REG_FCC] = 0x12,
218 		[BQ27XXX_REG_CYCT] = 0x2a,
219 		[BQ27XXX_REG_AE] = 0x22,
220 		[BQ27XXX_REG_SOC] = 0x2c,
221 		[BQ27XXX_REG_DCAP] = 0x3c,
222 		[BQ27XXX_REG_AP] = 0x24,
223 		BQ27XXX_DM_REG_ROWS,
224 	},
225 #define bq27510g1_regs bq27500_regs
226 #define bq27510g2_regs bq27500_regs
227 	bq27510g3_regs[BQ27XXX_REG_MAX] = {
228 		[BQ27XXX_REG_CTRL] = 0x00,
229 		[BQ27XXX_REG_TEMP] = 0x06,
230 		[BQ27XXX_REG_INT_TEMP] = 0x28,
231 		[BQ27XXX_REG_VOLT] = 0x08,
232 		[BQ27XXX_REG_AI] = 0x14,
233 		[BQ27XXX_REG_FLAGS] = 0x0a,
234 		[BQ27XXX_REG_TTE] = 0x16,
235 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
236 		[BQ27XXX_REG_TTES] = 0x1a,
237 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
238 		[BQ27XXX_REG_NAC] = 0x0c,
239 		[BQ27XXX_REG_FCC] = 0x12,
240 		[BQ27XXX_REG_CYCT] = 0x1e,
241 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
242 		[BQ27XXX_REG_SOC] = 0x20,
243 		[BQ27XXX_REG_DCAP] = 0x2e,
244 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
245 		BQ27XXX_DM_REG_ROWS,
246 	},
247 	bq27520g1_regs[BQ27XXX_REG_MAX] = {
248 		[BQ27XXX_REG_CTRL] = 0x00,
249 		[BQ27XXX_REG_TEMP] = 0x06,
250 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
251 		[BQ27XXX_REG_VOLT] = 0x08,
252 		[BQ27XXX_REG_AI] = 0x14,
253 		[BQ27XXX_REG_FLAGS] = 0x0a,
254 		[BQ27XXX_REG_TTE] = 0x16,
255 		[BQ27XXX_REG_TTF] = 0x18,
256 		[BQ27XXX_REG_TTES] = 0x1c,
257 		[BQ27XXX_REG_TTECP] = 0x26,
258 		[BQ27XXX_REG_NAC] = 0x0c,
259 		[BQ27XXX_REG_FCC] = 0x12,
260 		[BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
261 		[BQ27XXX_REG_AE] = 0x22,
262 		[BQ27XXX_REG_SOC] = 0x2c,
263 		[BQ27XXX_REG_DCAP] = 0x3c,
264 		[BQ27XXX_REG_AP] = 0x24,
265 		BQ27XXX_DM_REG_ROWS,
266 	},
267 	bq27520g2_regs[BQ27XXX_REG_MAX] = {
268 		[BQ27XXX_REG_CTRL] = 0x00,
269 		[BQ27XXX_REG_TEMP] = 0x06,
270 		[BQ27XXX_REG_INT_TEMP] = 0x36,
271 		[BQ27XXX_REG_VOLT] = 0x08,
272 		[BQ27XXX_REG_AI] = 0x14,
273 		[BQ27XXX_REG_FLAGS] = 0x0a,
274 		[BQ27XXX_REG_TTE] = 0x16,
275 		[BQ27XXX_REG_TTF] = 0x18,
276 		[BQ27XXX_REG_TTES] = 0x1c,
277 		[BQ27XXX_REG_TTECP] = 0x26,
278 		[BQ27XXX_REG_NAC] = 0x0c,
279 		[BQ27XXX_REG_FCC] = 0x12,
280 		[BQ27XXX_REG_CYCT] = 0x2a,
281 		[BQ27XXX_REG_AE] = 0x22,
282 		[BQ27XXX_REG_SOC] = 0x2c,
283 		[BQ27XXX_REG_DCAP] = 0x3c,
284 		[BQ27XXX_REG_AP] = 0x24,
285 		BQ27XXX_DM_REG_ROWS,
286 	},
287 	bq27520g3_regs[BQ27XXX_REG_MAX] = {
288 		[BQ27XXX_REG_CTRL] = 0x00,
289 		[BQ27XXX_REG_TEMP] = 0x06,
290 		[BQ27XXX_REG_INT_TEMP] = 0x36,
291 		[BQ27XXX_REG_VOLT] = 0x08,
292 		[BQ27XXX_REG_AI] = 0x14,
293 		[BQ27XXX_REG_FLAGS] = 0x0a,
294 		[BQ27XXX_REG_TTE] = 0x16,
295 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
296 		[BQ27XXX_REG_TTES] = 0x1c,
297 		[BQ27XXX_REG_TTECP] = 0x26,
298 		[BQ27XXX_REG_NAC] = 0x0c,
299 		[BQ27XXX_REG_FCC] = 0x12,
300 		[BQ27XXX_REG_CYCT] = 0x2a,
301 		[BQ27XXX_REG_AE] = 0x22,
302 		[BQ27XXX_REG_SOC] = 0x2c,
303 		[BQ27XXX_REG_DCAP] = 0x3c,
304 		[BQ27XXX_REG_AP] = 0x24,
305 		BQ27XXX_DM_REG_ROWS,
306 	},
307 	bq27520g4_regs[BQ27XXX_REG_MAX] = {
308 		[BQ27XXX_REG_CTRL] = 0x00,
309 		[BQ27XXX_REG_TEMP] = 0x06,
310 		[BQ27XXX_REG_INT_TEMP] = 0x28,
311 		[BQ27XXX_REG_VOLT] = 0x08,
312 		[BQ27XXX_REG_AI] = 0x14,
313 		[BQ27XXX_REG_FLAGS] = 0x0a,
314 		[BQ27XXX_REG_TTE] = 0x16,
315 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
316 		[BQ27XXX_REG_TTES] = 0x1c,
317 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
318 		[BQ27XXX_REG_NAC] = 0x0c,
319 		[BQ27XXX_REG_FCC] = 0x12,
320 		[BQ27XXX_REG_CYCT] = 0x1e,
321 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
322 		[BQ27XXX_REG_SOC] = 0x20,
323 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
324 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
325 		BQ27XXX_DM_REG_ROWS,
326 	},
327 	bq27521_regs[BQ27XXX_REG_MAX] = {
328 		[BQ27XXX_REG_CTRL] = 0x02,
329 		[BQ27XXX_REG_TEMP] = 0x0a,
330 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
331 		[BQ27XXX_REG_VOLT] = 0x0c,
332 		[BQ27XXX_REG_AI] = 0x0e,
333 		[BQ27XXX_REG_FLAGS] = 0x08,
334 		[BQ27XXX_REG_TTE] = INVALID_REG_ADDR,
335 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
336 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
337 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
338 		[BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
339 		[BQ27XXX_REG_FCC] = INVALID_REG_ADDR,
340 		[BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
341 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
342 		[BQ27XXX_REG_SOC] = INVALID_REG_ADDR,
343 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
344 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
345 		[BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
346 		[BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
347 		[BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
348 		[BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
349 		[BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
350 	},
351 	bq27530_regs[BQ27XXX_REG_MAX] = {
352 		[BQ27XXX_REG_CTRL] = 0x00,
353 		[BQ27XXX_REG_TEMP] = 0x06,
354 		[BQ27XXX_REG_INT_TEMP] = 0x32,
355 		[BQ27XXX_REG_VOLT] = 0x08,
356 		[BQ27XXX_REG_AI] = 0x14,
357 		[BQ27XXX_REG_FLAGS] = 0x0a,
358 		[BQ27XXX_REG_TTE] = 0x16,
359 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
360 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
361 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
362 		[BQ27XXX_REG_NAC] = 0x0c,
363 		[BQ27XXX_REG_FCC] = 0x12,
364 		[BQ27XXX_REG_CYCT] = 0x2a,
365 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
366 		[BQ27XXX_REG_SOC] = 0x2c,
367 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
368 		[BQ27XXX_REG_AP] = 0x24,
369 		BQ27XXX_DM_REG_ROWS,
370 	},
371 #define bq27531_regs bq27530_regs
372 	bq27541_regs[BQ27XXX_REG_MAX] = {
373 		[BQ27XXX_REG_CTRL] = 0x00,
374 		[BQ27XXX_REG_TEMP] = 0x06,
375 		[BQ27XXX_REG_INT_TEMP] = 0x28,
376 		[BQ27XXX_REG_VOLT] = 0x08,
377 		[BQ27XXX_REG_AI] = 0x14,
378 		[BQ27XXX_REG_FLAGS] = 0x0a,
379 		[BQ27XXX_REG_TTE] = 0x16,
380 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
381 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
382 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
383 		[BQ27XXX_REG_NAC] = 0x0c,
384 		[BQ27XXX_REG_FCC] = 0x12,
385 		[BQ27XXX_REG_CYCT] = 0x2a,
386 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
387 		[BQ27XXX_REG_SOC] = 0x2c,
388 		[BQ27XXX_REG_DCAP] = 0x3c,
389 		[BQ27XXX_REG_AP] = 0x24,
390 		BQ27XXX_DM_REG_ROWS,
391 	},
392 #define bq27542_regs bq27541_regs
393 #define bq27546_regs bq27541_regs
394 #define bq27742_regs bq27541_regs
395 	bq27545_regs[BQ27XXX_REG_MAX] = {
396 		[BQ27XXX_REG_CTRL] = 0x00,
397 		[BQ27XXX_REG_TEMP] = 0x06,
398 		[BQ27XXX_REG_INT_TEMP] = 0x28,
399 		[BQ27XXX_REG_VOLT] = 0x08,
400 		[BQ27XXX_REG_AI] = 0x14,
401 		[BQ27XXX_REG_FLAGS] = 0x0a,
402 		[BQ27XXX_REG_TTE] = 0x16,
403 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
404 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
405 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
406 		[BQ27XXX_REG_NAC] = 0x0c,
407 		[BQ27XXX_REG_FCC] = 0x12,
408 		[BQ27XXX_REG_CYCT] = 0x2a,
409 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
410 		[BQ27XXX_REG_SOC] = 0x2c,
411 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
412 		[BQ27XXX_REG_AP] = 0x24,
413 		BQ27XXX_DM_REG_ROWS,
414 	},
415 	bq27421_regs[BQ27XXX_REG_MAX] = {
416 		[BQ27XXX_REG_CTRL] = 0x00,
417 		[BQ27XXX_REG_TEMP] = 0x02,
418 		[BQ27XXX_REG_INT_TEMP] = 0x1e,
419 		[BQ27XXX_REG_VOLT] = 0x04,
420 		[BQ27XXX_REG_AI] = 0x10,
421 		[BQ27XXX_REG_FLAGS] = 0x06,
422 		[BQ27XXX_REG_TTE] = INVALID_REG_ADDR,
423 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
424 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
425 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
426 		[BQ27XXX_REG_NAC] = 0x08,
427 		[BQ27XXX_REG_FCC] = 0x0e,
428 		[BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
429 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
430 		[BQ27XXX_REG_SOC] = 0x1c,
431 		[BQ27XXX_REG_DCAP] = 0x3c,
432 		[BQ27XXX_REG_AP] = 0x18,
433 		BQ27XXX_DM_REG_ROWS,
434 	};
435 #define bq27425_regs bq27421_regs
436 #define bq27426_regs bq27421_regs
437 #define bq27441_regs bq27421_regs
438 #define bq27621_regs bq27421_regs
439 
440 static enum power_supply_property bq27000_props[] = {
441 	POWER_SUPPLY_PROP_STATUS,
442 	POWER_SUPPLY_PROP_PRESENT,
443 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
444 	POWER_SUPPLY_PROP_CURRENT_NOW,
445 	POWER_SUPPLY_PROP_CAPACITY,
446 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
447 	POWER_SUPPLY_PROP_TEMP,
448 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
449 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
450 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
451 	POWER_SUPPLY_PROP_TECHNOLOGY,
452 	POWER_SUPPLY_PROP_CHARGE_FULL,
453 	POWER_SUPPLY_PROP_CHARGE_NOW,
454 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
455 	POWER_SUPPLY_PROP_CYCLE_COUNT,
456 	POWER_SUPPLY_PROP_ENERGY_NOW,
457 	POWER_SUPPLY_PROP_POWER_AVG,
458 	POWER_SUPPLY_PROP_HEALTH,
459 	POWER_SUPPLY_PROP_MANUFACTURER,
460 };
461 
462 static enum power_supply_property bq27010_props[] = {
463 	POWER_SUPPLY_PROP_STATUS,
464 	POWER_SUPPLY_PROP_PRESENT,
465 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
466 	POWER_SUPPLY_PROP_CURRENT_NOW,
467 	POWER_SUPPLY_PROP_CAPACITY,
468 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
469 	POWER_SUPPLY_PROP_TEMP,
470 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
471 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
472 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
473 	POWER_SUPPLY_PROP_TECHNOLOGY,
474 	POWER_SUPPLY_PROP_CHARGE_FULL,
475 	POWER_SUPPLY_PROP_CHARGE_NOW,
476 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
477 	POWER_SUPPLY_PROP_CYCLE_COUNT,
478 	POWER_SUPPLY_PROP_HEALTH,
479 	POWER_SUPPLY_PROP_MANUFACTURER,
480 };
481 
482 #define bq2750x_props bq27510g3_props
483 #define bq2751x_props bq27510g3_props
484 #define bq2752x_props bq27510g3_props
485 
486 static enum power_supply_property bq27500_props[] = {
487 	POWER_SUPPLY_PROP_STATUS,
488 	POWER_SUPPLY_PROP_PRESENT,
489 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
490 	POWER_SUPPLY_PROP_CURRENT_NOW,
491 	POWER_SUPPLY_PROP_CAPACITY,
492 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
493 	POWER_SUPPLY_PROP_TEMP,
494 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
495 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
496 	POWER_SUPPLY_PROP_TECHNOLOGY,
497 	POWER_SUPPLY_PROP_CHARGE_FULL,
498 	POWER_SUPPLY_PROP_CHARGE_NOW,
499 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
500 	POWER_SUPPLY_PROP_CYCLE_COUNT,
501 	POWER_SUPPLY_PROP_ENERGY_NOW,
502 	POWER_SUPPLY_PROP_POWER_AVG,
503 	POWER_SUPPLY_PROP_HEALTH,
504 	POWER_SUPPLY_PROP_MANUFACTURER,
505 };
506 #define bq27510g1_props bq27500_props
507 #define bq27510g2_props bq27500_props
508 
509 static enum power_supply_property bq27510g3_props[] = {
510 	POWER_SUPPLY_PROP_STATUS,
511 	POWER_SUPPLY_PROP_PRESENT,
512 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
513 	POWER_SUPPLY_PROP_CURRENT_NOW,
514 	POWER_SUPPLY_PROP_CAPACITY,
515 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
516 	POWER_SUPPLY_PROP_TEMP,
517 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
518 	POWER_SUPPLY_PROP_TECHNOLOGY,
519 	POWER_SUPPLY_PROP_CHARGE_FULL,
520 	POWER_SUPPLY_PROP_CHARGE_NOW,
521 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
522 	POWER_SUPPLY_PROP_CYCLE_COUNT,
523 	POWER_SUPPLY_PROP_HEALTH,
524 	POWER_SUPPLY_PROP_MANUFACTURER,
525 };
526 
527 static enum power_supply_property bq27520g1_props[] = {
528 	POWER_SUPPLY_PROP_STATUS,
529 	POWER_SUPPLY_PROP_PRESENT,
530 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
531 	POWER_SUPPLY_PROP_CURRENT_NOW,
532 	POWER_SUPPLY_PROP_CAPACITY,
533 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
534 	POWER_SUPPLY_PROP_TEMP,
535 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
536 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
537 	POWER_SUPPLY_PROP_TECHNOLOGY,
538 	POWER_SUPPLY_PROP_CHARGE_FULL,
539 	POWER_SUPPLY_PROP_CHARGE_NOW,
540 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
541 	POWER_SUPPLY_PROP_ENERGY_NOW,
542 	POWER_SUPPLY_PROP_POWER_AVG,
543 	POWER_SUPPLY_PROP_HEALTH,
544 	POWER_SUPPLY_PROP_MANUFACTURER,
545 };
546 
547 #define bq27520g2_props bq27500_props
548 
549 static enum power_supply_property bq27520g3_props[] = {
550 	POWER_SUPPLY_PROP_STATUS,
551 	POWER_SUPPLY_PROP_PRESENT,
552 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
553 	POWER_SUPPLY_PROP_CURRENT_NOW,
554 	POWER_SUPPLY_PROP_CAPACITY,
555 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
556 	POWER_SUPPLY_PROP_TEMP,
557 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
558 	POWER_SUPPLY_PROP_TECHNOLOGY,
559 	POWER_SUPPLY_PROP_CHARGE_FULL,
560 	POWER_SUPPLY_PROP_CHARGE_NOW,
561 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
562 	POWER_SUPPLY_PROP_CYCLE_COUNT,
563 	POWER_SUPPLY_PROP_ENERGY_NOW,
564 	POWER_SUPPLY_PROP_POWER_AVG,
565 	POWER_SUPPLY_PROP_HEALTH,
566 	POWER_SUPPLY_PROP_MANUFACTURER,
567 };
568 
569 static enum power_supply_property bq27520g4_props[] = {
570 	POWER_SUPPLY_PROP_STATUS,
571 	POWER_SUPPLY_PROP_PRESENT,
572 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
573 	POWER_SUPPLY_PROP_CURRENT_NOW,
574 	POWER_SUPPLY_PROP_CAPACITY,
575 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
576 	POWER_SUPPLY_PROP_TEMP,
577 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
578 	POWER_SUPPLY_PROP_TECHNOLOGY,
579 	POWER_SUPPLY_PROP_CHARGE_FULL,
580 	POWER_SUPPLY_PROP_CHARGE_NOW,
581 	POWER_SUPPLY_PROP_CYCLE_COUNT,
582 	POWER_SUPPLY_PROP_HEALTH,
583 	POWER_SUPPLY_PROP_MANUFACTURER,
584 };
585 
586 static enum power_supply_property bq27521_props[] = {
587 	POWER_SUPPLY_PROP_STATUS,
588 	POWER_SUPPLY_PROP_PRESENT,
589 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
590 	POWER_SUPPLY_PROP_CURRENT_NOW,
591 	POWER_SUPPLY_PROP_TEMP,
592 	POWER_SUPPLY_PROP_TECHNOLOGY,
593 };
594 
595 static enum power_supply_property bq27530_props[] = {
596 	POWER_SUPPLY_PROP_STATUS,
597 	POWER_SUPPLY_PROP_PRESENT,
598 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
599 	POWER_SUPPLY_PROP_CURRENT_NOW,
600 	POWER_SUPPLY_PROP_CAPACITY,
601 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
602 	POWER_SUPPLY_PROP_TEMP,
603 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
604 	POWER_SUPPLY_PROP_TECHNOLOGY,
605 	POWER_SUPPLY_PROP_CHARGE_FULL,
606 	POWER_SUPPLY_PROP_CHARGE_NOW,
607 	POWER_SUPPLY_PROP_POWER_AVG,
608 	POWER_SUPPLY_PROP_HEALTH,
609 	POWER_SUPPLY_PROP_CYCLE_COUNT,
610 	POWER_SUPPLY_PROP_MANUFACTURER,
611 };
612 #define bq27531_props bq27530_props
613 
614 static enum power_supply_property bq27541_props[] = {
615 	POWER_SUPPLY_PROP_STATUS,
616 	POWER_SUPPLY_PROP_PRESENT,
617 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
618 	POWER_SUPPLY_PROP_CURRENT_NOW,
619 	POWER_SUPPLY_PROP_CAPACITY,
620 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
621 	POWER_SUPPLY_PROP_TEMP,
622 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
623 	POWER_SUPPLY_PROP_TECHNOLOGY,
624 	POWER_SUPPLY_PROP_CHARGE_FULL,
625 	POWER_SUPPLY_PROP_CHARGE_NOW,
626 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
627 	POWER_SUPPLY_PROP_CYCLE_COUNT,
628 	POWER_SUPPLY_PROP_POWER_AVG,
629 	POWER_SUPPLY_PROP_HEALTH,
630 	POWER_SUPPLY_PROP_MANUFACTURER,
631 };
632 #define bq27542_props bq27541_props
633 #define bq27546_props bq27541_props
634 #define bq27742_props bq27541_props
635 
636 static enum power_supply_property bq27545_props[] = {
637 	POWER_SUPPLY_PROP_STATUS,
638 	POWER_SUPPLY_PROP_PRESENT,
639 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
640 	POWER_SUPPLY_PROP_CURRENT_NOW,
641 	POWER_SUPPLY_PROP_CAPACITY,
642 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
643 	POWER_SUPPLY_PROP_TEMP,
644 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
645 	POWER_SUPPLY_PROP_TECHNOLOGY,
646 	POWER_SUPPLY_PROP_CHARGE_FULL,
647 	POWER_SUPPLY_PROP_CHARGE_NOW,
648 	POWER_SUPPLY_PROP_HEALTH,
649 	POWER_SUPPLY_PROP_CYCLE_COUNT,
650 	POWER_SUPPLY_PROP_POWER_AVG,
651 	POWER_SUPPLY_PROP_MANUFACTURER,
652 };
653 
654 static enum power_supply_property bq27421_props[] = {
655 	POWER_SUPPLY_PROP_STATUS,
656 	POWER_SUPPLY_PROP_PRESENT,
657 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
658 	POWER_SUPPLY_PROP_CURRENT_NOW,
659 	POWER_SUPPLY_PROP_CAPACITY,
660 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
661 	POWER_SUPPLY_PROP_TEMP,
662 	POWER_SUPPLY_PROP_TECHNOLOGY,
663 	POWER_SUPPLY_PROP_CHARGE_FULL,
664 	POWER_SUPPLY_PROP_CHARGE_NOW,
665 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
666 	POWER_SUPPLY_PROP_MANUFACTURER,
667 };
668 #define bq27425_props bq27421_props
669 #define bq27426_props bq27421_props
670 #define bq27441_props bq27421_props
671 #define bq27621_props bq27421_props
672 
673 struct bq27xxx_dm_reg {
674 	u8 subclass_id;
675 	u8 offset;
676 	u8 bytes;
677 	u16 min, max;
678 };
679 
680 enum bq27xxx_dm_reg_id {
681 	BQ27XXX_DM_DESIGN_CAPACITY = 0,
682 	BQ27XXX_DM_DESIGN_ENERGY,
683 	BQ27XXX_DM_TERMINATE_VOLTAGE,
684 };
685 
686 #define bq27000_dm_regs 0
687 #define bq27010_dm_regs 0
688 #define bq2750x_dm_regs 0
689 #define bq2751x_dm_regs 0
690 #define bq2752x_dm_regs 0
691 
692 #if 0 /* not yet tested */
693 static struct bq27xxx_dm_reg bq27500_dm_regs[] = {
694 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 48, 10, 2,    0, 65535 },
695 	[BQ27XXX_DM_DESIGN_ENERGY]     = { }, /* missing on chip */
696 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 48, 2, 1000, 32767 },
697 };
698 #else
699 #define bq27500_dm_regs 0
700 #endif
701 
702 /* todo create data memory definitions from datasheets and test on chips */
703 #define bq27510g1_dm_regs 0
704 #define bq27510g2_dm_regs 0
705 #define bq27510g3_dm_regs 0
706 #define bq27520g1_dm_regs 0
707 #define bq27520g2_dm_regs 0
708 #define bq27520g3_dm_regs 0
709 #define bq27520g4_dm_regs 0
710 #define bq27521_dm_regs 0
711 #define bq27530_dm_regs 0
712 #define bq27531_dm_regs 0
713 #define bq27541_dm_regs 0
714 #define bq27542_dm_regs 0
715 #define bq27546_dm_regs 0
716 #define bq27742_dm_regs 0
717 
718 #if 0 /* not yet tested */
719 static struct bq27xxx_dm_reg bq27545_dm_regs[] = {
720 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 48, 23, 2,    0, 32767 },
721 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 48, 25, 2,    0, 32767 },
722 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 67, 2, 2800,  3700 },
723 };
724 #else
725 #define bq27545_dm_regs 0
726 #endif
727 
728 static struct bq27xxx_dm_reg bq27421_dm_regs[] = {
729 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82, 10, 2,    0,  8000 },
730 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82, 12, 2,    0, 32767 },
731 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2500,  3700 },
732 };
733 
734 static struct bq27xxx_dm_reg bq27425_dm_regs[] = {
735 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82, 12, 2,    0, 32767 },
736 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82, 14, 2,    0, 32767 },
737 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 18, 2, 2800,  3700 },
738 };
739 
740 static struct bq27xxx_dm_reg bq27426_dm_regs[] = {
741 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82,  6, 2,    0,  8000 },
742 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82,  8, 2,    0, 32767 },
743 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 10, 2, 2500,  3700 },
744 };
745 
746 #if 0 /* not yet tested */
747 #define bq27441_dm_regs bq27421_dm_regs
748 #else
749 #define bq27441_dm_regs 0
750 #endif
751 
752 #if 0 /* not yet tested */
753 static struct bq27xxx_dm_reg bq27621_dm_regs[] = {
754 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82, 3, 2,    0,  8000 },
755 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82, 5, 2,    0, 32767 },
756 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 9, 2, 2500,  3700 },
757 };
758 #else
759 #define bq27621_dm_regs 0
760 #endif
761 
762 #define BQ27XXX_O_ZERO	0x00000001
763 #define BQ27XXX_O_OTDC	0x00000002 /* has OTC/OTD overtemperature flags */
764 #define BQ27XXX_O_UTOT  0x00000004 /* has OT overtemperature flag */
765 #define BQ27XXX_O_CFGUP	0x00000008
766 #define BQ27XXX_O_RAM	0x00000010
767 
768 #define BQ27XXX_DATA(ref, key, opt) {		\
769 	.opts = (opt),				\
770 	.unseal_key = key,			\
771 	.regs  = ref##_regs,			\
772 	.dm_regs = ref##_dm_regs,		\
773 	.props = ref##_props,			\
774 	.props_size = ARRAY_SIZE(ref##_props) }
775 
776 static struct {
777 	u32 opts;
778 	u32 unseal_key;
779 	u8 *regs;
780 	struct bq27xxx_dm_reg *dm_regs;
781 	enum power_supply_property *props;
782 	size_t props_size;
783 } bq27xxx_chip_data[] = {
784 	[BQ27000]   = BQ27XXX_DATA(bq27000,   0         , BQ27XXX_O_ZERO),
785 	[BQ27010]   = BQ27XXX_DATA(bq27010,   0         , BQ27XXX_O_ZERO),
786 	[BQ2750X]   = BQ27XXX_DATA(bq2750x,   0         , BQ27XXX_O_OTDC),
787 	[BQ2751X]   = BQ27XXX_DATA(bq2751x,   0         , BQ27XXX_O_OTDC),
788 	[BQ2752X]   = BQ27XXX_DATA(bq2752x,   0         , BQ27XXX_O_OTDC),
789 	[BQ27500]   = BQ27XXX_DATA(bq27500,   0x04143672, BQ27XXX_O_OTDC),
790 	[BQ27510G1] = BQ27XXX_DATA(bq27510g1, 0         , BQ27XXX_O_OTDC),
791 	[BQ27510G2] = BQ27XXX_DATA(bq27510g2, 0         , BQ27XXX_O_OTDC),
792 	[BQ27510G3] = BQ27XXX_DATA(bq27510g3, 0         , BQ27XXX_O_OTDC),
793 	[BQ27520G1] = BQ27XXX_DATA(bq27520g1, 0         , BQ27XXX_O_OTDC),
794 	[BQ27520G2] = BQ27XXX_DATA(bq27520g2, 0         , BQ27XXX_O_OTDC),
795 	[BQ27520G3] = BQ27XXX_DATA(bq27520g3, 0         , BQ27XXX_O_OTDC),
796 	[BQ27520G4] = BQ27XXX_DATA(bq27520g4, 0         , BQ27XXX_O_OTDC),
797 	[BQ27521]   = BQ27XXX_DATA(bq27521,   0         , 0),
798 	[BQ27530]   = BQ27XXX_DATA(bq27530,   0         , BQ27XXX_O_UTOT),
799 	[BQ27531]   = BQ27XXX_DATA(bq27531,   0         , BQ27XXX_O_UTOT),
800 	[BQ27541]   = BQ27XXX_DATA(bq27541,   0         , BQ27XXX_O_OTDC),
801 	[BQ27542]   = BQ27XXX_DATA(bq27542,   0         , BQ27XXX_O_OTDC),
802 	[BQ27546]   = BQ27XXX_DATA(bq27546,   0         , BQ27XXX_O_OTDC),
803 	[BQ27742]   = BQ27XXX_DATA(bq27742,   0         , BQ27XXX_O_OTDC),
804 	[BQ27545]   = BQ27XXX_DATA(bq27545,   0x04143672, BQ27XXX_O_OTDC),
805 	[BQ27421]   = BQ27XXX_DATA(bq27421,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
806 	[BQ27425]   = BQ27XXX_DATA(bq27425,   0x04143672, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP),
807 	[BQ27426]   = BQ27XXX_DATA(bq27426,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
808 	[BQ27441]   = BQ27XXX_DATA(bq27441,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
809 	[BQ27621]   = BQ27XXX_DATA(bq27621,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
810 };
811 
812 static DEFINE_MUTEX(bq27xxx_list_lock);
813 static LIST_HEAD(bq27xxx_battery_devices);
814 
815 #define BQ27XXX_MSLEEP(i) usleep_range((i)*1000, (i)*1000+500)
816 
817 #define BQ27XXX_DM_SZ	32
818 
819 /**
820  * struct bq27xxx_dm_buf - chip data memory buffer
821  * @class: data memory subclass_id
822  * @block: data memory block number
823  * @data: data from/for the block
824  * @has_data: true if data has been filled by read
825  * @dirty: true if data has changed since last read/write
826  *
827  * Encapsulates info required to manage chip data memory blocks.
828  */
829 struct bq27xxx_dm_buf {
830 	u8 class;
831 	u8 block;
832 	u8 data[BQ27XXX_DM_SZ];
833 	bool has_data, dirty;
834 };
835 
836 #define BQ27XXX_DM_BUF(di, i) { \
837 	.class = (di)->dm_regs[i].subclass_id, \
838 	.block = (di)->dm_regs[i].offset / BQ27XXX_DM_SZ, \
839 }
840 
841 static inline u16 *bq27xxx_dm_reg_ptr(struct bq27xxx_dm_buf *buf,
842 				      struct bq27xxx_dm_reg *reg)
843 {
844 	if (buf->class == reg->subclass_id &&
845 	    buf->block == reg->offset / BQ27XXX_DM_SZ)
846 		return (u16 *) (buf->data + reg->offset % BQ27XXX_DM_SZ);
847 
848 	return NULL;
849 }
850 
851 static const char * const bq27xxx_dm_reg_name[] = {
852 	[BQ27XXX_DM_DESIGN_CAPACITY] = "design-capacity",
853 	[BQ27XXX_DM_DESIGN_ENERGY] = "design-energy",
854 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = "terminate-voltage",
855 };
856 
857 
858 static bool bq27xxx_dt_to_nvm = true;
859 module_param_named(dt_monitored_battery_updates_nvm, bq27xxx_dt_to_nvm, bool, 0444);
860 MODULE_PARM_DESC(dt_monitored_battery_updates_nvm,
861 	"Devicetree monitored-battery config updates data memory on NVM/flash chips.\n"
862 	"Users must set this =0 when installing a different type of battery!\n"
863 	"Default is =1."
864 #ifndef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
865 	"\nSetting this affects future kernel updates, not the current configuration."
866 #endif
867 );
868 
869 static int poll_interval_param_set(const char *val, const struct kernel_param *kp)
870 {
871 	struct bq27xxx_device_info *di;
872 	unsigned int prev_val = *(unsigned int *) kp->arg;
873 	int ret;
874 
875 	ret = param_set_uint(val, kp);
876 	if (ret < 0 || prev_val == *(unsigned int *) kp->arg)
877 		return ret;
878 
879 	mutex_lock(&bq27xxx_list_lock);
880 	list_for_each_entry(di, &bq27xxx_battery_devices, list) {
881 		cancel_delayed_work_sync(&di->work);
882 		schedule_delayed_work(&di->work, 0);
883 	}
884 	mutex_unlock(&bq27xxx_list_lock);
885 
886 	return ret;
887 }
888 
889 static const struct kernel_param_ops param_ops_poll_interval = {
890 	.get = param_get_uint,
891 	.set = poll_interval_param_set,
892 };
893 
894 static unsigned int poll_interval = 360;
895 module_param_cb(poll_interval, &param_ops_poll_interval, &poll_interval, 0644);
896 MODULE_PARM_DESC(poll_interval,
897 		 "battery poll interval in seconds - 0 disables polling");
898 
899 /*
900  * Common code for BQ27xxx devices
901  */
902 
903 static inline int bq27xxx_read(struct bq27xxx_device_info *di, int reg_index,
904 			       bool single)
905 {
906 	int ret;
907 
908 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
909 		return -EINVAL;
910 
911 	ret = di->bus.read(di, di->regs[reg_index], single);
912 	if (ret < 0)
913 		dev_dbg(di->dev, "failed to read register 0x%02x (index %d)\n",
914 			di->regs[reg_index], reg_index);
915 
916 	return ret;
917 }
918 
919 static inline int bq27xxx_write(struct bq27xxx_device_info *di, int reg_index,
920 				u16 value, bool single)
921 {
922 	int ret;
923 
924 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
925 		return -EINVAL;
926 
927 	if (!di->bus.write)
928 		return -EPERM;
929 
930 	ret = di->bus.write(di, di->regs[reg_index], value, single);
931 	if (ret < 0)
932 		dev_dbg(di->dev, "failed to write register 0x%02x (index %d)\n",
933 			di->regs[reg_index], reg_index);
934 
935 	return ret;
936 }
937 
938 static inline int bq27xxx_read_block(struct bq27xxx_device_info *di, int reg_index,
939 				     u8 *data, int len)
940 {
941 	int ret;
942 
943 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
944 		return -EINVAL;
945 
946 	if (!di->bus.read_bulk)
947 		return -EPERM;
948 
949 	ret = di->bus.read_bulk(di, di->regs[reg_index], data, len);
950 	if (ret < 0)
951 		dev_dbg(di->dev, "failed to read_bulk register 0x%02x (index %d)\n",
952 			di->regs[reg_index], reg_index);
953 
954 	return ret;
955 }
956 
957 static inline int bq27xxx_write_block(struct bq27xxx_device_info *di, int reg_index,
958 				      u8 *data, int len)
959 {
960 	int ret;
961 
962 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
963 		return -EINVAL;
964 
965 	if (!di->bus.write_bulk)
966 		return -EPERM;
967 
968 	ret = di->bus.write_bulk(di, di->regs[reg_index], data, len);
969 	if (ret < 0)
970 		dev_dbg(di->dev, "failed to write_bulk register 0x%02x (index %d)\n",
971 			di->regs[reg_index], reg_index);
972 
973 	return ret;
974 }
975 
976 static int bq27xxx_battery_seal(struct bq27xxx_device_info *di)
977 {
978 	int ret;
979 
980 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_SEALED, false);
981 	if (ret < 0) {
982 		dev_err(di->dev, "bus error on seal: %d\n", ret);
983 		return ret;
984 	}
985 
986 	return 0;
987 }
988 
989 static int bq27xxx_battery_unseal(struct bq27xxx_device_info *di)
990 {
991 	int ret;
992 
993 	if (di->unseal_key == 0) {
994 		dev_err(di->dev, "unseal failed due to missing key\n");
995 		return -EINVAL;
996 	}
997 
998 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)(di->unseal_key >> 16), false);
999 	if (ret < 0)
1000 		goto out;
1001 
1002 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)di->unseal_key, false);
1003 	if (ret < 0)
1004 		goto out;
1005 
1006 	return 0;
1007 
1008 out:
1009 	dev_err(di->dev, "bus error on unseal: %d\n", ret);
1010 	return ret;
1011 }
1012 
1013 static u8 bq27xxx_battery_checksum_dm_block(struct bq27xxx_dm_buf *buf)
1014 {
1015 	u16 sum = 0;
1016 	int i;
1017 
1018 	for (i = 0; i < BQ27XXX_DM_SZ; i++)
1019 		sum += buf->data[i];
1020 	sum &= 0xff;
1021 
1022 	return 0xff - sum;
1023 }
1024 
1025 static int bq27xxx_battery_read_dm_block(struct bq27xxx_device_info *di,
1026 					 struct bq27xxx_dm_buf *buf)
1027 {
1028 	int ret;
1029 
1030 	buf->has_data = false;
1031 
1032 	ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true);
1033 	if (ret < 0)
1034 		goto out;
1035 
1036 	ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true);
1037 	if (ret < 0)
1038 		goto out;
1039 
1040 	BQ27XXX_MSLEEP(1);
1041 
1042 	ret = bq27xxx_read_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ);
1043 	if (ret < 0)
1044 		goto out;
1045 
1046 	ret = bq27xxx_read(di, BQ27XXX_DM_CKSUM, true);
1047 	if (ret < 0)
1048 		goto out;
1049 
1050 	if ((u8)ret != bq27xxx_battery_checksum_dm_block(buf)) {
1051 		ret = -EINVAL;
1052 		goto out;
1053 	}
1054 
1055 	buf->has_data = true;
1056 	buf->dirty = false;
1057 
1058 	return 0;
1059 
1060 out:
1061 	dev_err(di->dev, "bus error reading chip memory: %d\n", ret);
1062 	return ret;
1063 }
1064 
1065 static void bq27xxx_battery_update_dm_block(struct bq27xxx_device_info *di,
1066 					    struct bq27xxx_dm_buf *buf,
1067 					    enum bq27xxx_dm_reg_id reg_id,
1068 					    unsigned int val)
1069 {
1070 	struct bq27xxx_dm_reg *reg = &di->dm_regs[reg_id];
1071 	const char *str = bq27xxx_dm_reg_name[reg_id];
1072 	u16 *prev = bq27xxx_dm_reg_ptr(buf, reg);
1073 
1074 	if (prev == NULL) {
1075 		dev_warn(di->dev, "buffer does not match %s dm spec\n", str);
1076 		return;
1077 	}
1078 
1079 	if (reg->bytes != 2) {
1080 		dev_warn(di->dev, "%s dm spec has unsupported byte size\n", str);
1081 		return;
1082 	}
1083 
1084 	if (!buf->has_data)
1085 		return;
1086 
1087 	if (be16_to_cpup(prev) == val) {
1088 		dev_info(di->dev, "%s has %u\n", str, val);
1089 		return;
1090 	}
1091 
1092 #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
1093 	if (!(di->opts & BQ27XXX_O_RAM) && !bq27xxx_dt_to_nvm) {
1094 #else
1095 	if (!(di->opts & BQ27XXX_O_RAM)) {
1096 #endif
1097 		/* devicetree and NVM differ; defer to NVM */
1098 		dev_warn(di->dev, "%s has %u; update to %u disallowed "
1099 #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
1100 			 "by dt_monitored_battery_updates_nvm=0"
1101 #else
1102 			 "for flash/NVM data memory"
1103 #endif
1104 			 "\n", str, be16_to_cpup(prev), val);
1105 		return;
1106 	}
1107 
1108 	dev_info(di->dev, "update %s to %u\n", str, val);
1109 
1110 	*prev = cpu_to_be16(val);
1111 	buf->dirty = true;
1112 }
1113 
1114 static int bq27xxx_battery_cfgupdate_priv(struct bq27xxx_device_info *di, bool active)
1115 {
1116 	const int limit = 100;
1117 	u16 cmd = active ? BQ27XXX_SET_CFGUPDATE : BQ27XXX_SOFT_RESET;
1118 	int ret, try = limit;
1119 
1120 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, cmd, false);
1121 	if (ret < 0)
1122 		return ret;
1123 
1124 	do {
1125 		BQ27XXX_MSLEEP(25);
1126 		ret = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false);
1127 		if (ret < 0)
1128 			return ret;
1129 	} while (!!(ret & BQ27XXX_FLAG_CFGUP) != active && --try);
1130 
1131 	if (!try && di->chip != BQ27425) { // 425 has a bug
1132 		dev_err(di->dev, "timed out waiting for cfgupdate flag %d\n", active);
1133 		return -EINVAL;
1134 	}
1135 
1136 	if (limit - try > 3)
1137 		dev_warn(di->dev, "cfgupdate %d, retries %d\n", active, limit - try);
1138 
1139 	return 0;
1140 }
1141 
1142 static inline int bq27xxx_battery_set_cfgupdate(struct bq27xxx_device_info *di)
1143 {
1144 	int ret = bq27xxx_battery_cfgupdate_priv(di, true);
1145 	if (ret < 0 && ret != -EINVAL)
1146 		dev_err(di->dev, "bus error on set_cfgupdate: %d\n", ret);
1147 
1148 	return ret;
1149 }
1150 
1151 static inline int bq27xxx_battery_soft_reset(struct bq27xxx_device_info *di)
1152 {
1153 	int ret = bq27xxx_battery_cfgupdate_priv(di, false);
1154 	if (ret < 0 && ret != -EINVAL)
1155 		dev_err(di->dev, "bus error on soft_reset: %d\n", ret);
1156 
1157 	return ret;
1158 }
1159 
1160 static int bq27xxx_battery_write_dm_block(struct bq27xxx_device_info *di,
1161 					  struct bq27xxx_dm_buf *buf)
1162 {
1163 	bool cfgup = di->opts & BQ27XXX_O_CFGUP;
1164 	int ret;
1165 
1166 	if (!buf->dirty)
1167 		return 0;
1168 
1169 	if (cfgup) {
1170 		ret = bq27xxx_battery_set_cfgupdate(di);
1171 		if (ret < 0)
1172 			return ret;
1173 	}
1174 
1175 	ret = bq27xxx_write(di, BQ27XXX_DM_CTRL, 0, true);
1176 	if (ret < 0)
1177 		goto out;
1178 
1179 	ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true);
1180 	if (ret < 0)
1181 		goto out;
1182 
1183 	ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true);
1184 	if (ret < 0)
1185 		goto out;
1186 
1187 	BQ27XXX_MSLEEP(1);
1188 
1189 	ret = bq27xxx_write_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ);
1190 	if (ret < 0)
1191 		goto out;
1192 
1193 	ret = bq27xxx_write(di, BQ27XXX_DM_CKSUM,
1194 			    bq27xxx_battery_checksum_dm_block(buf), true);
1195 	if (ret < 0)
1196 		goto out;
1197 
1198 	/* DO NOT read BQ27XXX_DM_CKSUM here to verify it! That may cause NVM
1199 	 * corruption on the '425 chip (and perhaps others), which can damage
1200 	 * the chip.
1201 	 */
1202 
1203 	if (cfgup) {
1204 		BQ27XXX_MSLEEP(1);
1205 		ret = bq27xxx_battery_soft_reset(di);
1206 		if (ret < 0)
1207 			return ret;
1208 	} else {
1209 		BQ27XXX_MSLEEP(100); /* flash DM updates in <100ms */
1210 	}
1211 
1212 	buf->dirty = false;
1213 
1214 	return 0;
1215 
1216 out:
1217 	if (cfgup)
1218 		bq27xxx_battery_soft_reset(di);
1219 
1220 	dev_err(di->dev, "bus error writing chip memory: %d\n", ret);
1221 	return ret;
1222 }
1223 
1224 static void bq27xxx_battery_set_config(struct bq27xxx_device_info *di,
1225 				       struct power_supply_battery_info *info)
1226 {
1227 	struct bq27xxx_dm_buf bd = BQ27XXX_DM_BUF(di, BQ27XXX_DM_DESIGN_CAPACITY);
1228 	struct bq27xxx_dm_buf bt = BQ27XXX_DM_BUF(di, BQ27XXX_DM_TERMINATE_VOLTAGE);
1229 	bool updated;
1230 
1231 	if (bq27xxx_battery_unseal(di) < 0)
1232 		return;
1233 
1234 	if (info->charge_full_design_uah != -EINVAL &&
1235 	    info->energy_full_design_uwh != -EINVAL) {
1236 		bq27xxx_battery_read_dm_block(di, &bd);
1237 		/* assume design energy & capacity are in same block */
1238 		bq27xxx_battery_update_dm_block(di, &bd,
1239 					BQ27XXX_DM_DESIGN_CAPACITY,
1240 					info->charge_full_design_uah / 1000);
1241 		bq27xxx_battery_update_dm_block(di, &bd,
1242 					BQ27XXX_DM_DESIGN_ENERGY,
1243 					info->energy_full_design_uwh / 1000);
1244 	}
1245 
1246 	if (info->voltage_min_design_uv != -EINVAL) {
1247 		bool same = bd.class == bt.class && bd.block == bt.block;
1248 		if (!same)
1249 			bq27xxx_battery_read_dm_block(di, &bt);
1250 		bq27xxx_battery_update_dm_block(di, same ? &bd : &bt,
1251 					BQ27XXX_DM_TERMINATE_VOLTAGE,
1252 					info->voltage_min_design_uv / 1000);
1253 	}
1254 
1255 	updated = bd.dirty || bt.dirty;
1256 
1257 	bq27xxx_battery_write_dm_block(di, &bd);
1258 	bq27xxx_battery_write_dm_block(di, &bt);
1259 
1260 	bq27xxx_battery_seal(di);
1261 
1262 	if (updated && !(di->opts & BQ27XXX_O_CFGUP)) {
1263 		bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_RESET, false);
1264 		BQ27XXX_MSLEEP(300); /* reset time is not documented */
1265 	}
1266 	/* assume bq27xxx_battery_update() is called hereafter */
1267 }
1268 
1269 static void bq27xxx_battery_settings(struct bq27xxx_device_info *di)
1270 {
1271 	struct power_supply_battery_info info = {};
1272 	unsigned int min, max;
1273 
1274 	if (power_supply_get_battery_info(di->bat, &info) < 0)
1275 		return;
1276 
1277 	if (!di->dm_regs) {
1278 		dev_warn(di->dev, "data memory update not supported for chip\n");
1279 		return;
1280 	}
1281 
1282 	if (info.energy_full_design_uwh != info.charge_full_design_uah) {
1283 		if (info.energy_full_design_uwh == -EINVAL)
1284 			dev_warn(di->dev, "missing battery:energy-full-design-microwatt-hours\n");
1285 		else if (info.charge_full_design_uah == -EINVAL)
1286 			dev_warn(di->dev, "missing battery:charge-full-design-microamp-hours\n");
1287 	}
1288 
1289 	/* assume min == 0 */
1290 	max = di->dm_regs[BQ27XXX_DM_DESIGN_ENERGY].max;
1291 	if (info.energy_full_design_uwh > max * 1000) {
1292 		dev_err(di->dev, "invalid battery:energy-full-design-microwatt-hours %d\n",
1293 			info.energy_full_design_uwh);
1294 		info.energy_full_design_uwh = -EINVAL;
1295 	}
1296 
1297 	/* assume min == 0 */
1298 	max = di->dm_regs[BQ27XXX_DM_DESIGN_CAPACITY].max;
1299 	if (info.charge_full_design_uah > max * 1000) {
1300 		dev_err(di->dev, "invalid battery:charge-full-design-microamp-hours %d\n",
1301 			info.charge_full_design_uah);
1302 		info.charge_full_design_uah = -EINVAL;
1303 	}
1304 
1305 	min = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].min;
1306 	max = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].max;
1307 	if ((info.voltage_min_design_uv < min * 1000 ||
1308 	     info.voltage_min_design_uv > max * 1000) &&
1309 	     info.voltage_min_design_uv != -EINVAL) {
1310 		dev_err(di->dev, "invalid battery:voltage-min-design-microvolt %d\n",
1311 			info.voltage_min_design_uv);
1312 		info.voltage_min_design_uv = -EINVAL;
1313 	}
1314 
1315 	if ((info.energy_full_design_uwh != -EINVAL &&
1316 	     info.charge_full_design_uah != -EINVAL) ||
1317 	     info.voltage_min_design_uv  != -EINVAL)
1318 		bq27xxx_battery_set_config(di, &info);
1319 }
1320 
1321 /*
1322  * Return the battery State-of-Charge
1323  * Or < 0 if something fails.
1324  */
1325 static int bq27xxx_battery_read_soc(struct bq27xxx_device_info *di)
1326 {
1327 	int soc;
1328 
1329 	if (di->opts & BQ27XXX_O_ZERO)
1330 		soc = bq27xxx_read(di, BQ27XXX_REG_SOC, true);
1331 	else
1332 		soc = bq27xxx_read(di, BQ27XXX_REG_SOC, false);
1333 
1334 	if (soc < 0)
1335 		dev_dbg(di->dev, "error reading State-of-Charge\n");
1336 
1337 	return soc;
1338 }
1339 
1340 /*
1341  * Return a battery charge value in µAh
1342  * Or < 0 if something fails.
1343  */
1344 static int bq27xxx_battery_read_charge(struct bq27xxx_device_info *di, u8 reg)
1345 {
1346 	int charge;
1347 
1348 	charge = bq27xxx_read(di, reg, false);
1349 	if (charge < 0) {
1350 		dev_dbg(di->dev, "error reading charge register %02x: %d\n",
1351 			reg, charge);
1352 		return charge;
1353 	}
1354 
1355 	if (di->opts & BQ27XXX_O_ZERO)
1356 		charge *= BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
1357 	else
1358 		charge *= 1000;
1359 
1360 	return charge;
1361 }
1362 
1363 /*
1364  * Return the battery Nominal available capacity in µAh
1365  * Or < 0 if something fails.
1366  */
1367 static inline int bq27xxx_battery_read_nac(struct bq27xxx_device_info *di)
1368 {
1369 	int flags;
1370 
1371 	if (di->opts & BQ27XXX_O_ZERO) {
1372 		flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, true);
1373 		if (flags >= 0 && (flags & BQ27000_FLAG_CI))
1374 			return -ENODATA;
1375 	}
1376 
1377 	return bq27xxx_battery_read_charge(di, BQ27XXX_REG_NAC);
1378 }
1379 
1380 /*
1381  * Return the battery Full Charge Capacity in µAh
1382  * Or < 0 if something fails.
1383  */
1384 static inline int bq27xxx_battery_read_fcc(struct bq27xxx_device_info *di)
1385 {
1386 	return bq27xxx_battery_read_charge(di, BQ27XXX_REG_FCC);
1387 }
1388 
1389 /*
1390  * Return the Design Capacity in µAh
1391  * Or < 0 if something fails.
1392  */
1393 static int bq27xxx_battery_read_dcap(struct bq27xxx_device_info *di)
1394 {
1395 	int dcap;
1396 
1397 	if (di->opts & BQ27XXX_O_ZERO)
1398 		dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, true);
1399 	else
1400 		dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, false);
1401 
1402 	if (dcap < 0) {
1403 		dev_dbg(di->dev, "error reading initial last measured discharge\n");
1404 		return dcap;
1405 	}
1406 
1407 	if (di->opts & BQ27XXX_O_ZERO)
1408 		dcap = (dcap << 8) * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
1409 	else
1410 		dcap *= 1000;
1411 
1412 	return dcap;
1413 }
1414 
1415 /*
1416  * Return the battery Available energy in µWh
1417  * Or < 0 if something fails.
1418  */
1419 static int bq27xxx_battery_read_energy(struct bq27xxx_device_info *di)
1420 {
1421 	int ae;
1422 
1423 	ae = bq27xxx_read(di, BQ27XXX_REG_AE, false);
1424 	if (ae < 0) {
1425 		dev_dbg(di->dev, "error reading available energy\n");
1426 		return ae;
1427 	}
1428 
1429 	if (di->opts & BQ27XXX_O_ZERO)
1430 		ae *= BQ27XXX_POWER_CONSTANT / BQ27XXX_RS;
1431 	else
1432 		ae *= 1000;
1433 
1434 	return ae;
1435 }
1436 
1437 /*
1438  * Return the battery temperature in tenths of degree Kelvin
1439  * Or < 0 if something fails.
1440  */
1441 static int bq27xxx_battery_read_temperature(struct bq27xxx_device_info *di)
1442 {
1443 	int temp;
1444 
1445 	temp = bq27xxx_read(di, BQ27XXX_REG_TEMP, false);
1446 	if (temp < 0) {
1447 		dev_err(di->dev, "error reading temperature\n");
1448 		return temp;
1449 	}
1450 
1451 	if (di->opts & BQ27XXX_O_ZERO)
1452 		temp = 5 * temp / 2;
1453 
1454 	return temp;
1455 }
1456 
1457 /*
1458  * Return the battery Cycle count total
1459  * Or < 0 if something fails.
1460  */
1461 static int bq27xxx_battery_read_cyct(struct bq27xxx_device_info *di)
1462 {
1463 	int cyct;
1464 
1465 	cyct = bq27xxx_read(di, BQ27XXX_REG_CYCT, false);
1466 	if (cyct < 0)
1467 		dev_err(di->dev, "error reading cycle count total\n");
1468 
1469 	return cyct;
1470 }
1471 
1472 /*
1473  * Read a time register.
1474  * Return < 0 if something fails.
1475  */
1476 static int bq27xxx_battery_read_time(struct bq27xxx_device_info *di, u8 reg)
1477 {
1478 	int tval;
1479 
1480 	tval = bq27xxx_read(di, reg, false);
1481 	if (tval < 0) {
1482 		dev_dbg(di->dev, "error reading time register %02x: %d\n",
1483 			reg, tval);
1484 		return tval;
1485 	}
1486 
1487 	if (tval == 65535)
1488 		return -ENODATA;
1489 
1490 	return tval * 60;
1491 }
1492 
1493 /*
1494  * Read an average power register.
1495  * Return < 0 if something fails.
1496  */
1497 static int bq27xxx_battery_read_pwr_avg(struct bq27xxx_device_info *di)
1498 {
1499 	int tval;
1500 
1501 	tval = bq27xxx_read(di, BQ27XXX_REG_AP, false);
1502 	if (tval < 0) {
1503 		dev_err(di->dev, "error reading average power register  %02x: %d\n",
1504 			BQ27XXX_REG_AP, tval);
1505 		return tval;
1506 	}
1507 
1508 	if (di->opts & BQ27XXX_O_ZERO)
1509 		return (tval * BQ27XXX_POWER_CONSTANT) / BQ27XXX_RS;
1510 	else
1511 		return tval;
1512 }
1513 
1514 /*
1515  * Returns true if a battery over temperature condition is detected
1516  */
1517 static bool bq27xxx_battery_overtemp(struct bq27xxx_device_info *di, u16 flags)
1518 {
1519 	if (di->opts & BQ27XXX_O_OTDC)
1520 		return flags & (BQ27XXX_FLAG_OTC | BQ27XXX_FLAG_OTD);
1521         if (di->opts & BQ27XXX_O_UTOT)
1522 		return flags & BQ27XXX_FLAG_OT;
1523 
1524 	return false;
1525 }
1526 
1527 /*
1528  * Returns true if a battery under temperature condition is detected
1529  */
1530 static bool bq27xxx_battery_undertemp(struct bq27xxx_device_info *di, u16 flags)
1531 {
1532 	if (di->opts & BQ27XXX_O_UTOT)
1533 		return flags & BQ27XXX_FLAG_UT;
1534 
1535 	return false;
1536 }
1537 
1538 /*
1539  * Returns true if a low state of charge condition is detected
1540  */
1541 static bool bq27xxx_battery_dead(struct bq27xxx_device_info *di, u16 flags)
1542 {
1543 	if (di->opts & BQ27XXX_O_ZERO)
1544 		return flags & (BQ27000_FLAG_EDV1 | BQ27000_FLAG_EDVF);
1545 	else
1546 		return flags & (BQ27XXX_FLAG_SOC1 | BQ27XXX_FLAG_SOCF);
1547 }
1548 
1549 /*
1550  * Read flag register.
1551  * Return < 0 if something fails.
1552  */
1553 static int bq27xxx_battery_read_health(struct bq27xxx_device_info *di)
1554 {
1555 	int flags;
1556 	bool has_singe_flag = di->opts & BQ27XXX_O_ZERO;
1557 
1558 	flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, has_singe_flag);
1559 	if (flags < 0) {
1560 		dev_err(di->dev, "error reading flag register:%d\n", flags);
1561 		return flags;
1562 	}
1563 
1564 	/* Unlikely but important to return first */
1565 	if (unlikely(bq27xxx_battery_overtemp(di, flags)))
1566 		return POWER_SUPPLY_HEALTH_OVERHEAT;
1567 	if (unlikely(bq27xxx_battery_undertemp(di, flags)))
1568 		return POWER_SUPPLY_HEALTH_COLD;
1569 	if (unlikely(bq27xxx_battery_dead(di, flags)))
1570 		return POWER_SUPPLY_HEALTH_DEAD;
1571 
1572 	return POWER_SUPPLY_HEALTH_GOOD;
1573 }
1574 
1575 void bq27xxx_battery_update(struct bq27xxx_device_info *di)
1576 {
1577 	struct bq27xxx_reg_cache cache = {0, };
1578 	bool has_ci_flag = di->opts & BQ27XXX_O_ZERO;
1579 	bool has_singe_flag = di->opts & BQ27XXX_O_ZERO;
1580 
1581 	cache.flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, has_singe_flag);
1582 	if ((cache.flags & 0xff) == 0xff)
1583 		cache.flags = -1; /* read error */
1584 	if (cache.flags >= 0) {
1585 		cache.temperature = bq27xxx_battery_read_temperature(di);
1586 		if (has_ci_flag && (cache.flags & BQ27000_FLAG_CI)) {
1587 			dev_info_once(di->dev, "battery is not calibrated! ignoring capacity values\n");
1588 			cache.capacity = -ENODATA;
1589 			cache.energy = -ENODATA;
1590 			cache.time_to_empty = -ENODATA;
1591 			cache.time_to_empty_avg = -ENODATA;
1592 			cache.time_to_full = -ENODATA;
1593 			cache.charge_full = -ENODATA;
1594 			cache.health = -ENODATA;
1595 		} else {
1596 			if (di->regs[BQ27XXX_REG_TTE] != INVALID_REG_ADDR)
1597 				cache.time_to_empty = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTE);
1598 			if (di->regs[BQ27XXX_REG_TTECP] != INVALID_REG_ADDR)
1599 				cache.time_to_empty_avg = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTECP);
1600 			if (di->regs[BQ27XXX_REG_TTF] != INVALID_REG_ADDR)
1601 				cache.time_to_full = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTF);
1602 			cache.charge_full = bq27xxx_battery_read_fcc(di);
1603 			cache.capacity = bq27xxx_battery_read_soc(di);
1604 			if (di->regs[BQ27XXX_REG_AE] != INVALID_REG_ADDR)
1605 				cache.energy = bq27xxx_battery_read_energy(di);
1606 			cache.health = bq27xxx_battery_read_health(di);
1607 		}
1608 		if (di->regs[BQ27XXX_REG_CYCT] != INVALID_REG_ADDR)
1609 			cache.cycle_count = bq27xxx_battery_read_cyct(di);
1610 		if (di->regs[BQ27XXX_REG_AP] != INVALID_REG_ADDR)
1611 			cache.power_avg = bq27xxx_battery_read_pwr_avg(di);
1612 
1613 		/* We only have to read charge design full once */
1614 		if (di->charge_design_full <= 0)
1615 			di->charge_design_full = bq27xxx_battery_read_dcap(di);
1616 	}
1617 
1618 	if (di->cache.capacity != cache.capacity)
1619 		power_supply_changed(di->bat);
1620 
1621 	if (memcmp(&di->cache, &cache, sizeof(cache)) != 0)
1622 		di->cache = cache;
1623 
1624 	di->last_update = jiffies;
1625 }
1626 EXPORT_SYMBOL_GPL(bq27xxx_battery_update);
1627 
1628 static void bq27xxx_battery_poll(struct work_struct *work)
1629 {
1630 	struct bq27xxx_device_info *di =
1631 			container_of(work, struct bq27xxx_device_info,
1632 				     work.work);
1633 
1634 	bq27xxx_battery_update(di);
1635 
1636 	if (poll_interval > 0)
1637 		schedule_delayed_work(&di->work, poll_interval * HZ);
1638 }
1639 
1640 /*
1641  * Return the battery average current in µA
1642  * Note that current can be negative signed as well
1643  * Or 0 if something fails.
1644  */
1645 static int bq27xxx_battery_current(struct bq27xxx_device_info *di,
1646 				   union power_supply_propval *val)
1647 {
1648 	int curr;
1649 	int flags;
1650 
1651 	curr = bq27xxx_read(di, BQ27XXX_REG_AI, false);
1652 	if (curr < 0) {
1653 		dev_err(di->dev, "error reading current\n");
1654 		return curr;
1655 	}
1656 
1657 	if (di->opts & BQ27XXX_O_ZERO) {
1658 		flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, true);
1659 		if (flags & BQ27000_FLAG_CHGS) {
1660 			dev_dbg(di->dev, "negative current!\n");
1661 			curr = -curr;
1662 		}
1663 
1664 		val->intval = curr * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
1665 	} else {
1666 		/* Other gauges return signed value */
1667 		val->intval = (int)((s16)curr) * 1000;
1668 	}
1669 
1670 	return 0;
1671 }
1672 
1673 static int bq27xxx_battery_status(struct bq27xxx_device_info *di,
1674 				  union power_supply_propval *val)
1675 {
1676 	int status;
1677 
1678 	if (di->opts & BQ27XXX_O_ZERO) {
1679 		if (di->cache.flags & BQ27000_FLAG_FC)
1680 			status = POWER_SUPPLY_STATUS_FULL;
1681 		else if (di->cache.flags & BQ27000_FLAG_CHGS)
1682 			status = POWER_SUPPLY_STATUS_CHARGING;
1683 		else if (power_supply_am_i_supplied(di->bat) > 0)
1684 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1685 		else
1686 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1687 	} else {
1688 		if (di->cache.flags & BQ27XXX_FLAG_FC)
1689 			status = POWER_SUPPLY_STATUS_FULL;
1690 		else if (di->cache.flags & BQ27XXX_FLAG_DSC)
1691 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1692 		else
1693 			status = POWER_SUPPLY_STATUS_CHARGING;
1694 	}
1695 
1696 	val->intval = status;
1697 
1698 	return 0;
1699 }
1700 
1701 static int bq27xxx_battery_capacity_level(struct bq27xxx_device_info *di,
1702 					  union power_supply_propval *val)
1703 {
1704 	int level;
1705 
1706 	if (di->opts & BQ27XXX_O_ZERO) {
1707 		if (di->cache.flags & BQ27000_FLAG_FC)
1708 			level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1709 		else if (di->cache.flags & BQ27000_FLAG_EDV1)
1710 			level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1711 		else if (di->cache.flags & BQ27000_FLAG_EDVF)
1712 			level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1713 		else
1714 			level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1715 	} else {
1716 		if (di->cache.flags & BQ27XXX_FLAG_FC)
1717 			level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1718 		else if (di->cache.flags & BQ27XXX_FLAG_SOC1)
1719 			level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1720 		else if (di->cache.flags & BQ27XXX_FLAG_SOCF)
1721 			level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1722 		else
1723 			level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1724 	}
1725 
1726 	val->intval = level;
1727 
1728 	return 0;
1729 }
1730 
1731 /*
1732  * Return the battery Voltage in millivolts
1733  * Or < 0 if something fails.
1734  */
1735 static int bq27xxx_battery_voltage(struct bq27xxx_device_info *di,
1736 				   union power_supply_propval *val)
1737 {
1738 	int volt;
1739 
1740 	volt = bq27xxx_read(di, BQ27XXX_REG_VOLT, false);
1741 	if (volt < 0) {
1742 		dev_err(di->dev, "error reading voltage\n");
1743 		return volt;
1744 	}
1745 
1746 	val->intval = volt * 1000;
1747 
1748 	return 0;
1749 }
1750 
1751 static int bq27xxx_simple_value(int value,
1752 				union power_supply_propval *val)
1753 {
1754 	if (value < 0)
1755 		return value;
1756 
1757 	val->intval = value;
1758 
1759 	return 0;
1760 }
1761 
1762 static int bq27xxx_battery_get_property(struct power_supply *psy,
1763 					enum power_supply_property psp,
1764 					union power_supply_propval *val)
1765 {
1766 	int ret = 0;
1767 	struct bq27xxx_device_info *di = power_supply_get_drvdata(psy);
1768 
1769 	mutex_lock(&di->lock);
1770 	if (time_is_before_jiffies(di->last_update + 5 * HZ)) {
1771 		cancel_delayed_work_sync(&di->work);
1772 		bq27xxx_battery_poll(&di->work.work);
1773 	}
1774 	mutex_unlock(&di->lock);
1775 
1776 	if (psp != POWER_SUPPLY_PROP_PRESENT && di->cache.flags < 0)
1777 		return -ENODEV;
1778 
1779 	switch (psp) {
1780 	case POWER_SUPPLY_PROP_STATUS:
1781 		ret = bq27xxx_battery_status(di, val);
1782 		break;
1783 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1784 		ret = bq27xxx_battery_voltage(di, val);
1785 		break;
1786 	case POWER_SUPPLY_PROP_PRESENT:
1787 		val->intval = di->cache.flags < 0 ? 0 : 1;
1788 		break;
1789 	case POWER_SUPPLY_PROP_CURRENT_NOW:
1790 		ret = bq27xxx_battery_current(di, val);
1791 		break;
1792 	case POWER_SUPPLY_PROP_CAPACITY:
1793 		ret = bq27xxx_simple_value(di->cache.capacity, val);
1794 		break;
1795 	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1796 		ret = bq27xxx_battery_capacity_level(di, val);
1797 		break;
1798 	case POWER_SUPPLY_PROP_TEMP:
1799 		ret = bq27xxx_simple_value(di->cache.temperature, val);
1800 		if (ret == 0)
1801 			val->intval -= 2731; /* convert decidegree k to c */
1802 		break;
1803 	case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW:
1804 		ret = bq27xxx_simple_value(di->cache.time_to_empty, val);
1805 		break;
1806 	case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
1807 		ret = bq27xxx_simple_value(di->cache.time_to_empty_avg, val);
1808 		break;
1809 	case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW:
1810 		ret = bq27xxx_simple_value(di->cache.time_to_full, val);
1811 		break;
1812 	case POWER_SUPPLY_PROP_TECHNOLOGY:
1813 		val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
1814 		break;
1815 	case POWER_SUPPLY_PROP_CHARGE_NOW:
1816 		ret = bq27xxx_simple_value(bq27xxx_battery_read_nac(di), val);
1817 		break;
1818 	case POWER_SUPPLY_PROP_CHARGE_FULL:
1819 		ret = bq27xxx_simple_value(di->cache.charge_full, val);
1820 		break;
1821 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
1822 		ret = bq27xxx_simple_value(di->charge_design_full, val);
1823 		break;
1824 	/*
1825 	 * TODO: Implement these to make registers set from
1826 	 * power_supply_battery_info visible in sysfs.
1827 	 */
1828 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
1829 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
1830 		return -EINVAL;
1831 	case POWER_SUPPLY_PROP_CYCLE_COUNT:
1832 		ret = bq27xxx_simple_value(di->cache.cycle_count, val);
1833 		break;
1834 	case POWER_SUPPLY_PROP_ENERGY_NOW:
1835 		ret = bq27xxx_simple_value(di->cache.energy, val);
1836 		break;
1837 	case POWER_SUPPLY_PROP_POWER_AVG:
1838 		ret = bq27xxx_simple_value(di->cache.power_avg, val);
1839 		break;
1840 	case POWER_SUPPLY_PROP_HEALTH:
1841 		ret = bq27xxx_simple_value(di->cache.health, val);
1842 		break;
1843 	case POWER_SUPPLY_PROP_MANUFACTURER:
1844 		val->strval = BQ27XXX_MANUFACTURER;
1845 		break;
1846 	default:
1847 		return -EINVAL;
1848 	}
1849 
1850 	return ret;
1851 }
1852 
1853 static void bq27xxx_external_power_changed(struct power_supply *psy)
1854 {
1855 	struct bq27xxx_device_info *di = power_supply_get_drvdata(psy);
1856 
1857 	cancel_delayed_work_sync(&di->work);
1858 	schedule_delayed_work(&di->work, 0);
1859 }
1860 
1861 int bq27xxx_battery_setup(struct bq27xxx_device_info *di)
1862 {
1863 	struct power_supply_desc *psy_desc;
1864 	struct power_supply_config psy_cfg = {
1865 		.of_node = di->dev->of_node,
1866 		.drv_data = di,
1867 	};
1868 
1869 	INIT_DELAYED_WORK(&di->work, bq27xxx_battery_poll);
1870 	mutex_init(&di->lock);
1871 
1872 	di->regs       = bq27xxx_chip_data[di->chip].regs;
1873 	di->unseal_key = bq27xxx_chip_data[di->chip].unseal_key;
1874 	di->dm_regs    = bq27xxx_chip_data[di->chip].dm_regs;
1875 	di->opts       = bq27xxx_chip_data[di->chip].opts;
1876 
1877 	psy_desc = devm_kzalloc(di->dev, sizeof(*psy_desc), GFP_KERNEL);
1878 	if (!psy_desc)
1879 		return -ENOMEM;
1880 
1881 	psy_desc->name = di->name;
1882 	psy_desc->type = POWER_SUPPLY_TYPE_BATTERY;
1883 	psy_desc->properties = bq27xxx_chip_data[di->chip].props;
1884 	psy_desc->num_properties = bq27xxx_chip_data[di->chip].props_size;
1885 	psy_desc->get_property = bq27xxx_battery_get_property;
1886 	psy_desc->external_power_changed = bq27xxx_external_power_changed;
1887 
1888 	di->bat = power_supply_register_no_ws(di->dev, psy_desc, &psy_cfg);
1889 	if (IS_ERR(di->bat)) {
1890 		dev_err(di->dev, "failed to register battery\n");
1891 		return PTR_ERR(di->bat);
1892 	}
1893 
1894 	bq27xxx_battery_settings(di);
1895 	bq27xxx_battery_update(di);
1896 
1897 	mutex_lock(&bq27xxx_list_lock);
1898 	list_add(&di->list, &bq27xxx_battery_devices);
1899 	mutex_unlock(&bq27xxx_list_lock);
1900 
1901 	return 0;
1902 }
1903 EXPORT_SYMBOL_GPL(bq27xxx_battery_setup);
1904 
1905 void bq27xxx_battery_teardown(struct bq27xxx_device_info *di)
1906 {
1907 	/*
1908 	 * power_supply_unregister call bq27xxx_battery_get_property which
1909 	 * call bq27xxx_battery_poll.
1910 	 * Make sure that bq27xxx_battery_poll will not call
1911 	 * schedule_delayed_work again after unregister (which cause OOPS).
1912 	 */
1913 	poll_interval = 0;
1914 
1915 	cancel_delayed_work_sync(&di->work);
1916 
1917 	power_supply_unregister(di->bat);
1918 
1919 	mutex_lock(&bq27xxx_list_lock);
1920 	list_del(&di->list);
1921 	mutex_unlock(&bq27xxx_list_lock);
1922 
1923 	mutex_destroy(&di->lock);
1924 }
1925 EXPORT_SYMBOL_GPL(bq27xxx_battery_teardown);
1926 
1927 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
1928 MODULE_DESCRIPTION("BQ27xxx battery monitor driver");
1929 MODULE_LICENSE("GPL");
1930